Skip to main content

Applications of Liquid Crystalline Elastomers

  • Chapter
  • First Online:
Liquid Crystal Elastomers: Materials and Applications

Part of the book series: Advances in Polymer Science ((POLYMER,volume 250))

Abstract

This chapter focuses on recent developments in the field of liquid crystalline elastomers (LCEs) that bring these materials closer to the world of real applications, concentrating on their actuation properties. First, we briefly introduce different LCE materials that show actuation behavior and explain how they can be synthesized. In the second part, we focus on materials in which a shape change is triggered by a phase transition. In particular, we discuss how the chemistry of the polymeric material influences the strength and direction of the shape change. We review the efforts made to trigger the actuation event by stimuli other than temperature variation. Subsequently, we summarize preparation techniques for various sample geometries of aligned LCEs that all show actuation properties and assign them to particular applications. A short summary is given of devices that have been built in this way. In the third part, we concentrate on actuators that show deformation in an electric field without any phase transition. We start with a short introduction to ferroelectric liquid crystalline elastomers (FLCEs) and discuss molecules exhibiting these phases. Subsequently, we show how the electroclinic effect of FLCEs can be utilized to induce macroscopic deformations by an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a:

electrostriction coefficient

BCFLCE:

Bent-core ferroelectric liquid crystalline elastomer

BCLC:

Bent-core liquid crystal

c-director:

Projection of the director on the smectic layer

d 33 :

Piezoelectric constant

e :

Flexoelectric coefficient

FLC:

Ferroelectric liquid crystal

FLCE:

Ferroelectric liquid crystalline elastomer

LC:

Liquid crystal

LCE:

Liquid crystalline elastomer

NI:

Nematic–isotropic

P s :

Spontaneous polarization

R :

Radius of gyration

S :

Order parameter

sA :

Smectic-A phase

sA*:

Chiral smectic-A phase

sC :

Smectic-C phase

sC*:

Chiral smectic-C phase

Sx :

unidentified smectic phase of higher order

T :

Temperature

References

  1. Brand HR, Finkelmann H (1998) Physical properties of liquid crystalline elastomers. In: Demus D, Boodby J, Gray GW, Spiess HW (eds) Handbook of liquid crystals, vol. 3, Chap. 5. Wiley-VCH, Weinheim. doi:10.1002/9783527620593.ch5

  2. Brand HR, Pleiner H, Martinoty P (2006) Selected macroscopic properties of liquid crystalline elastomers. Soft Matter 2(3):182–189. doi:10.1039/b512693m

    CAS  Google Scholar 

  3. Brehmer M, Zentel R (1994) Liquid crystalline elastomers- characterization as networks. Mol Cryst Liq Cryst Sci Technol Sect A-Mol Cryst Liq Cryst 243:353–376. doi:10.1080/10587259408037775

    CAS  Google Scholar 

  4. Finkelmann H, Brand HR (1994) Liquid crystalline elastomers - a class of materials with novel properties. Trends Polym Sci 2 (7):222–226

    Google Scholar 

  5. Ohm C, Brehmer M, Zentel R (2010) Liquid crystalline elastomers as actuators and sensors. Adv Mater 22(31):3366–3387. doi:10.1002/Adma.200904059

    CAS  Google Scholar 

  6. Terentjev EM (1999) Liquid-crystalline elastomers. J Phys-Condens Matter 11(24):R239–R257. doi:10.1088/0953-8984/11/24/201

    CAS  Google Scholar 

  7. Urayama K (2007) Selected issues in liquid crystal elastomers and gels. Macromolecules 40(7):2277–2288. doi:10.1021/ma0623688

    CAS  Google Scholar 

  8. Warner M, Terentjev EM (2003) Liquid crystal elastomers, vol 120. International series of monographs on physics. Oxford University Press, Oxford. doi:http://ukcatalogue.oup.com/product/9780198527671.doa

  9. Xie P, Zhang RB (2005) Liquid crystal elastomers, networks and gels: advanced smart materials. J Mater Chem 15(26):2529–2550. doi:10.1039/b413835j

    CAS  Google Scholar 

  10. Zentel R (1989) Liquid crystalline elastomers. Angew Chem Int Ed Engl 28(10):1407–1415

    Google Scholar 

  11. de Gennes PG (1975) One type of nematic polymers. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B 281(5–8):101–103

    Google Scholar 

  12. de Gennes PG, Hebert M, Kant R (1996) Artificial muscles based on nematic gels. In: 2nd international symposium on molecular order and mobility in polymer systems, St Petersburg, Russia, 21–24 May 1996. Huthig & Wepf Verlag, pp 39–49. doi:10.1002/masy.19971130107

  13. Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10(4):30–38. doi:10.1016/S1369-7021(07)70048-2

    CAS  Google Scholar 

  14. Selinger RLB, Mbanga BL, Selinger JV (2008) Modeling liquid crystal elastomers: actuators, pumps, and robots – art. no. 69110A. In: Chien LC (ed) Conference on emerging liquid crystal technologies III, San Jose, CA, 20–22 Jan 2008. SPIE-int soc optical engineering, p A9110. doi:10.1117/12.768282

  15. Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2003) Artificial muscle technology: physical principles and naval prospects. In: 13th international symposium on unmanned untethered submersible technology, Durham, NH, 24–27 Aug 2003. IEEE-Inst Electrical Electronics Engineers Inc, pp 706–728. doi:10.1109/joe.2004.833135

  16. Yang H, Buguin A, Taulemesse J-M, Kaneko K, Méry S, Bergeret A, Keller P (2009) Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J Am Chem Soc 131(41):15000–15004. doi:10.1021/ja905363f

    CAS  Google Scholar 

  17. Bualek S, Kapitza H, Meyer J, Schmidt GF, Zentel R (1988) Orientability of crosslinked and of chiral liquid-crystalline polymers. Mol Cryst Liq Cryst 155:47–56. doi:10.1080/00268948808070351

    CAS  Google Scholar 

  18. Küpfer J, Finkelmann H (1991) Nematic liquid single-crystal elastomers. Makromol Chem-Rapid Commun 12(12):717–726. doi:10.1002/marc.1991.030121211

    Google Scholar 

  19. Öge T, Zentel R (1996) Manipulation of the ferroelectricity in LC polymers via photomechanical isomerization of azobenzene moieties. Macromol Chem Phys 197(6):1805–1813

