Skip to main content

Chemical Strategies for the Synthesis of Protein–Polymer Conjugates

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 253))

Abstract

Protein-polymer conjugates have achieved tremendous attention in the last few years. The synergistic combination of properties has led to certain advantages in bio-applications. Over the past few years, numerous chemical strategies have been developed to conjugate different synthetic polymers onto proteins, most of which can be summarized within the scope of click-chemistry. Here we highlight conjugation strategies based on available functional groups present on the synthetic polymer and existing groups of proteins from the natural pool. In particular, the chapter organizes the various possible reactions by classes of functional groups present on protein surfaces, deriving from selected amino acid residues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Klok H (2009) Peptide/protein-synthetic polymer conjugates: quo vadis. Macromolecules 42:7990–8000

    CAS  Google Scholar 

  2. Badi N, Lutz J (2009) Sequence control in polymer synthesis. Chem Soc Rev 38:3383–3390

    CAS  Google Scholar 

  3. Lutz J (2010) Polymer chemistry: a controlled sequence of events. Nat Chem 2:84–85

    CAS  Google Scholar 

  4. Lutz J (2010) Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym Chem 1:55–62

    CAS  Google Scholar 

  5. Kiick KL (2007) Polymer therapeutics. Science 317:1182–1183

    CAS  Google Scholar 

  6. Liu S, Maheshwari R, Kiick KL (2009) Polymer-based therapeutics. Macromolecules 42:3–13

    CAS  Google Scholar 

  7. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    CAS  Google Scholar 

  8. Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev 55:1261–1277

    CAS  Google Scholar 

  9. Schellekens H (2002) Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov 1:457–462

    CAS  Google Scholar 

  10. de Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28:482–490

    Google Scholar 

  11. Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Chem Biol 22:868–876

    CAS  Google Scholar 

  12. Lao BJ, Kamei DT (2008) Improving therapeutic properties of protein drugs through alteration of intracellular trafficking pathways. Biotechnol Prog 24:2–7

    CAS  Google Scholar 

  13. Pasut G, Veronese F (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961

    CAS  Google Scholar 

  14. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    CAS  Google Scholar 

  15. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    CAS  Google Scholar 

  16. Pasut G, Sergi M, Veronese FM (2008) Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv Drug Deliv Rev 60:69–78

    CAS  Google Scholar 

  17. Ryan SM, Mantovani G, Wang X, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 5:371–383

    CAS  Google Scholar 

  18. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    CAS  Google Scholar 

  19. Vandermeulen GW, Klok H (2004) Peptide/protein hybrid materials: enhanced control of structure and improved performance through conjugation of biological and synthetic polymers. Macromol Biosci 4:383–398

    CAS  Google Scholar 

  20. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    CAS  Google Scholar 

  21. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185

    CAS  Google Scholar 

  22. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  23. Graham M (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55:1293–1302

    CAS  Google Scholar 

  24. Reddy KR, Modi MW, Pedder S (2002) Use of peginterferon alfa-2a (40 KD) (Pegasys®) for the treatment of hepatitis C. Adv Drug Deliv Rev 54:571–586

    Google Scholar 

  25. Wang Y, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54:547–570

    CAS  Google Scholar 

  26. Duncan R, Ringsdorf H, Satchi-Fainaro R (2006) Polymer therapeutics: polymers as drugs, drug and protein conjugates and gene delivery systems: past, present and future opportunities. Adv Polym Sci 192:1–8

    Google Scholar 

  27. Vicent MJ, Dieudonné L, Carbajo RJ, Pineda-Lucena A (2008) Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv 5:593–614

    CAS  Google Scholar 

  28. Alconcel SN, Baas AS, Maynard HD (2011) FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym Chem 2:1442–1448

    CAS  Google Scholar 

  29. Thordarson P, Droumaguet B, Velonia K (2006) Well-defined protein–polymer conjugates—synthesis and potential applications. Appl Microbiol Biotechnol 73:243–254

    CAS  Google Scholar 

  30. Shakya AK, Sami H, Srivastava A, Kumar A (2010) Stability of responsive polymer–protein bioconjugates. Prog Polym Sci 35:459–486

