Skip to main content

Glycopolymer Conjugates

  • Chapter
  • First Online:
Bio-synthetic Polymer Conjugates

Part of the book series: Advances in Polymer Science ((POLYMER,volume 253))

Abstract

This review describes recent developments in the field of glycopolymer (polymer–carbohydrate conjugate) synthesis. The interest in this class of polymers that have a wide range of biological recognition properties has grown rapidly in the last decade due to their application in the areas of biotechnology and medicinal chemistry. Modern synthetic methodologies such as controlled radical polymerization, ionic polymerization, ring-opening polymerization (ROP), ring-opening metathesis polymerization (ROMP) and Click chemistry have recently been proven to be extremely efficient and versatile tools for building tailor-made functional polymers with different molecular architectures. The use of these synthetic methods to prepare glycopolymer conjugates is outlined and discussed in detail. The self-assembling behavior of these glycopolymer designs and their interactions with their corresponding lectins (cell surface receptor proteins) are also presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AcGalEMA:

2-(2′,3′,4′,6′-Tetra-O-acetyl-β-d-galactosyloxy)ethyl methacrylate

AcGEA:

2-(2′,3′,4′,6′-Tetra-O-acetyl-β-d-glucopyranosyloxy)-ethyl acrylate

ACPA:

4,4′-Azobis(4-cyanopentanoic acid)

AFM:

Atomic force microscopy

ARGET:

Activators regenerated by electron transfer

ATRP:

Atom transfer radical polymerization

BLG:

Benzyl l-glutamate

BSA:

Bovine serum albumin

Con-A:

Concanavalin A

CRP:

Controlled radical polymerization

CuAAC:

Copper-catalyzed azide-alkyne cycloaddition

DEGMA:

Di(ethylene glycol) methyl ether methacrylate

DIPEA:

N,N-diisopropylethylamine

DLS:

Dynamic light scattering

ELISA:

Enzyme-linked immunosorbent assay

FRP:

Free radical polymerization

GalEMA:

2-(β-d-Galactosyloxy)ethyl methacrylate

GAMA:

2-Gluconamidoethyl methacrylate

GluEMA:

2-(β-d-Glucosyloxy)ethyl methacrylate

HEMA:

2-Hydroxyethyl methacrylate

HIA:

Hemagglutination inhibition assay

ICAR:

Initiators for continuous activator regeneration

ITC:

Isothermal titration microcalorimetry

LAMA:

2-Lactobionamidoethyl methacrylate

MAGlu:

2-Methacryloxyethyl glucoside

MAIpGlc:

3-O-methacryloyl-1,2:5,6-di-O-isopropylidene-d-glucofuranose

MALDI-TOF:

Matrix-assisted laser desorption/ionization-time of flight

MCDO:

5-Methyl-5-carboxyl-1,3-dioxan-2-one

MS:

Mass spectrometry

NCA:

N-carboxyanhydride

NHS:

N-hydroxysuccinimide

NIPAM:

N-isopropylacrylamide

NMP:

Nitroxide-mediated polymerization

PCL:

Poly(ε-caprolactone)

PDEA:

Poly[2-(diethylamino)ethyl methacrylate]

PDEGMA:

Poly(diethyleneglycol methacrylate)

PDI:

Polydispersity index

PDPA:

Poly[2-(diisopropylaminoethyl methacrylate)]

PET:

Poly(ethylene terephthalate)

PG:

Propargylglycine

PGAMA:

Poly(glucosamidoethyl methacrylate)

PGMMA:

Poly(glycerol monomethacrylate)

PLA:

Poly(lactide)

PLAMA:

Poly(2-lactobionamidoethyl methacrylate)

PLG:

Poly(l-glutamate)

PNA:

Peanut agglutinin

PNIPAM:

Poly(N-isopropylacrylamide)

PVA:

Poly(vinyl alcohol)

Pβ-BLG:

Poly(β-benzyl l-glutamate)

Pγ-BLG:

Poly(γ-benzyl l-glutamate)

RAFT:

Reversible addition–fragmentation chain transfer

RCA120 :

Ricinus communis agglutinin

ROMP:

Ring-opening metathesis polymerization

ROP:

Ring-opening polymerization

SEC:

Size exclusion chromatography

SPR:

Surface plasmon resonance

TEM:

Transmission electron microscopy

TEMPO:

2,2,6,6-Tetramethylpiperidinyloxy

TMC:

Trimethylene carbonate

VLA:

N-(p-vinylbenzyl)-[O-β-d-galactopyranosyl-(1-4)]-d-gluconamide

References

  1. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291(5512):2357–2364

    Article  CAS  Google Scholar 

  2. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96(2):683–720

    Article  CAS  Google Scholar 

  3. Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3(9):1593–1608

    Article  CAS  Google Scholar 

  4. Allen HJ, Kisailus EC (1992) Glycoconjugates composition structure and function. Marcel Dekker, New York

    Google Scholar 

  5. Lis H, Sharon N (1993) Protein glycosylation – structural and functional-aspects. Eur J Biochem 218(1):1–27

    Article  CAS  Google Scholar 

  6. Holgersson J, Gustafsson A, Breimer ME (2005) Characteristics of protein-carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies. Immunol Cell Biol 83(6):694–708

    Article  CAS  Google Scholar 

  7. Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246(4927):227–234

    Article  CAS  Google Scholar 

  8. Roy R (1996) Synthesis and applications of glycopolymers. Trends Glycosci Glycotechnol 8(40):79–99

    Article  Google Scholar 

  9. Bovin NV, Gabius HJ (1995) Polymer-immobilized carbohydrate ligands: versatile chemical tools for biochemistry and medical sciences. Chem Soc Rev 24(6):413

    Article  CAS  Google Scholar 

  10. Magnusson G, Chernyak AY, Kihlberg J, Kononov LO (1994) Synthesis of neoglycoconjugates. In: Lee YC, Lee RT (eds) Neoglycoconjugates: preparation and applications. Academic, San Diego, pp 53–143

    Google Scholar 

  11. Pearson S, Chen G, Stenzel MH (2011) Synthesis of glycopolymers. In: Narain R (ed) Engineered carbohydrate-based materials for biomedical applications. Wiley, Hoboken, pp 1–118

    Google Scholar 

  12. Lee YC, Lee RT (1995) Carbohydrate-protein interactions – basis of glycobiology. Acc Chem Res 28(8):321–327

    Article  CAS  Google Scholar 

  13. Simanek EE, McGarvey GJ, Jablonowski JA, Wong CH (1998) Selectin-carbohydrate interactions: from natural ligands to designed mimics. Chem Rev 98(2):833–862

    Article  CAS  Google Scholar 

  14. Klein J, Kunz M, Kowalczyk J (1990) Poly(vinylsaccharide)s.7. New surfactant polymers based on carbohydrates. Makromol Chem Phys 191(3):517–528

    Article  CAS  Google Scholar 

  15. Wulff G, Schmid J, Venhoff T (1996) The synthesis of polymerizable vinyl sugars. Macromol Chem Phys 197(1):259–274

    Article  CAS  Google Scholar 

  16. Kroll J (1997) Food colloids. Proteins, lipids and polysaccharides. Edited by Dickinson E, Bergenstähl B. The Royal Society of Chemistry, Cambridge. Food/Nahrung 41(6):378–378