    Google Scholar 

  20. de Jeu WH (1980) Physical properties of liquid crystalline materials, vol 1, Liquid crystal monographs. Gordon and Breach, New York

    Google Scholar 

  21. Kempe MD, Scruggs NR, Verduzco R, Lal J, Kornfield JA (2004) Self-assembled liquid-crystalline gels designed from the bottom up. Nat Mater 3(3):177–182. doi:10.1038/nmat1074

    CAS  Google Scholar 

  22. Li JJ, Stannarius R, Tolksdorf C, Zentel R (2003) Hydrogen bonded ferroelectric liquid crystal gels in freely suspended film geometry. Phys Chem Chem Phys 5(5):916–923. doi:10.1039/b205210e

    CAS  Google Scholar 

  23. Brehmer M, Zentel R, Giesselmann F, Germer R, Zugenmaier P (1996) Coupling of liquid crystalline and polymer network properties in LC-elastomers. Liq Cryst 21(4):589–596. doi:10.1080/02678299608032868

    CAS  Google Scholar 

  24. Garoff S, Meyer RB (1977) Electro-clinic effect at A/C phase-change in a chiral smectic liquid-crystal. Phys Rev Lett 38(15):848–851. doi:10.1103/PhysRevLett.38.848

    CAS  Google Scholar 

  25. Poths H, Andersson G, Skarp K, Zentel R (1992) Fast electroclinic switching in a ferroelectric LC-polysiloxane. Adv Mater 4(12):792–794. doi:10.1002/adma.19920041204

    CAS  Google Scholar 

  26. Finkelmann H, Ringsdorf H, Wendorff JH (1978) Model considerations and examples of enantiotropic liquid-crystalline polymers - polyreactions in ordered systems, 14. Makromol Chem - Macromol Chem Phys 179(1):273–276. doi:10.1002/macp.1978.021790129

    CAS  Google Scholar 

  27. Zentel R (1994) Liquid crystalline polymers. In: Stegemeyer H (ed) Liquid crystals. Steinkopff, Darmstadt, pp 103–140

    Google Scholar 

  28. Kaufhold W, Finkelmann H, Brand HR (1991) Nematic elastomers. 1. Effect of the spacer length on the mechanical coupling between network anisotropy and nematic order. Makromol Chem - Macromol Chem Phys 192(11):2555–2579. doi:10.1002/macp.1991.021921104

    CAS  Google Scholar 

  29. Martinoty P, Stein P, Finkelmann H, Pleiner H, Brand HR (2004) Mechanical properties of monodomain side chain nematic elastomers. Eur Phys J E 14(4):311–321. doi:10.1140/epje/i2003-10154-y

    CAS  Google Scholar 

  30. Pakula T, Zentel R (1991) Mechanical behavior of liquid-crystalline side-group polymers and their networks. Makromol Chem - Macromol Chem Phys 192(10):2401–2410. doi:10.1002/macp.1991.021921018

    CAS  Google Scholar 

  31. Zentel R, Wu JS (1986) Rheological properties of liquid crystalline side-group polymers in the isotropic, nematic and smectic states. Makromol Chem - Macromol Chem Phys 187(7):1727–1736. doi:10.1002/macp.1986.021870716

    CAS  Google Scholar 

  32. Hikmet RAM, Lub J, Broer DJ (1991) Anisotropic networks formed by photopolymerization of liquid-crystalline molecules. Adv Mater 3(7–8):392–394. doi:10.1002/adma.19910030713

    CAS  Google Scholar 

  33. Li MH, Keller P, Yang JY, Albouy PA (2004) An artificial muscle with lamellar structure based on a nematic triblock copolymer. Adv Mater 16(21):1922–1925. doi:10.1002/adma.200400658

    Google Scholar 

  34. Wiesemann A, Zentel R, Pakula T (1992) Redox-active liquid-crystalline ionomers.1. Synthesis and rheology. Polymer 33(24):5315–5320. doi:10.1016/0032-3861(92)90818-H

    CAS  Google Scholar 

  35. Rogez D, Martinoty P (2011) Mechanical properties of monodomain nematic side-chain liquid-crystalline elastomers with homeotropic and in-plane orientation of the director. Eur Phys J E Soft matter 34(7):69. doi:10.1140/epje/i2011-11069-8

    CAS  Google Scholar 

  36. Brehmer M, Zentel R, Wagenblast G, Siemensmeyer K (1994) Ferroelectric liquid crystalline elastomers. Macromol Chem Phys 195(6):1891–1904. doi:10.1002/macp.1994.021950601

    CAS  Google Scholar 

  37. Gebhard E, Zentel R (2000) Ferroelectric liquid crystalline elastomers, 1 - Variation of network topology and orientation. Macromol Chem Phys 201(8):902–910. doi:10.1002/(SICI)1521-3935(20000501)201:8<902::AID-MACP902>3.0.CO;2-9

    CAS  Google Scholar 

  38. Gebhard E, Zentel R (2000) Ferroelectric liquid crystalline elastomers, 2 - Variation of mesogens and network density. Macromol Chem Phys 201(8):911–922. doi:10.1002/(SICI)1521-3935(20000501)201:8<911::AID-MACP911>3.0.CO;2-9

    CAS  Google Scholar 

  39. Kapitza H, Zentel R (1991) Chiral liquid-crystalline elastomers by polymer-analogous reactions. Makromol Chem - Macromol Chem Phys 192(8):1859–1872. doi:10.1002/macp.1991.021920821

    CAS  Google Scholar 

  40. Ikeda T, Nakano M, Yu YL, Tsutsumi O, Kanazawa A (2003) Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater 15(3):201–205. doi:10.1002/adma.200390045

    Google Scholar 

  41. Beyer P, Braun L, Zentel R (2007) (Photo)crosslinkable smectic LC main-chain polymers. Macromol Chem Phys 208(22):2439–2448. doi:10.1002/macp.200700292

    CAS  Google Scholar 

  42. Beyer P, Terentjev EM, Zentel R (2007) Monodomain liquid crystal main chain elastomers by photocrosslinking. Macromol Rapid Commun 28(14):1485–1490. doi:10.1002/marc.200700210

    CAS  Google Scholar 

  43. Komp A, Ruhe J, Finkelmann H (2005) A versatile preparation route for thin free-standing liquid single crystal elastomers. Macromol Rapid Commun 26(10):813–818. doi:10.1002/marc.200500049