    CAS  Google Scholar 

  31. Dagani R (1995) Polymeric ‘smart’ materials respond to changes in their environment. Chem Eng News 73:30–33

    Google Scholar 

  32. Hoffman AS, Stayton PS (2004) Bioconjugates of smart polymers and proteins: synthesis and applications. Macromol Symp 207:139–152

    CAS  Google Scholar 

  33. Hoffman AS, Stayton PS (2007) Conjugates of stimuli-responsive polymers and proteins. Prog Polym Sci 32:922–932

    CAS  Google Scholar 

  34. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    CAS  Google Scholar 

  35. Zarafshani Z, Obata T, Lutz J (2010) Smart PEGylation of trypsin. Biomacromolecules 11:2130–2135

    CAS  Google Scholar 

  36. Hentschel J, Bleek K, Ernst O, Lutz J, Börner HG (2008) Easy access to bioactive peptide–polymer conjugates via RAFT. Macromolecules 41:1073–1075

    CAS  Google Scholar 

  37. Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62

    CAS  Google Scholar 

  38. Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer-enzyme switches. PNAS 99:16592–16596

    CAS  Google Scholar 

  39. Ding Z, Chen G, Hoffman AS (1998) Unusual properties of thermally sensitive oligomer–enzyme conjugates of poly(N-isopropylacrylamide)–trypsin. J Biomed Mater Res 39:498–505

    CAS  Google Scholar 

  40. Li H, Bapat AP, Li M, Sumerlin BS (2011) Protein conjugation of thermoresponsive amine-reactive polymers prepared by RAFT. Polym Chem 2:323–327

    CAS  Google Scholar 

  41. Reynhout IC, Cornelissen JJ, Nolte RJ (2009) Synthesis of polymer–biohybrids: from small to giant surfactants. Acc Chem Res 42:681–692

    CAS  Google Scholar 

  42. Velonia K (2010) Protein-polymer amphiphilic chimeras: recent advances and future challenges. Polym Chem 1:944–952

    CAS  Google Scholar 

  43. Boerakker MJ, Hannink JM, Bomans PH, Frederik PM, Nolte RJ, Meijer EM, Sommerdijk NA (2002) Giant amphiphiles by cofactor reconstitution. Angew Chem Int Ed 41:4239–4241

    CAS  Google Scholar 

  44. Uludag H, Norrie B, Kousinioris N, Gao T (2001) Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnol Bioeng 73:510–521

    CAS  Google Scholar 

  45. Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45:1198–1215

    CAS  Google Scholar 

  46. Godwin A, Bolina KC, Dinand E, Rankin S, Simic S, Brocchini S (2001) Strategies for polymer development in pharmaceutical science – a short review. J Pharm Pharmacol 53:1175–1184

    CAS  Google Scholar 

  47. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    CAS  Google Scholar 

  48. de Alarcón Cl, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Google Scholar 

  49. Bajpai A, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    CAS  Google Scholar 

  50. Schild H (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    CAS  Google Scholar 

  51. Bütün V, Liu S, Weaver J, Bories-Azeau X, Cai Y, Armes S (2006) A brief review of ‘schizophrenic’ block copolymers. React Funct Polym 66:157–165

    Google Scholar 

  52. Smith AE, Xu X, Kirkland-York SE, Savin DA, McCormick CL (2010) “Schizophrenic” self-assembly of block copolymers synthesized via aqueous RAFT polymerization: from micelles to vesicles. Macromolecules 43:1210–1217

    CAS  Google Scholar 

  53. Du J, O'Reilly RK (2010) pH-responsive vesicles from a schizophrenic diblock copolymer. Macromol Chem Phys 211:1530–1537

    CAS  Google Scholar 

  54. Link AJ, Vink MK, Tirrell DA (2007) Synthesis of the functionalizable methionine surrogate azidohomoalanine using Boc-homoserine as precursor. Nat Protoc 2:1884–1887