    Google Scholar 

  17. Kopecek J, Kopeckova P, Brondsted H, Rathi R, Rihova B, Yeh PY, Ikesue K (1992) Polymers for colon-specific drug delivery. J Control Release 19(1–3):121–130

    Article  CAS  Google Scholar 

  18. Murata J, Ohya Y, Ouchi T (1996) Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool. Carbohydr Polym 29(1):69–74

    Article  CAS  Google Scholar 

  19. Bahulekar R, Tokiwa T, Kano J, Matsumura T, Kojima I, Kodama M (1998) Polyacrylamide containing sugar residues: synthesis, characterization and cell compatibility studies. Carbohydr Polym 37(1):71–78

    Article  CAS  Google Scholar 

  20. Kim SH, Goto M, Cho CS, Akaike T (2000) Specific adhesion of primary hepatocytes to a novel glucose-carrying polymer. Biotechnol Lett 22(13):1049–1057

    Article  CAS  Google Scholar 

  21. Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    Article  CAS  Google Scholar 

  22. Sashiwa H, Thompson JM, Das SK, Shigemasa Y, Tripathy S, Roy R (2000) Chemical modification of chitosan: preparation and lectin binding properties of alpha-galactosyl-chitosan conjugates. Potential inhibitors in acute rejection following xenotransplantation. Biomacromolecules 1(3):303–305

    Article  CAS  Google Scholar 

  23. Petronio MG, Mansi A, Gallinelli C, Pisani S, Seganti L, Chiarini F (1997) In vitro effect of natural and semi-synthetic carbohydrate polymers on Chlamydia trachomatis infection. Chemotherapy 43(3):211–217

    Article  CAS  Google Scholar 

  24. Yoshida T, Akasaka T, Choi Y, Hattori K, Yu B, Mimura T, Kaneko Y, Nakashima H, Aragaki E, Premanathan M, Yamamoto N, Uryu T (1999) Synthesis of polymethacrylate derivatives having sulfated maltoheptaose side chains with anti-HIV activities. J Polym Sci A Polym Chem 37(6):789–800

    Article  CAS  Google Scholar 

  25. Du J, O’Reilly RK (2009) Advances and challenges in smart and functional polymer vesicles. Soft Matter 5(19):3544–3561

    Article  CAS  Google Scholar 

  26. Brinkhuis RP, Rutjes FPJT, van Hest JCM (2011) Polymeric vesicles in biomedical applications. Polym Chem 2(7):1449–1462

    Article  CAS  Google Scholar 

  27. Pasparakis G, Alexander C (2008) Sweet talking double hydrophilic block copolymer vesicles. Angew Chem Int Ed 47(26):4847–4850

    Article  CAS  Google Scholar 

  28. Okada M (2001) Molecular design and syntheses of glycopolymers. Prog Polym Sci 26(1):67–104

    Article  CAS  Google Scholar 

  29. Ladmiral V, Melia E, Haddleton DM (2004) Synthetic glycopolymers: an overview. Eur Polym J 40(3):431–449

    Article  CAS  Google Scholar 

  30. Cunliffe D, Pennadam S, Alexander C (2004) Synthetic and biological polymers-merging the interface. Eur Polym J 40(1):5–25

    Article  CAS  Google Scholar 

  31. Spain SG, Gibson MI, Cameron NR (2007) Recent advances in the synthesis of well-defined glycopolymers. J Polym Sci A Polym Chem 45(11):2059–2072

    Article  CAS  Google Scholar 

  32. Slavin S, Burns J, Haddleton DM, Becer CR (2011) Synthesis of glycopolymers via click reactions. Eur Polym J 47(4):435–446

    Article  CAS  Google Scholar 

  33. Le Droumaguet B, Nicolas J (2010) Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym Chem 1(5):563–598

    Article  CAS  Google Scholar 

  34. Ting SRS, Chen G, Stenzel MH (2010) Synthesis of glycopolymers and their multivalent recognitions with lectins. Polym Chem 1(9):1392–1412

    Article  CAS  Google Scholar 

  35. Yang Q (2011) Block glycopolymers and their self-assembly properties. In: Narain R (ed) Engineered carbohydrate-based materials for biomedical applications. Wiley, Hoboken, pp 119–141.

    Google Scholar 

  36. Ahmed M, Narain R (2011) Cationic glycopolymers. In: Narain R (ed) Engineered carbohydrate-based materials for biomedical applications. Wiley, Hoboken, pp 143–165

    Google Scholar 

  37. Ahmed M, Narain R (2011) Glycopolymer bioconjugates. In: Narain R (ed) Engineered carbohydrate-based materials for biomedical applications. Wiley, Hoboken, pp 167–188

    Google Scholar 

  38. Dong C-M (2011) Glyconanoparticles for biomedical applications. Comb Chem High Throughput Screen 14(3):173–181

    Article  CAS  Google Scholar 

  39. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98(2):637–674

    Article  CAS  Google Scholar 

  40. Ambrosi M, Cameron NR, Davis BG, Stolnik S (2005) Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Org Biomol Chem 3(8):1476–1480

    Article  CAS  Google Scholar 

  41. Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102(2):555–578

    Article  CAS  Google Scholar 

  42. Rini JM (1995) Lectin structure. Annu Rev Biophys Biomol Struct 24:551–577

    Article  CAS  Google Scholar 

  43. Weis WI, Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65:441–473

    Article  CAS  Google Scholar 

  44. Iskratsch T, Braun A, Paschinger K, Wilson IBH (2009) Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem 386(2):133–146

    Article  CAS  Google Scholar 

  45. Cairo CW, Gestwicki JE, Kanai M, Kiessling LL (2002) Control of multivalent interactions by binding epitope density. J Am Chem Soc 124(8):1615–1619

    Article  CAS  Google Scholar 

  46. Martin AL, Li B, Gillies ER (2009) Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. J Am Chem Soc 131(2):734–741

    Article  CAS  Google Scholar 

  47. Spain SG, Cameron NR (2011) A spoonful of sugar: the application of glycopolymers in therapeutics. Polym Chem 2(1):60–68

    Article  CAS  Google Scholar 

  48. Olsen LR, Dessen A, Gupta D, Sabesan S, Sacchettini JC, Brewer CF (1997) X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry 36(49):15073–15080

    Article  CAS  Google Scholar 

  49. McCoy JP, Varani J, Goldstein IJ (1984) Enzyme-linked lectin assay (ELLA). 2. Detection of carbohydrate groups on the surface of unfixed cells. Exp Cell Res 151(1):96–103

    Article  CAS  Google Scholar 

  50. Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62(18):A950–A959

    Article  Google Scholar 

  51. Englebienne P, van Hoonacker A, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectrosc Int J 17(2–3):255–273

    Article  CAS  Google Scholar 

  52. Uzawa H, Ito H, Neri P, Mori H, Nishida Y (2007) Glycochips from polyanionic glycopolymers as tools for detecting Shiga toxins. Chembiochem 8(17):2117–2124