    CAS  Google Scholar 

  44. McKenzie BM, Wojtecki RJ, Burke KA, Zhang C, Jakli A, Mather PT, Rowan SJ (2011) Metallo-responsive liquid crystalline monomers and polymers. Chem Mater 23(15):3525–3533. doi:10.1021/cm2011617

    CAS  Google Scholar 

  45. Fox JD, Rowan SJ (2009) Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules 42(18):6823–6835. doi:10.1021/ma901144t

    CAS  Google Scholar 

  46. Oriol L, Pinol M, Serrano JL (1997) The state of the art in metallomesogenic polymers. Prog Polym Sci 22(5):873–911. doi:10.1016/s0079-6700(97)00011-7

    CAS  Google Scholar 

  47. Ahir SV, Tajbakhsh AR, Terentjev EM (2006) Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater 16(4):556–560. doi:10.1002/adfm.200500692

    CAS  Google Scholar 

  48. Finkelmann H (1987) Liquid crystalline polymers. Angew Chem Int Ed Engl 26(9):816–824. doi:10.1002/anie.198708161

    Google Scholar 

  49. Boeffel C, Spiess HW, Hisgen B, Ringsdorf H, Ohm H, Kirste RG (1986) Molecular order of spacer and main chain in polymeric side-group liquid-crystals. Makromol Chem Rapid Commun 7(12):777–783

    CAS  Google Scholar 

  50. Noirez L, Keller P, Cotton JP (1995) On the structure and the chain conformation of side-chain liquid-crystal polymers. Liq Cryst 18(1):129–148. doi:10.1080/02678299508036602

    CAS  Google Scholar 

  51. Leroux N, Keller P, Achard MF, Noirez L, Hardouin F (1993) Small-angle neutron-scattering experiments on side-on fixed liquid-crystal polyacrylates. J Phys II 3(8):1289–1296. doi:10.1051/jp2:1993199

    CAS  Google Scholar 

  52. Arrighi V, Higgins JS, Weiss RA, Cimecioglu AL (1992) A small-angle neutron scattering study of a semi-flexible main-chain liquid-crystalline copolyester. Macromolecules 25(20):5297–5305

    CAS  Google Scholar 

  53. Dallest JF, Maissa P, Tenbosch A, Sixou P, Blumstein A, Blumstein R, Teixeira J, Noirez L (1988) Experimental evidence of chain extension at the transition-temperature of a nematic polymer. Phys Rev Lett 61(22):2562–2565. doi:10.1103/PhysRevLett.61.2562

    CAS  Google Scholar 

  54. Hardouin F, Leroux N, Méry S, Noirez L (1992) Small-angle neutron-scattering experiments on side-on fixed liquid-crystal polysiloxanes. J Phys II 2(3):271–278. doi:10.1051/jp2:1992131

    CAS  Google Scholar 

  55. Keller P, Carvalho B, Cotton JP, Lambert M, Moussa F, Pepy G (1985) Side-chain mesomorphic polymers-studies labeled backbones by neutron-scattering. Journal De Physique Lettres 46(22):1065–1071. doi:10.1051/jphyslet:0198500460220106500

    CAS  Google Scholar 

  56. Kirste RG, Ohm HG (1985) The conformation of liquid-crystalline polymers as revealed by neutron-scattering. Makromol Chem Rapid Commun 6(3):179–185. doi:10.1002/marc.1985.030060312

    Google Scholar 

  57. Ohm HG, Kirste RG, Oberthur RC (1988) The backbone conformation of liquid-crystalline side-chain polymers in the mesophases and in the isotropic phase determined by scattering methods. Makromol Chem Macromol Chem Phys 189(6):1387–1405. doi:10.1002/macp.1988.021890616

    CAS  Google Scholar 

  58. Pepy G, Noirez L, Keller P, Lambert M, Moussa F, Cotton JP, Strazielle C, Lapp A, Hardouin F, Mauzac M, Richard H (1990) Observation of the conformation and structure of some liquid-crystal polymers by small-angle neutron-scattering. Makromol Chem Macromol Chem Phys 191(6):1383–1392. doi:10.1002/macp.1990.021910617

    CAS  Google Scholar 

  59. Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34(17):5868–5875. doi:10.1021/ma001639q

    CAS  Google Scholar 

  60. Wermter H, Finkelmann H (2001) Liquid crystalline elastomers as artificial muscles. e-Polymers 013. Available at http://www.e-polymers.org/journal/papers/finkelmann_210801.pdf

  61. Tajbakhsh AR, Terentjev EM (2001) Spontaneous thermal expansion of nematic elastomers. Eur Phys J E 6(2):181–188. doi:10.1007/s101890170020

    CAS  Google Scholar 

  62. Beyer P, Krueger M, Giesselmann F, Zentel R (2007) Photoresponsive ferroelectric liquid-crystalline polymers. Adv Funct Mater 17(1):109–114. doi:10.1002/Adfm.200600513

    CAS  Google Scholar 

  63. Komp A, Finkelmann H (2007) A new type of macroscopically oriented smectic-A liquid crystal elastomer. Macromol Rapid Commun 28(1):55–62. doi:10.1002/marc.200600640

    CAS  Google Scholar 

  64. Nishikawa E, Finkelmann H (1999) Smectic-A liquid single crystal elastomers – strain induced break-down of smectic layers. Macromol Chem Phys 200(2):312–322. doi:10.1002/(SICI)1521-3935(19990201)200:2<312::AID-MACP312>3.0.CO;2-Y

    CAS  Google Scholar 

  65. Sanchez-Ferrer A, Finkelmann H (2009) Thermal and mechanical properties of new main-chain liquid-crystalline elastomers. Mol Cryst Liq Cryst 508:348–356. doi:10.1080/15421400903065861

    Google Scholar 

  66. Poths H, Zentel R (1994) Structure–property relationships of diluted ferroelectric polysiloxanes. Liq Cryst 16(5):749–767. doi:10.1080/02678299408027848

    CAS  Google Scholar 

  67. Stannarius R, Schuring H, Tolksdorf C, Zentel R (2001) Elastic properties of liquid crystal elastomer balloons. Mol Cryst Liq Cryst 364:305–312. doi:10.1080/10587250108024999