    CAS  Google Scholar 

  55. Montclare JK, Tirrell DA (2006) Evolving proteins of novel composition. Angew Chem Int Ed 45:4518–4521

    CAS  Google Scholar 

  56. Gauthier MA, Klok H (2008) Peptide/protein–polymer conjugates: synthetic strategies and design concepts. Chem Commun 2591–2611

    Google Scholar 

  57. Espuña G, Arsequell G, Valencia G, Barluenga J, Alvarez-Gutiérrez JM, Ballesteros A, González JM (2004) Regioselective postsynthetic modification of phenylalanine side chains of peptides leading to uncommon ortho-iodinated analogues. Angew Chem Int Ed 43:325–329

    Google Scholar 

  58. Tam JP, Xu J, Eom KD (2001) Methods and strategies of peptide ligation. Biopolymers 60:194–205

    CAS  Google Scholar 

  59. Villar HO, Koehler RT (2000) Amino acid preferences of small, naturally occurring polypeptides. Biopolymers 53:226–232

    CAS  Google Scholar 

  60. Villar HO, Kauvar LM (1994) Amino acid preferences at protein binding sites. FEBS Lett 349:125–130

    CAS  Google Scholar 

  61. UniProt Database. UniProtKB/Swiss-Prot protein knowledgebase release 2011_09 statistics. http://expasy.org

  62. Moelbert S, Emberly E, Tang C (2004) Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins. Protein Sci 13:752–762

    CAS  Google Scholar 

  63. Antos JM, McFarland JM, Iavarone AT, Francis MB (2009) Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J Am Chem Soc 131:6301–6308

    CAS  Google Scholar 

  64. Grover GN, Maynard HD (2010) Protein–polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr Opin Chem Biol 14:818–827

    CAS  Google Scholar 

  65. Broyer RM, Grover GN, Maynard HD (2011) Emerging synthetic approaches for protein–polymer conjugations. Chem Commun 47:2212–2226

    CAS  Google Scholar 

  66. Gauthier MA, Klok H (2010) Polymer–protein conjugates: an enzymatic activity perspective. Polym Chem 1:1352

    CAS  Google Scholar 

  67. Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36:455–567

    CAS  Google Scholar 

  68. Willcock H, O'Reilly RK (2010) End group removal and modification of RAFT polymers. Polym Chem 1:149–157

    CAS  Google Scholar 

  69. Stukel JM, Li RC, Maynard HD, Caplan MR (2010) Two-step synthesis of multivalent cancer-targeting constructs. Biomacromolecules 11:160–167

    CAS  Google Scholar 

  70. Nicolas J, Mantovani G, Haddleton DM (2007) Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates. Macromol Rapid Commun 28:1083–1111

    CAS  Google Scholar 

  71. Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley-VCH, Weinheim

    Google Scholar 

  72. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410

    CAS  Google Scholar 

  73. Favier A, Charreyre M (2006) Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process. Macromol Rapid Commun 27:653–692

    CAS  Google Scholar 

  74. Boyer C, Stenzel MH, Davis TP (2011) Building nanostructures using RAFT polymerization. J Polym Sci A Polym Chem 49:551–595

    CAS  Google Scholar 

  75. Patten TE, Matyjaszewski K (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 10:901–915

    CAS  Google Scholar 

  76. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    CAS  Google Scholar 

  77. Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288

    CAS  Google Scholar 

  78. Sciannamea V, Jérôme R, Detrembleur C (2008) In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem Rev 108:1104–1126

    CAS  Google Scholar 

  79. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458

    CAS  Google Scholar 

  80. Fee CJ, van Alstine JM (2006) PEG-proteins: reaction engineering and separation issues. Chem Eng Sci 61:924–939

    CAS  Google Scholar 

  81. Klok H (2005) Biological-synthetic hybrid block copolymers: combining the best from two worlds. J Polym Sci A Polym Chem 43:1–17

    CAS  Google Scholar 

  82. Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Treuheit MJ (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm Res 13:996–1002

    CAS  Google Scholar 

  83. Mougin NC, van Rijn P, Park H, Müller AH, Böker A (2011) Hybrid capsules via self-assembly of thermoresponsive and interfacially active bionanoparticle-polymer conjugates. Adv Funct Mater 21:2470–2476