    Article  CAS  Google Scholar 

  53. Geng J, Mantovani G, Tao L, Nicolas J, Chen G, Wallis R, Mitchell DA, Johnson BRG, Evans SD, Haddleton DM (2007) Site-directed conjugation of “Clicked” glycopolymers to form glycoprotein mimics: binding to mammalian lectin and induction of immunological function. J Am Chem Soc 129(49):15156–15163

    Article  CAS  Google Scholar 

  54. Yu L, Huang M, Wang PG, Zeng X (2007) Cross-linked surface-grafted glycopolymer for multivalent recognition of lectin. Anal Chem 79(23):8979–8986

    Article  CAS  Google Scholar 

  55. Spain SG, Cameron NR (2011) The binding of polyvalent galactosides to the lectin Ricinus communis agglutinin 120 (RCA(120)): an ITC and SPR study. Polym Chem 2(7):1552–1560

    Article  CAS  Google Scholar 

  56. Deng Z, Li S, Jiang X, Narain R (2009) Well-defined galactose-containing multi-functional copolymers and glyconanoparticles for biomolecular recognition processes. Macromolecules 42(17):6393–6405

    Article  CAS  Google Scholar 

  57. Yang Q, Hu M-X, Dai Z-W, Tian J, Xu Z-K (2006) Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition. Langmuir 22(22):9345–9349

    Article  CAS  Google Scholar 

  58. Granville AM, Quemener D, Davis TP, Barner-Kowollik C, Stenzel MH (2007) Chemo-enzymatic synthesis and RAFT polymerization of 6-O-methacryloyl mannose: a suitable glycopolymer for binding to the tetrameric lectin concanavalin A? Macromol Symp 255:81–89

    Article  CAS  Google Scholar 

  59. Akai S, Kajihara Y, Nagashima Y, Kamei M, Arai J, Bito M, Sato K (2001) Synthesis of new glycopolymers containing beta-d-mannopyranose, and C-2-substituted beta-d-mannopyranose residues as a new class of inhibitor. J Carbohydr Chem 20(2):121–143

    Article  CAS  Google Scholar 

  60. Serizawa T, Yasunaga S, Akashi M (2001) Synthesis and lectin recognition of polystyrene core-glycopolymer corona nanospheres. Biomacromolecules 2(2):469–475

    Article  CAS  Google Scholar 

  61. Ting SRS, Gregory AM, Stenzel MH (2009) Polygalactose containing nanocages: the raft process for the synthesis of hollow sugar balls. Biomacromolecules 10(2):342–352

    Article  CAS  Google Scholar 

  62. Ting SRS, Min EH, Escale P, Save M, Billon L, Stenzel MH (2009) Lectin recognizable biomaterials synthesized via nitroxide-mediated polymerization of a methacryloyl galactose monomer. Macromolecules 42(24):9422–9434

    Article  CAS  Google Scholar 

  63. Ohno K, Tsujii Y, Fukuda T (1998) Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. J Polym Sci A Polym Chem 36(14):2473–2481

    Article  CAS  Google Scholar 

  64. Ohno K, Tsujii Y, Fukuda T (1998) Synthesis of a well-defined glycopolymer by nitroxide-controlled free radical polymerization. Macromolecules 31(4):1064–1069

    Article  CAS  Google Scholar 

  65. Miura Y, Koketsu D, Kobayashi K (2007) Synthesis and properties of a well-defined glycopolymer via living radical polymerization. Polym Adv Technol 18(8):647–651

    Article  CAS  Google Scholar 

  66. Narumi A, Satoh T, Kaga H, Kakuchi T (2002) Glycoconjugated polymer. 3. Synthesis and amphiphilic property of core-glycoconjugated star-shaped polystyrene. Macromolecules 35(3):699–705

    Article  CAS  Google Scholar 

  67. Chen YM, Wulff G (2001) Synthesis of poly(styryl sugar)s by TEMPO mediated free radical polymerization. Macromol Chem Phys 202(17):3426–3431

    Article  CAS  Google Scholar 

  68. Gotz H, Harth E, Schiller SM, Frank CW, Knoll W, Hawker CJ (2002) Synthesis of lipo-glycopolymer amphiphiles by nitroxide-mediated living free-radical polymerization. J Polym Sci A Polym Chem 40(20):3379–3391

    Article  CAS  Google Scholar 

  69. Grande D, Baskaran S, Baskaran C, Gnanou Y, Chaikof EL (2000) Glycosaminoglycan-mimetic biomaterials. 1. Nonsulfated and sulfated glycopolymers by cyanoxyl-mediated free-radical polymerization. Macromolecules 33(4):1123–1125

    Article  CAS  Google Scholar 

  70. Grande D, Baskaran S, Chaikof EL (2001) Glycosaminoglycan mimetic biomaterials. 2. Alkene- and acrylate-derivatized glycopolymers via cyanoxyl-mediated free-radical polymerization. Macromolecules 34(6):1640–1646

    Article  CAS  Google Scholar 

  71. Guan R, Sun XL, Hou SJ, Wu PY, Chaikof EL (2004) A glycopolymer chaperone for fibroblast growth factor-2. Bioconjug Chem 15(1):145–151

    Article  CAS  Google Scholar 

  72. Liang YZ, Li ZC, Chen GQ, Li FM (1999) Synthesis of well-defined poly (2-beta-d-glucopyranosyloxy)ethyl acrylate by atom transfer radical polymerization. Polym Int 48(9):739–742

    Article  CAS  Google Scholar 

  73. Narain R, Armes SP (2002) Synthesis of low polydispersity, controlled-structure sugar methacrylate polymers under mild conditions without protecting group chemistry. Chem Commun (23):2776–2777

    Google Scholar 

  74. Narain R, Armes SP (2003) Direct synthesis and aqueous solution properties of well-defined cyclic sugar methacrylate polymers. Macromolecules 36(13):4675–4678

    Article  CAS  Google Scholar 

  75. Narain R, Armes SP (2003) Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers. Biomacromolecules 4(6):1746–1758

    Article  CAS  Google Scholar 

  76. Dai X-H, Dong C-M (2008) Synthesis, self-assembly and recognition properties of biomimetic star-shaped poly(epsilon-caprolactone)-b-glycopolymer block copolymers. J Polym Sci A Polym Chem 46(3):817–829

    Article  CAS  Google Scholar 

  77. Dai X-H, Dong C-M, Yan D (2008) Supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids: synthesis, glucose-surfaced nanoparticles, and recognition with lectin. J Phys Chem B 112(12):3644–3652

    Article  CAS  Google Scholar 

  78. Mizukami K, Takakura H, Matsunaga T, Kitano H (2008) Binding of Ricinus communis agglutinin to a galactose-carrying polymer brush on a colloidal gold monolayer. Colloid Surf B 66(1):110–118

    Article  CAS  Google Scholar 

  79. Mateescu A, Ye J, Narain R, Vamvakaki M (2009) Synthesis and characterization of novel glycosurfaces by ATRP. Soft Matter 5(8):1621–1629