    CAS  Google Scholar 

  68. Ohm C, Morys M, Forst FR, Braun L, Eremin A, Serra C, Stannarius R, Zentel R (2011) Preparation of actuating fibres of oriented main-chain liquid crystalline elastomers by a wetspinning process. Soft Matter 7(8):3730–3734. doi:10.1039/c1sm05111c

    CAS  Google Scholar 

  69. Ohm C, Fleischmann EK, Kraus I, Serra C, Zentel R (2010) Control of the properties of micrometer-sized actuators from liquid crystalline elastomers prepared in a microfluidic setup. Adv Funct Mater 20(24):4314–4322. doi:10.1002/adfm.201001178

    CAS  Google Scholar 

  70. de Jeu WH, Obraztsov EP, Ostrovskii BI, Ren W, McMullan PJ, Griffin AC, Sanchez-Ferrer A, Finkelmann H (2007) Order and strain in main-chain smectic liquid-crystalline polymers and elastomers. Eur Phys J E 24(4):399–409. doi:10.1140/epje/i2007-10254-8

    Google Scholar 

  71. Demus D, Goodby J, Gray GW, Spiess HW (2008) Handbook of liquid crystals set. Wiley-VCH Verlag GmbH, Weinheim. doi:10.1002/9783527619276

    Google Scholar 

  72. Spillmann CA, Naciri J, Martin BD, Farahat W, Herr H, Ratna BR (2005) Stacking nematic elastomers for artificial muscle applications. In: 3rd international conference on materials for advanced technologies (ICMAT-2005)/9th international conference on advanced materials (ICAM 2005), Singapore, SINGAPORE, 03–08 July 2005. pp 500–505. doi:10.1016/j.sna.2006.04.045

  73. Chambers M, Finkelmann H, Remskar M, Sanchez-Ferrer A, Zalar B, Zumer S (2009) Liquid crystal elastomer-nanoparticle systems for actuation. J Mater Chem 19(11):1524–1531. doi:10.1039/b812423j

    CAS  Google Scholar 

  74. Yang LQ, Setyowati K, Li A, Gong SQ, Chen J (2008) Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv Mater 20(12):2271–2275. doi:10.1002/adma.200702953

    Google Scholar 

  75. Kaiser A, Winkler M, Krause S, Finkelmann H, Schmidt AM (2009) Magnetoactive liquid crystal elastomer nanocomposites. J Mater Chem 19(4):538–543. doi:10.1039/b813120c

    CAS  Google Scholar 

  76. Ikeda T, Tsutsumi O (1995) Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268(5219):1873–1875. doi:10.1126/science.268.5219.1873

    CAS  Google Scholar 

  77. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3(5):307–310. doi:10.1038/nmat1118

    CAS  Google Scholar 

  78. Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87(1):4. doi:01550110.1103/PhysRevLett.87.015501

    Google Scholar 

  79. Hogan PM, Tajbakhsh AR, Terentjev EM (2002) uv manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E 65(4):10. doi:04172010.1103/PhysRevE.65.041720

    Google Scholar 

  80. Li MH, Keller P, Li B, Wang XG, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15(7–8):569–572. doi:10.1002/adma.200304552

    CAS  Google Scholar 

  81. Yin RY, Xu WX, Kondo M, Yen CC, Mamiya J, Ikeda T, Yu YL (2009) Can sunlight drive the photoinduced bending of polymer films? J Mater Chem 19(20):3141–3143. doi:10.1039/b904973h

    CAS  Google Scholar 

  82. van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8(8):677–682. doi:10.1038/nmat2487

    Google Scholar 

  83. Yu YL, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light – miniaturizing a simple photomechanical system could expand its range of applications. Nature 425(6954):145. doi:10.1038/425145a

    CAS  Google Scholar 

  84. Vennes M, Zentel R, Rossle M, Stepputat M, Kolb U (2005) Smectic liquid-crystalline colloids by miniemulsion techniques. Adv Mater 17(17):2123–2127. doi:10.1002/adma.200500310

    Google Scholar 

  85. Haseloh S, van der Schoot P, Zentel R (2010) Control of mesogen configuration in colloids of liquid crystalline polymers. Soft Matter 6(17):4112–4119. doi:10.1039/c0sm00125b

    CAS  Google Scholar 

  86. Haseloh S, Ohm C, Smallwood F, Zentel R (2011) Nanosized shape-changing colloids from liquid crystalline elastomers. Macromol Rapid Commun 32(1):88–93

    CAS  Google Scholar 

  87. Ohm C, Kapernaum N, Nonnenmacher D, Giesselmann F, Serra C, Zentel R (2011) Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J Am Chem Soc 133(14):5305–5311. doi:10.1021/ja1095254

    CAS  Google Scholar 

  88. Yang H, Ye G, Wang XG, Keller P (2011) Micron-sized liquid crystalline elastomer actuators. Soft Matter 7(3):815–823. doi:10.1039/c0sm00734j

    CAS  Google Scholar 

  89. Zentel R, Strobl GR (1984) Structures of liquid crystalline side group polymers oriented by drawing. Makromol Chem - Macromol Chem Phys 185(12):2669–2676. doi:10.1002/macp.1984.021851217

    CAS  Google Scholar 

  90. Kim ST, Finkelmann H (2001) Cholesteric liquid single-crystal elastomers (LSCE) obtained by the anisotropic deswelling method. Macromol Rapid Commun 22(6):429–433. doi:10.1002/1521-3927(20010301)22:6<429::AID-MARC429>3.0.CO;2-#

    CAS  Google Scholar 

  91. Nishikawa E, Yamamoto J, Yokoyama H, Finkelmann H (2004) Smectic a elastomers with uniform homeotropic orientation obtained by applying a biaxial mechanical field. Macromol Rapid Commun 25(5):611–617. doi:10.1002/marc.200300183

    CAS  Google Scholar 

  92. Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CWM, Lub J, Broer DJ (2005) Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem 15(47):5043–5048. doi:10.1039/b512655j

    CAS  Google Scholar 

  93. Elias AL, Harris KD, Bastiaansen CWM, Broer DJ, Brett MJ (2006) Photopatterned liquid crystalline polymers for microactuators. J Mater Chem 16(28):2903–2912. doi:10.1039/b605511g

    CAS  Google Scholar 

  94. Yamada M, Kondo M, Mamiya JI, Yu YL, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47(27):4986–4988. doi:10.1002/anie.200800760