    CAS  Google Scholar 

  84. Lecolley F, Tao L, Mantovani G, Durkin I, Lautru S, Haddleton DM (2004) A new approach to bioconjugates for proteins and peptides (“pegylation”) utilising living radical polymerisation. Chem Commun 2026. Electronic supplementary information (ESI) available: Experimental procedures on prepared compounds and characterisation. See http://www.rsc.org/suppdata/cc/b4/b407712a

  85. Ladmiral V, Monaghan L, Mantovani G, Haddleton DM (2005) α-Functional glycopolymers: new materials for (poly)peptide conjugation. Polymer 46:8536–8545

    CAS  Google Scholar 

  86. Miyamoto D, Watanabe J, Ishihara K (2004) Highly stabilized papain conjugated with water-soluble phospholipid polymer chain having a reacting terminal group. J Appl Polym Sci 91:827–832

    CAS  Google Scholar 

  87. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    CAS  Google Scholar 

  88. Harris JM, Kozlowski A. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications. Patent 5672662

    Google Scholar 

  89. Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, Zhao H, Peng P, Wu D, Zhang Z, Hua J, Hsieh M, Zhou J, Petti G, Li X, Janjua A, Mendez M, Liu J, Longley C, Zhang Z, Mehlig M, Borowski V, Viswanathan M, Filpula D (2006) Structure-function engineering of interferon-β-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjugate Chem 17:618–630

    CAS  Google Scholar 

  90. Magnusson JP, Bersani S, Salmaso S, Alexander C, Caliceti P (2010) In situ growth of side-chain PEG polymers from functionalized human growth hormone—a new technique for preparation of enhanced protein–polymer conjugates. Bioconjugate Chem 21:671–678

    CAS  Google Scholar 

  91. Pasut G, Mero A, Caboi F, Scaramuzza S, Sollai L, Veronese FM (2008) A new PEG–β-alanine active derivative for releasable protein conjugation. Bioconjugate Chem 19:2427–2431

    CAS  Google Scholar 

  92. Tao L, Liu J, Davis TP (2009) Branched polymer–protein conjugates made from mid-chain-functional P(HPMA). Biomacromolecules 10:2847–2851

    CAS  Google Scholar 

  93. Wiss KT, Krishna OD, Roth PJ, Kiick KL, Theato P (2009) A versatile grafting-to approach for the bioconjugation of polymers to collagen-like peptides using an activated ester chain transfer agent. Macromolecules 42:3860–3863

    CAS  Google Scholar 

  94. Roth PJ, Wiss KT, Zentel R, Theato P (2008) Synthesis of reactive telechelic polymers based on pentafluorophenyl esters. Macromolecules 41:8513–8519

    CAS  Google Scholar 

  95. Roth PJ, Jochum FD, Zentel R, Theato P (2010) Synthesis of hetero-telechelic α, ω bio-functionalized polymers. Biomacromolecules 11:238–244

    CAS  Google Scholar 

  96. Marquette CA, Imbert-Laurenceau E, Mallet F, Chaix C, Mandrand B, Blum LJ (2005) Electroaddressed immobilization of recombinant HIV-1 P24 capsid protein onto screen-printed arrays for serological testing. Anal Biochem 340:14–23

    CAS  Google Scholar 

  97. Apostolovic B, Deacon SP, Duncan R, Klok H (2010) Hybrid polymer therapeutics incorporating bioresponsive, coiled coil peptide linkers. Biomacromolecules 11:1187–1195

    CAS  Google Scholar 

  98. Apostolovic B, Klok H (2010) Copolymerization behavior of N-(2-hydroxypropyl)methacrylamide and a methacrylated coiled-coil peptide derivative. Biomacromolecules 11:1891–1895

    CAS  Google Scholar 

  99. Lele BS, Murata H, Matyjaszewski K, Russell AJ (2005) Synthesis of uniform protein–polymer conjugates. Biomacromolecules 6:3380–3387