    Article  CAS  Google Scholar 

  80. Dong CM, Faucher KM, Chaikof EL (2004) Synthesis and properties of biomimetic poIy(l-glutamate)-b-poly(2-acryloyloxyethyllactoside)-b-poly(l-glutamate) triblock copolymers. J Polym Sci A Polym Chem 42(22):5754–5765

    Article  CAS  Google Scholar 

  81. Dong CM, Chaikof EL (2005) Self-assembled nanostructures of a biomimetic glycopolymer-polypeptide triblock copolymer. Colloid Polym Sci 283(12):1366–1370

    Article  CAS  Google Scholar 

  82. Lowe AB, Sumerlin BS, McCormick CL (2003) The direct polymerization of 2-methacryloxyethyl glucoside via aqueous reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer 44(22):6761–6765

    Article  CAS  Google Scholar 

  83. Albertin L, Stenzel MH, Barner-Kowollik C, Davis TP (2006) Effect of an added base on (4-cyanopentanoic acid)-4-dithiobenzoate mediated RAFT polymerization in water. Polymer 47(4):1011–1019

    Article  CAS  Google Scholar 

  84. Albertin L, Cameron NR (2007) RAFT polymerization of methyl 6-O-methacryloyl-alpha-d-glucoside in homogeneous aqueous medium. A detailed kinetic study at the low molecular weight limit of the process. Macromolecules 40(17):6082–6093

    Article  CAS  Google Scholar 

  85. Albertin L, Kohlert C, Stenzel M, Foster LJR, Davis TP (2004) Chemoenzymatic synthesis of narrow-polydispersity glycopolymers: poly(6-O-vinyladipoly-d-glucopyranose). Biomacromolecules 5(2):255–260

    Article  CAS  Google Scholar 

  86. Bernard J, Favier A, Zhang L, Nilasaroya A, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Poly(vinyl ester) star polymers via xanthate-mediated living radical polymerization: from poly(vinyl alcohol) to glycopolymer stars. Macromolecules 38(13):5475–5484

    Article  CAS  Google Scholar 

  87. Ambrosi M, Batsanov AS, Cameron NR, Davis BG, Howard JAK, Hunter R (2002) Influence of preparation procedure on polymer composition: synthesis and characterisation of polymethacrylates bearing beta-d-glucopyranoside and beta-d-galactopyranoside residues. J Chem Soc Perkin Trans 1 (1):45–52

    Google Scholar 

  88. Spain SG, Albertin L, Cameron NR (2006) Facile in situ preparation of biologically active multivalent glyconanoparticles. Chem Commun (40):4198–4200

    Google Scholar 

  89. Toyoshima M, Miura Y (2009) Preparation of glycopolymer-substituted gold nanoparticles and their molecular recognition. J Polym Sci A Polym Chem 47(5):1412–1421

    Article  CAS  Google Scholar 

  90. Fraser C, Grubbs RH (1995) Synthesis of glycopolymers of controlled molecular-weight by ring-opening metathesis polymerization using well-defined functional-group tolerant ruthenium carbene catalysts. Macromolecules 28(21):7248–7255

    Article  CAS  Google Scholar 

  91. Mortell KH, Weatherman RV, Kiessling LL (1996) Recognition specificity of neoglycopolymers prepared by ring-opening metathesis polymerization. J Am Chem Soc 118(9):2297–2298

    Article  CAS  Google Scholar 

  92. Manning DD, Hu X, Beck P, Kiessling LL (1997) Synthesis of sulfated neoglycopolymers: selective P-selectin inhibitors. J Am Chem Soc 119(13):3161–3162

    Article  CAS  Google Scholar 

  93. Aoi K, Tsutsumiuchi K, Okada M (1994) Glycopeptide synthesis by an alpha-amino-acid n-carboxyanhydride (NCA) method – ring-opening polymerization of a sugar-substituted NCA. Macromolecules 27(3):875–877

    Article  CAS  Google Scholar 

  94. Tsutsumiuchi K, Aoi K, Okada M (1997) Synthesis of polyoxazoline-(glyco)peptide block copolymers by ring-opening polymerization of (sugar-substituted) alpha-amino acid N-carboxyanhydrides with polyoxazoline macroinitiators. Macromolecules 30(14):4013–4017

    Article  CAS  Google Scholar 

  95. Aoi K, Tsutsumiuchi K, Aoki E, Okada M (1996) First synthesis of glycopeptide macromonomers and graft-type sugar-containing polymers with glycopeptide side chains. Macromolecules 29(12):4456–4458

    Article  CAS  Google Scholar 

  96. Kramer JR, Deming TJ (2010) Glycopolypeptides via living polymerization of glycosylated-l-lysine N-carboxyanhydrides. J Am Chem Soc 132(42):15068–15071

    Article  CAS  Google Scholar 

  97. Suriano F, Pratt R, Tan JPK, Wiradharma N, Nelson A, Yang Y-Y, Dubois P, Hedrick JL (2010) Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials 31(9):2637–2645

    Article  CAS  Google Scholar 

  98. Hetzer M, Chen G, Barner-Kowollik C, Stenzel MH (2010) Neoglycopolymers based on 4-vinyl-1,2,3-triazole monomers prepared by click chemistry. Macromol Biosci 10(2):119–126

    Article  CAS  Google Scholar 

  99. Ladmiral V, Mantovani G, Clarkson GJ, Cauet S, Irwin JL, Haddleton DM (2006) Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J Am Chem Soc 128(14):4823–4830

    Article  CAS  Google Scholar 

  100. Becer CR, Babiuch K, Pilz D, Hornig S, Heinze T, Gottschaldt M, Schubert US (2009) Clicking pentafluorostyrene copolymers: synthesis, nanoprecipitation, and glycosylation. Macromolecules 42(7):2387–2394

    Article  CAS  Google Scholar 

  101. Boyer C, Davis TP (2009) One-pot synthesis and biofunctionalization of glycopolymers via RAFT polymerization and thiol-ene reactions. Chem Commun (40):6029–6031

    Google Scholar 

  102. Chen G, Amajjahe S, Stenzel MH (2009) Synthesis of thiol-linked neoglycopolymers and thermo-responsive glycomicelles as potential drug carrier. Chem Commun (10):1198–1200

    Google Scholar 

  103. Xue C, Donuru VRR, Liu H (2006) Facile, versatile prepolymerization and postpolymerization functionalization approaches for well-defined fluorescent conjugated fluorene-based glycopolymers. Macromolecules 39(17):5747–5752

    Article  CAS  Google Scholar 

  104. Strong LE, Kiessling LL (1999) A general synthetic route to defined, biologically active multivalent arrays. J Am Chem Soc 121(26):6193–6196

    Article  CAS  Google Scholar 

  105. Hu ZC, Liu Y, Hong CY, Pan CY (2005) Synthesis of well-defined glycoconjugate polyacrylamides via preactivated polymers prepared by ATRP. J Appl Polym Sci 98(1):189–194

    Article  CAS  Google Scholar 

  106. Auzely-Velty R, Cristea M, Rinaudo M (2002) Galactosylated N-vinylpyrrolidone-maleic acid copolymers: synthesis, characterization, and interaction with lectins. Biomacromolecules 3(5):998–1005