    CAS  Google Scholar 

  95. Krause S, Dersch R, Wendorff JH, Finkelmann H (2007) Photocrosslinkable liquid crystal main-chain polymers: thin films and electrospinning. Macromol Rapid Commun 28(21):2062–2068. doi:10.1002/marc.200700460

    CAS  Google Scholar 

  96. Odell JA, Keller A, Mueller AJ (1989) Extensional flow behavior of macromolecules in solution. In: Polymers in aqueous media, vol 223. Advances in Chemistry. American Chemical Society, Washington, pp 193–244. doi:10.1021/ba-1989-0223.ch011

  97. Naciri J, Srinivasan A, Jeon H, Nikolov N, Keller P, Ratna BR (2003) Nematic elastomer fiber actuator. Macromolecules 36(22):8499–8505. doi:10.1021/ma034921g

    CAS  Google Scholar 

  98. Ohm C, Serra C, Zentel R (2009) A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater 21(47):4859–4862. doi:10.1002/adma.200901522

    CAS  Google Scholar 

  99. Cairns DR, Shafran MS, Sierros KA, Huebsch WW, Kessrnan AJ (2010) Stimulus-responsive fluidic dispersions of rod shaped liquid crystal polymer colloids. Mater Lett 64(10):1133–1136. doi:10.1016/j.matlet.2010.02.021

    CAS  Google Scholar 

  100. Ohm C, Haberkorn N, Theato P, Zentel R (2011) Template-based fabrication of nanometer-scaled actuators from liquid-crystalline elastomers. Small 7(2):194–198. doi:10.1002/smll.201001315

    CAS  Google Scholar 

  101. Yang ZQ, Huck WTS, Clarke SM, Tajbakhsh AR, Terentjev EM (2005) Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nat Mater 4(6):486–490. doi:10.1038/nmat1389

    CAS  Google Scholar 

  102. Ikeda T, Mamiya J, Yu YL (2007) Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed 46(4):506–528. doi:10.1002/anie.200602372

    CAS  Google Scholar 

  103. Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya J, Kinoshita M, Shishido A, Yu YL, Barrett CJ, Ikeda T (2009) Photomobile polymer materials-various three-dimensional movements. J Mater Chem 19(1):60–62. doi:10.1039/b815289f

    CAS  Google Scholar 

  104. White TJ, Serak SV, Tabiryan NV, Vaia RA, Bunning TJ (2009) Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J Mater Chem 19(8):1080–1085. doi:10.1039/b818457g

    CAS  Google Scholar 

  105. Anderle K, Birenheide R, Werner MJA, Wendorff JH (1991) Molecular adressing - studies on light-induced reorientation in liquid-crystalline side-chain polymers. Liq Cryst 9(5):691–699. doi:10.1080/02678299108030382

    CAS  Google Scholar 

  106. Natansohn A, Rochon P, Gosselin J, Xie S (1992) Azo polymers for reversible optical storage. 1. poly[4'-[[2-(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene]. Macromolecules 25(8):2268–2273. doi:10.1021/ma00034a031

    CAS  Google Scholar 

  107. Sanchez-Ferrer A, Fischl T, Stubenrauch M, Wurmus H, Hoffmann M, Finkelmann H (2009) Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems. Macromol Chem Phys 210(20):1671–1677. doi:10.1002/macp.200900308

    CAS  Google Scholar 

  108. Sungur E, Li MH, Taupier G, Boeglin A, Romeo M, Mery S, Keller P, Dorkenoo KD (2007) External stimulus driven variable-step grating in a nematic elastomer. Opt Express 15(11):6784–6789

    CAS  Google Scholar 

  109. Sungur E, Mager L, Boeglin A, Li MH, Keller P, Dorkenoo KD (2010) Temperature tunable optical gratings in nematic elastomer. Appl Phys A Mater Sci Process 98(1):119–122. doi:10.1007/s00339-009-5448-z

    CAS  Google Scholar 

  110. Harris KD, Bastiaansen CWM, Lub J, Broer DJ (2005) Self-assembled polymer films for controlled agent-driven motion. Nano Lett 5(9):1857–1860. doi:10.1021/nl0514590

    CAS  Google Scholar 

  111. Clark NA, Lagerwall ST (1980) Submicrosecond bistable electro-optic switching in liquid-crystals. Appl Phys Lett 36(11):899–901. doi:10.1063/1.91359

    CAS  Google Scholar 

  112. Harden J, Mbanga B, Eber N, Fodor-Csorba K, Sprunt S, Gleeson JT, Jakli A (2006) Giant flexoelectricity of bent-core nematic liquid crystals. Phys Rev Lett 97. doi:10.1103/PhysRevLett.97.157802

  113. Lagerwall ST (2007) The necessary conditions for macroscopic polarization. In: Ferroelectric and antiferroelectric liquid crystals. Wiley-VCH Verlag GmbH, Weinheim, pp 57–91. doi:10.1002/9783527613588.ch3

    Google Scholar 

  114. Ho RM, Chiang YW, Lin SC, Chen CK (2011) Helical architectures from self-assembly of chiral polymers and block copolymers. Prog Polym Sci 36(3):376–453. doi:10.1016/j.progpolymsci.2010.09.001

    CAS  Google Scholar 

  115. Brochu P, Pei QB (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31(1):10–36. doi:10.1002/marc.200900425

    CAS  Google Scholar 

  116. Lagerwall JPF, Giesselmann F (2006) Current topics in smectic liquid crystal research. ChemPhysChem 7(1):20–45. doi:10.1002/cphc.200500472

    CAS  Google Scholar 

  117. Zentel R, Gebhard E, Brehmer M (2000) Ferroelectric LC-elastomers. Adv Chem Phys 113:159–182. doi:10.1002/9780470141724.ch4

    CAS  Google Scholar 

  118. Kremer F, Skupin H, Lehmann W, Hartmann L, Stein P, Finkelmann H (2000) Structure, mobility, and piezoelectricity in ferroelectric liquid crystalline elastomers. Adv Chem Phys 113:183–201. doi:10.1002/9780470141724.ch5

    CAS  Google Scholar 

  119. Brehmer M, Zentel R (2011) Ferroelectric liquid crystalline elastomers. In: Encyclopedia of polymer science and technology. Wiley. doi:10.1002/0471440264.pst429.pub2

    Google Scholar 

  120. Walba DM, Xiao L, Keller P, Shao RF, Link D, Clark NA (1999) Ferroelectric liquid crystals for second order nonlinear optics. Pure Appl Chem 71(11):2117–2123. doi:10.1351/pac199971112117