    CAS  Google Scholar 

  100. Zhang J, Lei Y, Dhaliwal A, Ng QK, Du J, Yan M, Lu Y, Segura T (2011) Protein–polymer nanoparticles for nonviral gene delivery. Biomacromolecules 12:1006–1014

    CAS  Google Scholar 

  101. Thilakarathne V, Briand VA, Zhou Y, Kasi RM, Kumar CV (2011) Protein polymer conjugates: improving the stability of hemoglobin with poly(acrylic acid). Langmuir 27:7663–7671

    CAS  Google Scholar 

  102. Tao L, Mantovani G, Lecolley F, Haddleton DM (2004) α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation “pegylation”. J Am Chem Soc 126:13220–13221

    CAS  Google Scholar 

  103. Sayers CT, Mantovani G, Ryan SM, Randev RK, Keiper O, Leszczyszyn OI, Blindauer C, Brayden DJ, Haddleton DM (2009) Site-specific N-terminus conjugation of poly(mPEG1100) methacrylates to salmon calcitonin: synthesis and preliminary biological evaluation. Soft Matter 5:3038

    CAS  Google Scholar 

  104. McFarland JM, Francis MB (2005) Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. J Am Chem Soc 127:13490–13491

    CAS  Google Scholar 

  105. van Maarseveen JH, Reek JN, Back JW (2006) Transition-metal catalysis as a tool for the covalent labeling of proteins. Angew Chem Int Ed 45:1841–1843

    Google Scholar 

  106. Levesque G, Arsène P, Fanneau-Bellenger V, Pham T (2000) Protein thioacylation. 1. Reagents design and synthesis. Biomacromolecules 1:387–399

    CAS  Google Scholar 

  107. Lundblad RL (1995) Techniques in protein modification. CRC, Boca Raton

    Google Scholar 

  108. Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego

    Google Scholar 

  109. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjugate Chem 14:412–419

    CAS  Google Scholar 

  110. Bontempo D, Heredia KL, Fish BA, Maynard HD (2004) Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins. J Am Chem Soc 126:15372–15373

    CAS  Google Scholar 

  111. Heredia KL, Bontempo D, Ly T, Byers JT, Halstenberg S, Maynard HD (2005) In situ preparation of protein–“smart” polymer conjugates with retention of bioactivity. J Am Chem Soc 127:16955–16960

    CAS  Google Scholar 

  112. Liu J, Bulmus V, Barner-Kowollik C, Stenzel MH, Davis TP (2007) Direct synthesis of pyridyl disulfide-terminated polymers by RAFT polymerization. Macromol Rapid Commun 28:305–314

    CAS  Google Scholar 

  113. Liu J, Bulmus V, Herlambang DL, Barner-Kowollik C, Stenzel MH, Davis TP (2007) In situ formation of protein–polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew Chem 119:3159–3163

    Google Scholar 

  114. Boyer C, Bulmus V, Liu J, Davis TP, Stenzel MH, Barner-Kowollik C (2007) Well-defined protein–polymer conjugates via in situ RAFT polymerization. J Am Chem Soc 129:7145–7154

    CAS  Google Scholar 

  115. Liu J, Liu H, Bulmus V, Tao L, Boyer C, Davis TP (2010) A simple methodology for the synthesis of heterotelechelic protein-polymer-biomolecule conjugates. J Polym Sci A Polym Chem 48:1399–1405

    CAS  Google Scholar 

  116. Tedaldi LM, Smith ME, Nathani RI, Baker JR (2009) Bromomaleimides: new reagents for the selective and reversible modification of cysteine. Chem Commun 6583–6585

    Google Scholar 

  117. Schumacher FF, Nobles M, Ryan CP, Smith ME, Tinker A, Caddick S, Baker JR (2011) In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjugate Chem 22:132–136

    CAS  Google Scholar 

  118. Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, Haddleton DM (2012) Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents. J Am Chem Soc 134:1847–1852

    CAS  Google Scholar 

  119. Shaunak S, Godwin A, Choi J, Balan S, Pedone E, Vijayarangam D, Heidelberger S, Teo I, Zloh M, Brocchini S (2006) Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat Chem Biol 2:312–313