    Article  CAS  Google Scholar 

  107. Huang J, Bonduelle C, Thévenot J, Lecommandoux S, Heise A (2011) Biologically active polymersomes from amphiphilic glycopeptides. J Am Chem Soc 134(1):119–122

    Article  CAS  Google Scholar 

  108. You L, Schlaad H (2006) An easy way to sugar-containing polymer vesicles or glycosomes. J Am Chem Soc 128(41):13336–13337

    Article  CAS  Google Scholar 

  109. Schlaad H, You L, Sigel R, Smarsly B, Heydenreich M, Mantion A, Masic A (2009) Glycopolymer vesicles with an asymmetric membrane. Chem Commun (12):1478–1480

    Google Scholar 

  110. Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K (2001) Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2(4):1067–1070

    Article  CAS  Google Scholar 

  111. Kim BS, Yang WY, Ryu JH, Yoo YS, Lee M (2005) Carbohydrate-coated nanocapsules from amphiphilic rod-coil molecule: Binding to bacterial type 1 pili. Chem Commun (15):2035–2037

    Google Scholar 

  112. Felici M, Marza-Perez M, Hatzakis NS, Nolte RJM, Feiters MC (2008) Beta-cyclodextrin-appended giant amphiphile: aggregation to vesicle polymersomes and immobilisation of enzymes. Chem A Eur J 14(32):9914–9920

    Article  CAS  Google Scholar 

  113. Otsuka I, Fuchise K, Halila S, Fort S, Aissou K, Pignot-Paintrand I, Chen Y, Narumi A, Kakuchi T, Borsali R (2010) Thermoresponsive vesicular morphologies obtained by self-assemblies of hybrid oligosaccharide-block-poly(N-isopropylacrylamide) copolymer systems. Langmuir 26(4):2325–2332

    Article  CAS  Google Scholar 

  114. Schatz C, Louguet S, Le Meins J-F, Lecommandoux S (2009) Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. Angew Chem Int Ed 48(14):2572–2575

    Article  CAS  Google Scholar 

  115. Upadhyay KK, Le Meins J-F, Mishra AK, Voisin P, Bouchaud V, Ibarboure E, Schatz C, Lecommandoux S (2009) Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(gamma-benzyl glutamate) copolymers. Biomacromolecules 10(10):2802–2808

    Article  CAS  Google Scholar 

  116. Hasegawa T, Kondoh S, Matsuura K, Kobayashi K (1999) Rigid helical poly(glycosyl phenyl isocyanide)s: synthesis, conformational analysis, and recognition by lectins. Macromolecules 32(20):6595–6603

    Article  CAS  Google Scholar 

  117. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37(20):2755–2794

    Article  CAS  Google Scholar 

  118. Polizzotti BD, Kiick KL (2006) Effects of polymer structure on the inhibition of cholera toxin by linear polypeptide-based glycopolymers. Biomacromolecules 7(2):483–490

    Article  CAS  Google Scholar 

  119. Kanai M, Mortell KH, Kiessling LL (1997) Varying the size of multivalent ligands: the dependence of concanavalin a binding on neoglycopolymer length. J Am Chem Soc 119(41):9931–9932

    Article  CAS  Google Scholar 

  120. Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL (2002) Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc 124(50):14922–14933

    Article  CAS  Google Scholar 

  121. Roy R, Tropper FD, Romanowska A (1992) New strategy in glycopolymer syntheses – preparation of antigenic water-soluble poly(acrylamide-co-para-acrylamidophenyl beta-lactoside). Bioconjug Chem 3(3):256–261

    Article  CAS  Google Scholar 

  122. Haddleton DM, Edmonds R, Heming AM, Kelly EJ, Kukulj D (1999) Atom transfer polymerisation with glucose and cholesterol derived initiators. New J Chem 23(5):477–479

    Article  CAS  Google Scholar 

  123. Ting SRS, Granville AM, Quemener D, Davis TP, Stenzel MH, Barner-Kowollik C (2007) RAFT chemistry and Huisgen 1,3-dipolar cycloaddition: a route to block copolymers of vinyl acetate and 6-O-methacryloyl mannose? Aust J Chem 60(6):405–409

    Article  CAS  Google Scholar 

  124. GarciaOteiza MC, SanchezChaves M, Arranz F (1997) Poly(vinyl alcohol) having amino sugar as the pendant group: synthesis, characterization and binding of concanavalin A. Macromol Chem Phys 198(7):2237–2247

    Article  CAS  Google Scholar 

  125. Upadhyay KK, Bhatt AN, Castro E, Mishra AK, Chuttani K, Dwarakanath BS, Schatz C, Le Meins J-F, Misra A, Lecommandoux S (2010) In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol Biosci 10(5):503–512

    Article  CAS  Google Scholar 

  126. Upadhyay KK, Bhatt AN, Castro E, Mishra AK, Dwarakanath BS, Jain S, Schatz C, Le Meins J-F, Farooque A, Chandraiah G, Jain AK, Misra A, Lecommandoux S (2010) The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(gamma-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials 31(10):2882–2892

    Article  CAS  Google Scholar 

  127. Poretz RD, Goldstei Ij (1970) An examination of topography of saccharide binding sites of concanavalin-A and of forces involved in complexation. Biochemistry 9(14):2890

    Article  CAS  Google Scholar 

  128. Pasparakis G, Cockayne A, Alexander C (2007) Control of bacterial aggregation by thermoresponsive glycopolymers. J Am Chem Soc 129(36):11014

    Article  CAS  Google Scholar 

  129. Baek MG, Roy R (2001) Relative lectin binding properties of T-antigen-containing glycopolymers: copolymerization of N-acryloylated T-antigen monomer vs. graft conjugation of aminated T-antigen ligands onto poly (N-acryloxysuccinimide). Macromol Biosci 1(7):305–311

    Article  CAS  Google Scholar 

  130. Ogata M, Hidari KIPJ, Kozaki W, Murata T, Hiratake J, Park EY, Suzuki T, Usui T (2009) Molecular design of spacer-N-linked sialoglycopolypeptide as polymeric inhibitors against influenza virus infection. Biomacromolecules 10(7):1894–1903

    Article  CAS  Google Scholar 

  131. Mori T, Fujita S, Okahata Y (1997) Enzyme-lipid complex.13. Transglycosylation in a two-phase aqueous-organic system with catalysis by a lipid-coated beta-d-galactosidase. Carbohydr Res 298(1–2):65–73

    Article  CAS  Google Scholar 

  132. Santin M, Rosso F, Sada A, Peluso G, Improta R, Trincone A (1996) Enzymatic synthesis of 2-beta-d-galactopyranosyloxy ethyl methacrylate (GalEMA) by the thermophilic archeon Sulfolobus solfataricus. Biotechnol Bioeng 49(2):217–222

    Article  CAS  Google Scholar 

  133. Fleming C, Maldjian A, Da Costa D, Rullay AK, Haddleton DM, John JS, Penny P, Noble RC, Cameron NR, Davis BG (2005) A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility. Nat Chem Biol 1(5):270–274