    CAS  Google Scholar 

  121. Walba DM, Dyer DJ, Sierra T, Cobben PL, Shao RF, Clark NA (1996) Ferroelectric liquid crystals for nonlinear optics: orientation of the disperse red 1 chromophore along the ferroelectric liquid crystal polar axis. J Am Chem Soc 118(5):1211–1212. doi:10.1021/ja952387p

    CAS  Google Scholar 

  122. Liu JY, Robinson MG, Johnson KM, Walba DM, Ros MB, Clark NA, Shao RF, Doroski D (1991) The measurement of 2nd-harmonic generation in novel ferroelectric liquid-crystal materials. J Appl Phys 70(7):3426–3430. doi:10.1063/1.350330

    CAS  Google Scholar 

  123. Kapitza H, Zentel R, Twieg RJ, Nguyen C, Vallerien SU, Kremer F, Willson CG (1990) Ferroelectric liquid-crystalline polysiloxanes with high spontaneous polarization and possible applications in nonlinear optics. Adv Mater 2(11):539–543. doi:10.1002/adma.19900021106

    CAS  Google Scholar 

  124. Wischerhoff E, Zentel R, Redmond M, Mondainmonval O, Coles H (1994) Ferroelectric liquid-crystalline polysiloxanes designed for high 2nd-order nonlinear susceptibilities. Macromol Chem Phys 195(5):1593–1602. doi:10.1002/macp.1994.021950511

    CAS  Google Scholar 

  125. Kocot A, Wrzalik R, Vij JK, Brehmer M, Zentel R (1994) Dielectric and electrooptical studies of a ferroelectric copolysiloxane. Phys Rev B 50(22):16346–16356. doi:10.1103/PhysRevB.50.16346

    CAS  Google Scholar 

  126. Lehmann W, Leister N, Hartmann L, Geschke D, Kremer F, Stein P, Finkelmann H (1999) Piezoelectric and pyroelectric investigations on microtomized sections of single-crystalline ferroelectric liquid crystalline elastomers (SC-FLCE). Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 328:437–445. doi:10.1080/10587259908026087

    CAS  Google Scholar 

  127. Leister N, Lehmann W, Weber U, Geschke D, Kremer F, Stein P, Finkelmann H (2000) Measurement of the pyroelectric response and of the thermal diffusivity of microtomized sections of 'single crystalline' ferroelectric liquid crystalline elastomers. Liq Cryst 27(2):289–297. doi:10.1080/026782900203119

    CAS  Google Scholar 

  128. Mauzac M, Nuyen HT, Tournilhac FG, Yablonsky SV (1995) Piezoelectric and pyroelectric properties of new polysiloxane smectic C* elastomers. Chem Phys Lett 240(5–6):461–466. doi:10.1016/0009-2614(95)00574-n

    CAS  Google Scholar 

  129. Ono H, Harato Y (1999) Characteristics of photothermal effects in guest-host liquid crystals by heat-conduction analysis. J Opt Soc Am B Opt Phys 16(12):2195–2201. doi:10.1364/josab.16.002195

    CAS  Google Scholar 

  130. Shibaev VP, Kozlovsky MV, Beresnev LA, Blinov LM, Plate NA (1984) Thermotropic liquid crystalline polymers. 16. Chiral smectics C with spontaneous polarization. Polym Bull 12(4):299–301. doi:10.1007/bf00263142

    CAS  Google Scholar 

  131. Kostromin SG, Sinitzyn VV, Talroze RV, Shibaev VP, Plate NA (1982) Thermotropic liquid crystalline polymers. 12. Smectic C phase in liquid crystalline polyacrylates with CN-containing mesogenic groups. Makromol Chem Rapid Commun 3(11):809–814

    CAS  Google Scholar 

  132. Vallerien SU, Zentel R, Kremer F, Kapitza H, Fischer EW (1989) Ferroelectric modes in combined side-group main chain liquid-crystalline polymers. Makromol Chem Rapid Commun 10(7):333–338

    CAS  Google Scholar 

  133. Naciri J, Pfeiffer S, Shashidhar R (1991) Fast switching of ferroelectric side-chain liquid-crystalline polymer and copolymer. Liq Cryst 10(4):585–591. doi:10.1080/02678299108036446

    CAS  Google Scholar 

  134. Scherowsky G, Fichna U, Wolff D (1995) Ferroelectric liquid-crystalline polymers side-group derived from mesogenic vinyl ether monomers. Liq Cryst 19(5):621–627. doi:10.1080/02678299508031076

    CAS  Google Scholar 

  135. Cooray NF, Kakimoto M, Imai Y, Suzuki Y (1994) Novel fluorine-containing ferroelectric side-chain liquid-crystalline polysiloxanes showing bistable fast switching. Macromolecules 27(6):1592–1596. doi:10.1021/ma00084a048

    CAS  Google Scholar 

  136. Poths H, Schonfeld A, Zentel R, Kremer F, Siemensmeyer K (1992) Structure property relationships determining the spontaneous polarization in FLC-polymers. Adv Mater 4(5):351–354. doi:10.1002/adma.19920040507

    CAS  Google Scholar 

  137. Heinze P, Finkelmann H (2010) Shear deformation and ferroelectricity in chiral SmC* main-chain elastomers. Macromolecules 43(16):6655–6665. doi:10.1021/ma1002084

    CAS  Google Scholar 

  138. Hiraoka K, Sagano W, Nose T, Finkelmann H (2005) Biaxial shape memory effect exhibited by monodomain chiral smectic C elastomers. Macromolecules 38(17):7352–7357. doi:10.1021/ma050642c

    CAS  Google Scholar 

  139. Verduzco R, Luchette P, Hong SH, Harden J, DiMasi E, Palffy-Muhoray P, Kilbey SM, Sprunt S, Gleeson JT, Jakli A (2010) Bent-core liquid crystal elastomers. J Mater Chem 20(39):8488–8495. doi:10.1039/c0jm01920h

    CAS  Google Scholar 

  140. Spillmann CM, Ratna BR, Naciri J (2007) Anisotropic actuation in electroclinic liquid crystal elastomers. Appl Phys Lett 90(2):3. doi:10.1063/1.2420780