    CAS  Google Scholar 

  120. Balan S, Choi J, Godwin A, Teo I, Laborde CM, Heidelberger S, Zloh M, Shaunak S, Brocchini S (2007) Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjugate Chem 18:61–76

    CAS  Google Scholar 

  121. De P, Li M, Gondi SR, Sumerlin BS (2008) Temperature-regulated activity of responsive polymer–protein conjugates prepared by grafting-from via RAFT polymerization. J Am Chem Soc 130:11288–11289

    CAS  Google Scholar 

  122. Li M, Li H, De P, Sumerlin BS (2011) Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization. Macromol Rapid Commun 32:354–359

    CAS  Google Scholar 

  123. Mantovani G, Lecolley F, Tao L, Haddleton DM, Clerx J, Cornelissen JJ, Velonia K (2005) Design and synthesis of N. J Am Chem Soc 127:2966–2973

    CAS  Google Scholar 

  124. Neubert BJ, Snider BB (2003) Synthesis of (±)-phloeodictine A1. Org Lett 5:765–768

    CAS  Google Scholar 

  125. Le Droumaguet B, Mantovani G, Haddleton DM, Velonia K (2007) Formation of giant amphiphiles by post-functionalization of hydrophilic protein–polymer conjugates. J Mater Chem 17:1916–1922

    Google Scholar 

  126. Geng J, Mantovani G, Tao L, Nicolas J, Chen G, Wallis R, Mitchell DA, Johnson BR, Evans SD, Haddleton DM (2007) Site-directed conjugation of “clicked” glycopolymers to form glycoprotein mimics: binding to mammalian lectin and induction of immunological function. J Am Chem Soc 129:15156–15163

    CAS  Google Scholar 

  127. Bays E, Tao L, Chang C, Maynard HD (2009) Synthesis of semitelechelic maleimide poly(PEGA) for protein conjugation by RAFT polymerization. Biomacromolecules 10:1777–1781

    CAS  Google Scholar 

  128. Pennadam SS, Lavigne MD, Dutta CF, Firman K, Mernagh D, Górecki DC, Alexander C (2004) Control of a multisubunit DNA motor by a thermoresponsive polymer switch. J Am Chem Soc 126:13208–13209

    CAS  Google Scholar 

  129. Perrier S, Takolpuckdee P, Mars CA (2005) Reversible addition–fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules 38:2033–2036

    CAS  Google Scholar 

  130. Deacon SP, Apostolovic B, Carbajo RJ, Schott A, Beck K, Vicent MJ, Pineda-Lucena A, Klok H, Duncan R (2011) Polymer coiled-coil conjugates: potential for development as a new class of therapeutic “molecular switch”. Biomacromolecules 12:19–27

    CAS  Google Scholar 

  131. Tao L, Kaddis CS, Ogorzalek Loo RR, Grover GN, Loo JA, Maynard HD (2009) Synthetic approach to homodimeric protein–polymer conjugates. Chem Commun 2148

    Google Scholar 

  132. Heredia KL, Tao L, Grover GN, Maynard HD (2010) Heterotelechelic polymers for capture and release of protein–polymer conjugates. Polym Chem 1:168–170

    CAS  Google Scholar 

  133. Tao L, Kaddis CS, Loo RR, Grover GN, Loo JA, Maynard HD (2009) Synthesis of maleimide-end-functionalized star polymers and multimeric protein–polymer conjugates. Macromolecules 42:8028–8033

    CAS  Google Scholar 

  134. Li M, De P, Li H, Sumerlin BS (2010) Conjugation of RAFT-generated polymers to proteins by two consecutive thiol–ene reactions. Polym Chem 1:854–859

    CAS  Google Scholar 

  135. Grover GN, Alconcel SN, Matsumoto NM, Maynard HD (2009) Trapping of thiol-terminated acrylate polymers with divinyl sulfone to generate well-defined semitelechelic Michael acceptor polymers. Macromolecules 42:7657–7663

    CAS  Google Scholar 

  136. Jones MW, Mantovani G, Ryan SM, Wang X, Brayden DJ, Haddleton DM (2009) Phosphine-mediated one-pot thiol–ene “click” approach to polymer–protein conjugates. Chem Commun 5272–5274