    Article  CAS  Google Scholar 

  134. Chen G, Tao L, Mantovani G, Geng J, Nystrom D, Haddleton DM (2007) A modular click approach to glycosylated polymeric beads: design, synthesis and preliminary lectin, recognition studies. Macromolecules 40(21):7513–7520

    Article  CAS  Google Scholar 

  135. Geng J, Lindqvist J, Mantovani G, Haddleton DM (2008) Simultaneous copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and living radical polymerization. Angew Chem Int Ed 47(22):4180–4183

    Article  CAS  Google Scholar 

  136. Davis BG, Lloyd RC, Jones JB (1998) Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J Org Chem 63(26):9614–9615

    Article  CAS  Google Scholar 

  137. Sanki AK, Mahal LK (2006) A one-step synthesis of azide-tagged carbohydrates: versatile intermediates for glycotechnology. Synlett (3):455–459

    Google Scholar 

  138. Tanaka T, Nagai H, Noguchi M, Kobayashi A, Shoda S-i (2009) One-step conversion of unprotected sugars to beta-glycosyl azides using 2-chloroimidazolinium salt in aqueous solution. Chem Commun (23):3378–3379

    Google Scholar 

  139. Babiuch K, Wyrwa R, Wagner K, Seemann T, Hoeppener S, Becer CR, Linke R, Gottschaldt M, Weisser J, Schnabelrauch M, Schubert US (2011) Functionalized, biocompatible coating for superparamagnetic nanoparticles by controlled polymerization of a thioglycosidic monomer. Biomacromolecules 12(3):681–691

    Article  CAS  Google Scholar 

  140. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101(12):3661–3688

    Article  CAS  Google Scholar 

  141. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101(12):3689–3745

    Article  CAS  Google Scholar 

  142. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990

    Article  CAS  Google Scholar 

  143. Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process – a second update. Aust J Chem 62(11):1402–1472

    Article  CAS  Google Scholar 

  144. Moad G, Rizzardo E, Thang SH (2008) Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49(5):1079–1131

    Article  CAS  Google Scholar 

  145. Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S (2009) Bioapplications of RAFT polymerization. Chem Rev 109(11):5402–5436

    Article  CAS  Google Scholar 

  146. Sciannamea V, Jerome R, Detrembleur C (2008) In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem Rev 108(3):1104–1126

    Article  CAS  Google Scholar 

  147. Ohno K, Fukuda T, Kitano H (1998) Free radical polymerization of a sugar residue-carrying styryl monomer with a lipophilic alkoxyamine initiator: synthesis of a well-defined novel glycolipid. Macromol Chem Phys 199(10):2193–2197

    Article  CAS  Google Scholar 

  148. Ohno K, Izu Y, Yamamoto S, Miyamoto T, Fukuda T (1999) Nitroxide-controlled free radical polymerization of a sugar-carrying acryloyl monomer. Macromol Chem Phys 200(7):1619–1625

    Article  CAS  Google Scholar 

  149. Chen YM, Wulff G (2001) Amphiphilic block copolymers with pendent sugar as hydrophilic segments and their surface properties. Macromol Chem Phys 202(17):3273–3278

    Article  CAS  Google Scholar 

  150. Narumi A, Matsuda T, Kaga H, Satoh T, Kakuchi T (2001) Glycoconjugated polymer II. Synthesis of polystyrene-block-poly(4-vinylbenzyl glucoside) and polystyrene-block-poly(4-vinylbenzyl maltohexaoside) via 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated living radical polymerization. Polym J 33(12):939–945

    Article  CAS  Google Scholar 

  151. Narumi A, Matsuda T, Kaga H, Satoh T, Kakuchi T (2002) Synthesis of amphiphilic triblock copolymer of polystyrene and poly(4-vinylbenzyl glucoside) via TEMPO-mediated living radical polymerization. Polymer 43(17):4835–4840

    Article  CAS  Google Scholar 

  152. Druliner JD (1991) Living radical polymerization involving oxygen-centered species attached to propagating chain ends. Macromolecules 24(23):6079–6082

    Article  CAS  Google Scholar 

  153. Grande D, Guerrero R, Gnanou Y (2005) Cyanoxyl-mediated free-radical polymerization of acrylic acid: its scope and limitations. J Polym Sci A Polym Chem 43(3):519–533

    Article  CAS  Google Scholar 

  154. Baskaran S, Grande D, Sun XL, Yayon A, Chaikof EL (2002) Glycosaminoglycan-mimetic biomaterials. 3. Glycopolymers prepared from alkene-derivatized mono- and disaccharide-based glycomonomers. Bioconjug Chem 13(6):1309–1313

    Article  CAS  Google Scholar 

  155. Sun XL, Grande D, Baskaran S, Hanson SR, Chaikof EL (2002) Glycosaminoglycan mimetic biomaterials. 4. Synthesis of sulfated lactose-based glycopolymers that exhibit anticoagulant activity. Biomacromolecules 3(5):1065–1070

    Article  CAS  Google Scholar 

  156. Saksela O, Moscatelli D, Sommer A, Rifkin DB (1988) Endothelial cell-derived heparan-sulfate binds basic fibroblast growth-factor and protects it from proteolytic degradation. J Cell Biol 107(2):743–751

    Article  CAS  Google Scholar 

  157. Sun XL, Faucher KM, Houston M, Grande D, Chaikof EL (2002) Design and synthesis of biotin chain-terminated glycopolymers for surface glycoengineering. J Am Chem Soc 124(25):7258–7259

    Article  CAS  Google Scholar 

  158. Ejaz M, Ohno K, Tsujii Y, Fukuda T (2000) Controlled grafting of a well-defined glycopolymer on a solid surface by surface-initiated atom transfer radical polymerization. Macromolecules 33(8):2870–2874

    Article  CAS  Google Scholar 

  159. Li ZC, Liang YZ, Chen GQ, Li FM (2000) Synthesis of amphiphilic block copolymers with well-defined glycopolymer segment by atom transfer radical polymerization. Macromol Rapid Commun 21(7):375–380

    Article  CAS  Google Scholar 

  160. Li ZC, Liang YZ, Li FM (1999) Multiple morphologies of aggregates from block copolymers containing glycopolymer segments. Chem Commun (16):1557–1558

    Google Scholar 

  161. Meng JQ, Du FS, Liu YS, Li ZC (2005) Atom transfer radical polymerization of 6-O-methacryloyl-1,2;3,4-di-O-isopropylidene-d-galactopyranose in solution. J Polym Sci A Polym Chem 43(4):752–762

    Article  CAS  Google Scholar 

  162. Liang YZ, Li ZC, Li FM (2000) Morphological behavior for micelle from polystyrene-b-poly 2-(beta-d-glucopyranosyloxy)ethyl acrylate upon changing the copolymer concentration. Chem Lett (4):320–321

    Google Scholar 

  163. Chen YM, Wulff G (2002) ABA and star amphiphilic block copolymers composed of polymethacrylate bearing a galactose fragment and poly(epsilon-caprolactone). Macromol Rapid Commun 23(1):59–63