    Google Scholar 

  141. Artal C, Ros MB, Serrano JL, Pereda N, Etxebarria J, Folcia CL, Ortega J (2001) SHG characterization of different polar materials obtained by in situ photopolymerization. Macromolecules 34(12):4244–4255. doi:10.1021/ma001928e

    CAS  Google Scholar 

  142. Shashidhar R, Naciri J, Ratna BR (2000) Large electroclinic effect and associated properties of chiral smectic a liquid crystals. In: Prigogine I, Rice SA and Vij JK (eds) Advances in chemical physics, vol 113, John Wiley & Sons, Inc., Hoboken, NJ, USA. pp 51–76. doi:10.1002/9780470141724.ch2

    Google Scholar 

  143. Kapernaum N, Walba DM, Korblova E, Zhu CH, Jones C, Shen YQ, Clark NA, Giesselmann F (2009) On the origin of the "giant" electroclinic effect in a "de Vries"-type ferroelectric liquid crystal material for chirality sensing applications. ChemPhysChem 10(6):890–892. doi:10.1002/cphc.200900065

    CAS  Google Scholar 

  144. Etxebarria J, Ros MB (2008) Bent-core liquid crystals in the route to functional materials. J Mater Chem 18(25):2919–2926. doi:10.1039/b803507e

    CAS  Google Scholar 

  145. Ros MB, Serrano JL, de la Fuente MR, Folcia CL (2005) Banana-shaped liquid crystals: a new field to explore. J Mater Chem 15(48):5093–5098. doi:10.1039/B504384k

    CAS  Google Scholar 

  146. Keith C, Reddy RA, Prehm M, Baumeister U, Kresse H, Chao JL, Hahn H, Lang H, Tschierske C (2007) Layer frustration, polar order and chirality in liquid crystalline phases of silyl-terminated achiral bent-core molecules. Chemistry 13(9):2556–2577. doi:10.1002/chem.200600876

    CAS  Google Scholar 

  147. Reddy RA, Baumeister U, Keith C, Tschierske C (2007) Influence of the core structure on the development of polar order and superstructural chirality in liquid crystalline phases formed by silylated bent-core molecules: naphthalene derivatives. J Mater Chem 17(1):62–75. doi:10.1039/b614089k

    CAS  Google Scholar 

  148. Weissflog W, Pelzl G, Kresse H, Baumeister U, Brand K, Schröder MW, Tamba MG, Findeisen-Tandel S, Kornek U, Stern S, Eremin A, Stannarius R, Svoboda J (2010) In search of a new design strategy for solid single-component organic ferroelectrics: polar crystalline phases formed by bent-core molecules. J Mater Chem 20(29):6057–6079. doi:10.1039/c0jm00322k

    CAS  Google Scholar 

  149. Keith C, Lehmann A, Baumeister U, Prehm M, Tschierske C (2010) Nematic phases of bent-core mesogens. Soft Matter 6(8):1704–1721. doi:10.1039/b923262a

    CAS  Google Scholar 

  150. Tschierske C, Photinos DJ (2010) Biaxial nematic phases. J Mater Chem 20(21):4263–4294. doi:10.1039/b924810b

    CAS  Google Scholar 

  151. Hult A, Sahlen F, Trollsas M, Lagerwall ST, Hermann D, Komitov L, Rudquist P, Stebler B (1996) A pyroelectric liquid crystal polymer (PLCP) for second-harmonic generation. Liq Cryst 20(1):23–28. doi:10.1080/02678299608032022

    CAS  Google Scholar 

  152. Trollsas M, Orrenius C, Sahlen F, Gedde UW, Norin T, Hult A, Hermann D, Rudquist P, Komitov L, Lagerwall ST, Lindstrom J (1996) Preparation of a novel cross-linked polymer for second-order nonlinear optics. J Am Chem Soc 118(36):8542–8548. doi:10.1021/ja961309e

    Google Scholar 

  153. Trollsas M, Sahlen F, Gedde UW, Hult A, Hermann D, Rudquist P, Komitov L, Lagerwall ST, Stebler B, Lindstrom J, Rydlund O (1996) Novel thermally stable polymer materials for second-order nonlinear optics. Macromolecules 29(7):2590–2598. doi:10.1021/ma9511154

    Google Scholar 

  154. Davis FJ (1993) Liquid-crystalline elastomers. J Mater Chem 3(6):551–562. doi:10.1039/JM9930300551

    CAS  Google Scholar 

  155. Gleim W, Finkelmann H (1989) Side chain liquid crystalline elastomers. In: McArdle CB (ed) Side chain liquid crystalline polymers. Blackie and Son, Glasgow

    Google Scholar 

  156. Finkelmann H (1991) Liquid-crystalline sidechain polymers. In: Ciferri A (ed) Liquid crystallinity in polymers. VCH, Weinheim

    Google Scholar 

  157. Hikmet RAM, Boots HMJ, Michielsen M (1995) Ferroelectric liquid-crystal gels - network stabilized ferroelectric displays. Liq Cryst 19(1):65–76. doi:10.1080/02678299508036721

    CAS  Google Scholar 

  158. Hikmet RAM, Lub J (1996) Anisotropic networks and gels obtained by photopolymerisation in the liquid crystalline state: synthesis and applications. Prog Polym Sci 21(6):1165–1209. doi:10.1016/S0079-6700(96)00017-2

    CAS  Google Scholar 

  159. Tolksdorf C, Zentel R (2001) Reversible physical network stabilized ferroelectric liquid crystals. Adv Mater 13(17):1307–1310. doi:10.1002/1521-4095(200109)13:17<1307::AID-ADMA1307>3.0.CO;2-7

    CAS  Google Scholar 

  160. Prigann J, Tolksdorf C, Skupin H, Zentel R, Kremer F (2002) FT-IR spectroscopic studies on reorientation of ferroelectric liquid crystals in a thermoreversible gel network. Macromolecules 35(10):4150–4154. doi:10.1021/ma002065s

    CAS  Google Scholar 

  161. Deindörfer P, Eremin A, Stannarius R, Davis R, Zentel R (2006) Gelation of smectic liquid crystal phases with photosensitive gel forming agents. Soft Matter 2(8):693–698. doi:10.1039/b603562k

    Google Scholar 

  162. Meziane R, Brehmer M, Maschke U, Zentel R (2008) Gelling and the collective dynamics in ferroelectric liquid crystals. Soft Matter 4(6):1237–1241. doi:10.1039/b800737c