    Google Scholar 

  137. Valdebenito A, Espinoza P, Lissi E, Encinas M (2010) Bovine serum albumin as chain transfer agent in the acrylamide polymerization. Protein-polymer conjugates. Polymer 51:2503–2507

    CAS  Google Scholar 

  138. Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using π-allylpalladium complexes. J Am Chem Soc 128:1080–1081

    CAS  Google Scholar 

  139. Antos JM, Francis MB (2006) Transition metal catalyzed methods for site-selective protein modification. Curr Opin Chem Biol 10:253–262

    CAS  Google Scholar 

  140. Joshi NS, Whitaker LR, Francis MB (2004) A three-component Mannich-type reaction for selective tyrosine bioconjugation. J Am Chem Soc 126:15942–15943

    CAS  Google Scholar 

  141. Holder PG, Finley DT, Stephanopoulos N, Walton R, Clark DS, Francis MB (2010) Dramatic thermal stability of virus–polymer conjugates in hydrophobic solvents. Langmuir 26:17383–17388

    CAS  Google Scholar 

  142. Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723

    CAS  Google Scholar 

  143. Ban H, Gavrilyuk J, Barbas CF (2010) Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. J Am Chem Soc 132:1523–1525

    CAS  Google Scholar 

  144. Tanaka T, Kamiya N, Nagamune T (2005) N-Terminal glycine-specific protein conjugation catalyzed by microbial transglutaminase. FEBS Lett 579:2092–2096

    CAS  Google Scholar 

  145. Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28

    CAS  Google Scholar 

  146. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    CAS  Google Scholar 

  147. Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454

    CAS  Google Scholar 

  148. Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjugate Chem 20:384–389

    CAS  Google Scholar 

  149. Antos JM, Francis MB (2004) Selective tryptophan modification with rhodium carbenoids in aqueous solution. J Am Chem Soc 126:10256–10257

    CAS  Google Scholar 

  150. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281

    CAS  Google Scholar 

  151. Smith MC, Furman TC, Ingolia TD, Pidgeon C (1988) Chelating peptide-immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. J Biol Chem 263:7211–7215

    CAS  Google Scholar 

  152. Kumar A, Kamihira M, Galaev IY, Iijima S, Mattiasson B (2003) Binding of Cu(II)-poly(N-isopropylacrylamide/vinylimidazole) copolymer to histidine-tagged protein: a surface plasmon resonance study surface plasmon resonance study. Langmuir 19:865–871

    CAS  Google Scholar 

  153. Griffith BR, Allen BL, Rapraeger AC, Kiessling LL (2004) A polymer scaffold for protein oligomerization. J Am Chem Soc 126:1608–1609

    CAS  Google Scholar 

  154. Tahir MN, Natalio F, Berger R, Barz M, Theato P, Schröder H, Müller WE, Tremel W (2009) Growth of fibrous aggregates of silica nanoparticles: fibre growth by mimicking the biogenic silica patterning processes. Soft Matter 5:3657

    CAS  Google Scholar 

  155. Thompson LB, Mack NH (2010) Bifunctional polyacrylamide based polymers for the specific binding of hexahistidine tagged proteins on gold surfaces. Phys Chem Chem Phys 12:4301–4308

    CAS  Google Scholar 

  156. Shukoor MI, Natalio F, Therese HA, Tahir MN, Ksenofontov V, Panthöfer M, Eberhardt M, Theato P, Schröder HC, Müller WE, Tremel W (2008) Fabrication of a silica coating on magnetic γ-Fe2O3 nanoparticles by an immobilized enzyme. Chem Mater 20:3567–3573

    CAS  Google Scholar 

  157. Shukoor M, Natalio F, Tahir M, Divekar M, Metz N, Therese H, Theato P, Ksenofontov V, Schröder H, Müller W, Tremel W (2008) Multifunctional polymer-derivatized γ-Fe2O3 nanocrystals as a methodology for the biomagnetic separation of recombinant His-tagged proteins. J Magn Magn Mater 320:2339–2344