    Article  Google Scholar 

  164. Lu FZ, Meng JQ, Du FS, Li ZC, Zhang BY (2005) Pyrene end-labeled diblock glycopolymers: synthesis and aggregation. Macromol Chem Phys 206(4):513–520

    Article  CAS  Google Scholar 

  165. Dong CM, Sun XL, Faucher KM, Apkarian RP, Chaikof EL (2004) Synthesis and characterization of glycopolymer-polypeptide triblock copolymers. Biomacromolecules 5(1):224–231

    Article  CAS  Google Scholar 

  166. Ladmiral V, Monaghan L, Mantovani G, Haddleton DM (2005) Alpha-functional glycopolymers: new materials for (poly)peptide conjugation. Polymer 46(19):8536–8545

    Article  CAS  Google Scholar 

  167. You LC, Lu FZ, Li ZC, Zhang W, Li FM (2003) Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with coneanavalin A in dilute aqueous medium. Macromolecules 36(1):1–4

    Article  CAS  Google Scholar 

  168. Muthukrishnan S, Erhard DP, Mori H, Muller AHE (2006) Synthesis and characterization of surface-grafted hyperbranched glycomethacrylates. Macromolecules 39(8):2743–2750

    Article  CAS  Google Scholar 

  169. Muthukrishnan S, Jutz G, Andre X, Mori H, Muller AHE (2005) Synthesis of hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization of a sugar-carrying acrylate. Macromolecules 38(1):9–18

    Article  CAS  Google Scholar 

  170. Muthukrishnan S, Mori H, Muller AHE (2005) Synthesis and characterization of methacrylate-type hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization. Macromolecules 38(8):3108–3119

    Article  CAS  Google Scholar 

  171. Muthukrishnan S, Nitschke M, Gramm S, Oezyuerek Z, Voit B, Werner C, Muller AHE (2006) Immobilized hyperbranched glycoacrylate films as bioactive supports. Macromol Biosci 6(8):658–666

    Article  CAS  Google Scholar 

  172. Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107(6):2270–2299

    Article  CAS  Google Scholar 

  173. Jakubowski W, Min K, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules 39(1):39–45

    Article  CAS  Google Scholar 

  174. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32(1):93–146

    Article  CAS  Google Scholar 

  175. Mueller L, Matyjaszewski K (2010) Reducing copper concentration in polymers prepared via atom transfer radical polymerization. Macromol React Eng 4(3–4):180–185

    Article  CAS  Google Scholar 

  176. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562

    Article  CAS  Google Scholar 

  177. Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition– fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci A Polym Chem 43(22):5347–5393

    Article  CAS  Google Scholar 

  178. Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT process – a first update. Aust J Chem 59(10):669–692

    Article  CAS  Google Scholar 

  179. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58(6):379–410

    Article  CAS  Google Scholar 

  180. Albertin L, Stenzel M, Barner-Kowollik C, Foster LJR, Davis TP (2004) Well-defined glycopolymers from RAFT polymerization: poly(methyl 6-O-methacryloyl-alpha-d-glucoside) and its block copolymer with 2-hydroxyethyl methacrylate. Macromolecules 37(20):7530–7537

    Article  CAS  Google Scholar 

  181. Albertin L, Stenzel MH, Barner-Kowollik C, Foster LJR, Davis TP (2005) Well-defined diblock glycopolymers from RAFT polymerization in homogeneous aqueous medium. Macromolecules 38(22):9075–9084

    Article  CAS  Google Scholar 

  182. Bernard J, Hao XJ, Davis TP, Barner-Kowollik C, Stenzel MH (2006) Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars. Biomacromolecules 7(1):232–238

    Article  CAS  Google Scholar 

  183. Stenzel MH, Zhang L, Huck WTS (2006) Temperature-responsive glycopolymer brushes synthesized via RAFT polymerization using the Z-group approach. Macromol Rapid Commun 27(14):1121–1126

    Article  CAS  Google Scholar 

  184. Narain R, Housni A, Gody G, Boullanger P, Charreyre M-T, Delair T (2007) Preparation of biotinylated glyconanoparticles via a photochemical process and study of their bioconjugation to streptavidin. Langmuir 23(26):12835–12841

    Article  CAS  Google Scholar 

  185. Yamada K, Minoda M, Fukuda T, Miyamoto T (2001) Amphiphilic block and statistical copolymers with pendant glucose residues: controlled synthesis by living cationic polymerization and the effect of copolymer architecture on their properties. J Polym Sci A Polym Chem 39(4):459–467

    Article  CAS  Google Scholar 

  186. Yamada K, Minoda M, Miyamoto T (1999) Controlled synthesis of amphiphilic block copolymers with pendant N-acetyl-d-glucosamine residues by living cationic polymerization and their interaction with WGA lectin. Macromolecules 32(11):3553–3558

    Article  CAS  Google Scholar 

  187. Loykulnant S, Hirao A (2000) Protection and polymerization of functional monomers. 30. Anionic living polymerization of 4-alkylstyrenes containing acetal-protected monosaccharide residues. Macromolecules 33(13):4757–4764

    Article  CAS  Google Scholar 

  188. Loykulnant S, Yamashiro M, Hirao A (2001) Protection and polymerization of functional monomers, 31-living anionic polymerization of styrene derivatives m,m′-disubstituted with acetal-protected monosaccharide residues. Macromol Chem Phys 202(9):1791–1798

    Article  CAS  Google Scholar 

  189. Schuster MC, Mortell KH, Hegeman AD, Kiessling LL (1997) Neoglycopolymers produced by aqueous ring-opening metathesis polymerization: decreasing saccharide density increases activity. J Mol Catal A Chem 116(1–2):209–216

    Article  CAS  Google Scholar 

  190. Mortell KH, Gingras M, Kiessling LL (1994) Synthesis of cell agglutination inhibitors by aqueous ring-opening metathesis polymerization. J Am Chem Soc 116(26):12053–12054

    Article  CAS  Google Scholar 

  191. Sanders WJ, Gordon EJ, Dwir O, Beck PJ, Alon R, Kiessling LL (1999) Inhibition of l-selectin-mediated leukocyte rolling by synthetic glycoprotein mimics. J Biol Chem 274(9):5271–5278

    Article  CAS  Google Scholar 

  192. Lee S-G, Brown JM, Rogers CJ, Matson JB, Krishnamurthy C, Rawat M, Hsieh-Wilson LC (2010) End-functionalized glycopolymers as mimetics of chondroitin sulfate proteoglycans. Chem Sci 1(3):322–325

    Article  CAS  Google Scholar 

  193. Gauthier MA, Gibson MI, Klok H-A (2009) Synthesis of functional polymers by post-polymerization modification. Angew Chem Int Ed 48(1):48–58

    Article  CAS  Google Scholar 

  194. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004

    Article  CAS  Google Scholar 

  195. Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K (2005) Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 38(18):7540–7545

    Article  CAS  Google Scholar 

  196. Wu P, Malkoch M, Hunt JN, Vestberg R, Kaltgrad E, Finn MG, Fokin VV, Sharpless KB, Hawker CJ (2005) Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun (46):5775–5777