    CAS  Google Scholar 

  158. Zhang X, Li F, Lu X, Liu C (2009) Protein C-terminal modification through thioacid/azide amidation. Bioconjugate Chem 20:197–200

    CAS  Google Scholar 

  159. Tam A, Soellner MB, Raines RT (2007) Water-soluble phosphinothiols for traceless staudinger ligation and integration with expressed protein ligation. J Am Chem Soc 129:11421–11430

    CAS  Google Scholar 

  160. Gao W, Liu W, Christensen T, Zalutsky MR, Chilkoti A (2010) In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. PNAS 107:16432–16437

    CAS  Google Scholar 

  161. Gauthier MA, Klok H (2011) Arginine-specific modification of proteins with polyethylene glycol. Biomacromolecules 12:482–493

    CAS  Google Scholar 

  162. de Graaf AJ, Kooijman M, Hennink WE, Mastrobattista E (2009) Nonnatural amino acids for site-specific protein conjugation. Bioconjugate Chem 20:1281–1295

    Google Scholar 

  163. Kochendoerfer GG, Chen S, Mao F, Cressman S, Traviglia S, Shao J, Hunter CL, Low DC, Carnevali M, Gueriguian V, Keogh P et al (2003) Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299:884–887

    CAS  Google Scholar 

  164. Deiters A, Cropp TA, Summerer D, Mukherji M, Schultz PG (2004) Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett 14:5743–5745

    CAS  Google Scholar 

  165. Peeler JC, Woodman BF, Averick S, Miyake-Stoner SJ, Stokes AL, Hess KR, Matyjaszewski K, Mehl RA (2010) Genetically encoded initiator for polymer growth from proteins. J Am Chem Soc 132:13575–13577

    CAS  Google Scholar 

  166. Kempe K, Krieg A, Becer CR, Schubert US (2012) “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem Soc Rev 41:176–191

    CAS  Google Scholar 

  167. Lallana E, Riguera R, Fernandez-Megia E (2011) Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Angew Chem Int Ed 50:8794–8804

    CAS  Google Scholar 

  168. Dirks AJ, van Berkel SS, Hatzakis NS, Opsteen JA, van Delft FL, Cornelissen JJ, Rowan AE, van Hest JC, Rutjes FP, Nolte RJ (2005) Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3+2] dipolar cycloaddition reaction. Chem Commun 4172–4174

    Google Scholar 

  169. Li M, De P, Gondi SR, Sumerlin BS (2008) Responsive polymer‐protein bioconjugates prepared by RAFT polymerization and copper‐catalyzed azide‐alkyne click chemistry. Macromol Rapid Commun 29:1172–1176

    Google Scholar 

  170. Shao H, Crnogorac MM, Kong T, Chen S, Williams JM, Tack JM, Gueriguian V, Cagle EN, Carnevali M, Tumelty D, Paliard X, Miranda LP, Bradburne JA, Kochendoerfer GG (2005) Site-specific polymer attachment to a CCL-5 (RANTES) analogue by oxime exchange. J Am Chem Soc 127:1350–1351

    CAS  Google Scholar 

  171. Heredia KL, Tolstyka ZP, Maynard HD (2007) Aminooxy end-functionalized polymers synthesized by ATRP for chemoselective conjugation to proteins. Macromolecules 40:4772–4779

    CAS  Google Scholar 

  172. Gao W, Liu W, Mackay JA, Zalutsky MR, Toone EJ, Chilkoti A (2009) In situ growth of a stoichiometric PEG-like conjugate at a protein’s N-terminus with significantly improved pharmacokinetics. PNAS 106:15231–15236

    CAS  Google Scholar 

Download references

Acknowledgment

B. Jung gratefully acknowledges a fellowship funded through the Excellence Initiative (DFG/GSC 266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Theato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jung, B., Theato, P. (2012). Chemical Strategies for the Synthesis of Protein–Polymer Conjugates. In: Schlaad, H. (eds) Bio-synthetic Polymer Conjugates. Advances in Polymer Science, vol 253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_169

Download citation

Publish with us

Policies and ethics