    Google Scholar 

  197. Fernandez-Megia E, Correa J, Rodriguez-Meizoso I, Riguera R (2006) A click approach to unprotected glycodendrimers. Macromolecules 39(6):2113–2120

    Article  CAS  Google Scholar 

  198. Srinivasachari S, Liu Y, Zhang G, Prevette L, Reineke TM (2006) Trehalose click polymers inhibit nanoparticle aggregation and promote pDNA delivery in serum. J Am Chem Soc 128(25):8176–8184

    Article  CAS  Google Scholar 

  199. Eissa AM, Khosravi E (2011) Synthesis of a new smart temperature responsive glycopolymer via click-polymerisation. Eur Polym J 47(1):61–69

    Article  CAS  Google Scholar 

  200. Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39(4):1355–1387

    Article  CAS  Google Scholar 

  201. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol-ene chemistry. J Polym Sci A Polym Chem 48(4):743–750

    Article  CAS  Google Scholar 

  202. Andersson M, Oscarson S (1993) Synthesis of glycoconjugates by covalent coupling of o-glycopyranosyl-n-hydroxysuccinimide derivatives of lactose to proteins and lipids and polymerization of their parent acryloyl derivatives into acrylamide polymers. Bioconjug Chem 4(3):246–249

    Article  CAS  Google Scholar 

  203. Kobayashi K, Tsuchida A, Usui T, Akaike T (1997) A new type of artificial glycoconjugate polymer: a convenient synthesis and its interaction with lectins. Macromolecules 30(7):2016–2020

    Article  CAS  Google Scholar 

  204. Martinez G, Fernandez-Garcia M, Sanchez-Chaves M (2005) Synthesis and characterization of N-vinylpyrrolidone-tert-butyl methacrylate-methacrylic acid terpolymers having amino sugar or bioactive amino side compounds. J Polym Sci A Polym Chem 43(1):18–27

    Article  CAS  Google Scholar 

  205. Takasu A, Takada M, Itou H, Hirabayashi T, Kinoshita T (2004) Accelerated biodegradation of poly(vinyl alcohol) by glycosidations of the hydroxyl groups or addition of sugars. Biomacromolecules 5(3):1029–1037

    Article  CAS  Google Scholar 

  206. Takasu A, Niwa T, Itou H, Inai Y, Hirabayashi T (2000) Chemical modification of hydroxyl groups of poly(vinyl alcohol) by a glycosidation reaction. Macromol Rapid Commun 21(11):764–769

    Article  CAS  Google Scholar 

  207. Cerrada ML, Sanchez-Chaves M, Ruiz C, Fernandez-Garcia M (2009) Recognition abilities and development of heat-induced entangled networks in lactone-derived glycopolymers obtained from ethylene-vinyl alcohol copolymers. Biomacromolecules 10(7):1828–1837

    Article  CAS  Google Scholar 

  208. Theato P (2008) Synthesis of well-defined polymeric activated esters. J Polym Sci A Polym Chem 46(20):6677–6687

    Article  CAS  Google Scholar 

  209. Godwin A, Hartenstein M, Muller AHE, Brocchini S (2001) Narrow molecular weight distribution precursors for polymer-drug conjugates. Angew Chem Int Ed 40(3):594–597

    Article  CAS  Google Scholar 

  210. Monge S, Haddleton DM (2004) Synthesis of precursors of poly(acryl amides) by copper mediated living radical polymerization in DMSO. Eur Polym J 40(1):37–45

    Article  CAS  Google Scholar 

  211. Darcos V, Monge S, Haddleton DM (2004) In situ Fourier transform near infrared spectroscopy monitoring of copper mediated living radical polymerization. J Polym Sci A Polym Chem 42(19):4933–4940

    Article  CAS  Google Scholar 

  212. Monge S, Darcos V, Haddleton DM (2004) Effect of DMSO used as solvent in copper mediated living radical polymerization. J Polym Sci A Polym Chem 42(24):6299–6308

    Article  CAS  Google Scholar 

  213. Gao C, Muthukrishnan S, Li W, Yuan J, Xu Y, Muller AHE (2007) Linear and hyperbranched glycopolymer-functionalized carbon nanotubes: synthesis, kinetics, and characterization. Macromolecules 40(6):1803–1815

    Article  CAS  Google Scholar 

  214. Roth PJ, Wiss KT, Zentel R, Theato P (2008) Synthesis of reactive telechelic polymers based on pentafluorophenyl esters. Macromolecules 41(22):8513–8519

    Article  CAS  Google Scholar 

  215. Gibson MI, Froehlich E, Klok H-A (2009) Postpolymerization modification of poly(pentafluorophenyl methacrylate): synthesis of a diverse water-soluble polymer library. J Polym Sci A Polym Chem 47(17):4332–4345

    Article  CAS  Google Scholar 

  216. Schmidt U, Zschoche S, Werner C (2003) Modification of poly(octadecene-alt-maleic anhydride) films by reaction with functional amines. J Appl Polym Sci 87(8):1255–1266

    Article  CAS  Google Scholar 

  217. Hong C-Y, You Y-Z, Pan C-Y (2006) A new approach to functionalize multi-walled carbon nanotubes by the use of functional polymers. Polymer 47(12):4300–4309

    Article  CAS  Google Scholar 

  218. Renaudie L, Le Narvor C, Lepleux E, Roger P (2007) Functionalization of poly(ethylene terephthalate) fibers by photografting of a carbohydrate derivatized with a phenyl azide group. Biomacromolecules 8(2):679–685

    Article  CAS  Google Scholar 

  219. Labsky J (2006) Binding of d-mannose to hydrogel matrix using isothiocyanate derivatives. Eur Polym J 42(1):209–212

    Article  CAS  Google Scholar 

  220. Zhu JM, Gosen C, Marchant RE (2006) Synthesis and characterization of poly(vinyl amine)-based amphiphilic comb-like dextran glycopolymers by a two-step method. J Polym Sci A Polym Chem 44(1):192–199

    Article  CAS  Google Scholar 

  221. Egli S, Schlaad H, Bruns N, Meier W (2011) Functionalization of block copolymer vesicle surfaces. Polymers 3(1):252–280

    Article  CAS  Google Scholar 

  222. Joralemon MJ, Murthy KS, Remsen EE, Becker ML, Wooley KL (2004) Synthesis, characterization, and bioavailability of mannosylated shell cross-linked nanoparticles. Biomacromolecules 5(3):903–913

    Article  CAS  Google Scholar 

  223. Howse JR, Jones RAL, Battaglia G, Ducker RE, Leggett GJ, Ryan AJ (2009) Templated formation of giant polymer vesicles with controlled size distributions. Nat Mater 8(6):507–511

    Article  CAS  Google Scholar 

  224. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297(5583):967–973

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Leverhulme Trust (grant no. F/00128/BO) for financial support. The P2M program from the ESF is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil R. Cameron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eissa, A.M., Cameron, N.R. (2012). Glycopolymer Conjugates. In: Schlaad, H. (eds) Bio-synthetic Polymer Conjugates. Advances in Polymer Science, vol 253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_177

Download citation

Publish with us

Policies and ethics