    CAS  Google Scholar 

  163. Skarp K, Uto S, Myojin K, Moritake H, Ozaki M, Helgee B, Yoshino K (1995) Electrooptical and nonlinear-optical effects in free-surface films of polymeric ferroelectric liquid-crystals prepared by spin-coating method. Jpn J Appl Phys Part 1-Regular Papers Short Notes & Review Papers 34(9B):5433–5437. doi:10.1143/JJAP.34.5433

    Google Scholar 

  164. Gillberg G, Leube H, McKenzie L, Pruksarnukul L, Reeder L (1994) Self-assembled structures of azobenzene amphiphiles - a new photorecording medium. J Appl Polym Sci 53(5):687–699. doi:10.1002/app.1994.070530519

    CAS  Google Scholar 

  165. Gebhard E, Zentel R (1998) Freestanding ferroelectric elastomer films. Macromol Rapid Commun 19(7):341–344. doi:10.1002/(SICI)1521-3927(19980701)19:7<341::AID-MARC341>3.0.CO;2-S

    CAS  Google Scholar 

  166. Benné I, Semmler K, Finkelmann H (1995) Mechanically induced 2nd-harmonic generation in SC* elastomers. Macromolecules 28(6):1854–1858

    Google Scholar 

  167. Benné I, Semmler K, Finkelmann H (1994) 2nd-harmonic generation on mechanically oriented S(C)*-elastomers. Macromol Rapid Commun 15(4):295–302

    Google Scholar 

  168. Papadopoulos P, Heinze P, Finkelmann H, Kremer F (2010) Electromechanical properties of smectic c* liquid crystal elastomers under shear. Macromolecules 43(16):6666–6670. doi:10.1021/ma1005028

    CAS  Google Scholar 

  169. Harden J, Chambers M, Verduzco R, Luchette P, Gleeson JT, Sprunt S, Jakli A (2010) Giant flexoelectricity in bent-core nematic liquid crystal elastomers. Appl Phys Lett 96(10):102907. doi:10.1063/1.3358391

    Google Scholar 

  170. Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, Lösche M, Kremer F (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410(6827):447–450. doi:10.1038/35068522

    CAS  Google Scholar 

  171. Köhler R, Stannarius R, Tolksdorf C, Zentel R (2005) Electroclinic effect in free-standing smectic elastomer films. Appl Phys A-Mater Sci Process 80(2):381–388. doi:10.1007/s00339-003-2267-5

    Google Scholar 

  172. Hiraoka K, Kobayasi M, Kazama R, Finkelmann H (2009) Electromechanics of monodomain chiral smectic c elastomer: mechanical response to electric stimulation. Macromolecules 42(15):5600–5604. doi:10.1021/ma900761w

    CAS  Google Scholar 

  173. Stannarius R, Köhler R, Dietrich U, Lösche M, Tolksdorf C, Zentel R (2002) Structure and elastic properties of smectic liquid crystalline elastomer films. Phys Rev E 65(4):11. doi:04170710.1103/PhysRevE.65.041707

    Google Scholar 

  174. Walba DM, Yang H, Shoemaker RK, Keller P, Shao RF, Coleman DA, Jones CD, Nakata M, Clark NA (2006) Main-chain chiral smectic polymers showing a large electroclinic effect in the SmA* phase. Chem Mater 18(19):4576–4584. doi:10.1021/cm0606373

    CAS  Google Scholar 

  175. Walba DM, Keller P, Shao RF, Clark NA, Hillmyer M, Grubbs RH (1996) Main-chain ferroelectric liquid crystal oligomers by acyclic diene metathesis polymerization. J Am Chem Soc 118(11):2740–2741. doi:10.1021/ja953779z

    CAS  Google Scholar 

  176. Keller P, Shao RF, Walba DM, Brunet M (1995) The first high polarization ferroelectric main-chain liquid-crystalline polymers. Liq Cryst 18(6):915–918. doi:10.1080/02678299508036710

    CAS  Google Scholar 

  177. Brehmer M, Zentel R (1995) Ferroelectric liquid-crystalline elastomers with short switching times. Macromol Rapid Commun 16(9):659–662. doi:10.1002/marc.1995.030160904

    CAS  Google Scholar 

  178. Jakli A, Saupe A (1995) Mechanical vibrations of smectic cells under fast field reversal. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 263:103–111. doi:10.1080/10587259508033574

    Google Scholar 

  179. Jakli A, Saupe A (1996) Field-induced thickness change of ferroelectric liquid crystal films. Phys Rev E 53(6):R5580–R5583

    CAS  Google Scholar 

  180. Hiraoka K, Toyoda S, Hourai Y, Tokita M, Watanabe J (2010) Influence of DC electric field on soft mode of main-chain ferroelectric liquid-crystalline polyesters: polymeric effect on collective fluctuation. Appl Phys Express 3(1). doi:10.1143/APEX.3.011701

  181. Jakli A, Pintre IC, Serrano JL, Ros MB, de la Fuente MR (2009) Piezoelectric and electric-field-induced properties of a ferroelectric bent-core liquid crystal. Adv Mater 21(37):3784–3788. doi:10.1002/adma.200900131

    CAS  Google Scholar 

  182. Chambers M, Verduzco R, Gleeson JT, Sprunt S, Jakli A (2009) Calamitic liquid-crystalline elastomers swollen in bent-core liquid-crystal solvents. Adv Mater 21(16):1622–1626. doi:10.1002/adma.200802739

    Google Scholar 

  183. Chambers M, Verduzco R, Gleeson JT, Sprunt S, Jakli A (2009) Flexoelectricity of a calamitic liquid crystal elastomer swollen with a bent-core liquid crystal. J Mater Chem 19(42):7909–7913. doi:10.1039/b911652d

    CAS  Google Scholar 

  184. Kramer D, Brömmel F, Finkelmann H (2012) LC Elastomers – Synthesis and Mechanical Behavior. Adv Polym Sci. Springer, Heidelberg, Berlin (in print)

    Google Scholar 

  185. Urayama K (2011) Electro-Opto-Mechanical Effects in Swollen Nematic LC Elastomers. Adv Polym Sci. doi:10.1007/12_2010_107

    Google Scholar 

  186. De Jeu WH, Ostrovskii BI (2011) Order and Disorder in Liquid-Crystalline Elastomers. Adv Polym Sci. doi:10.1007/12_2010_105

    Google Scholar 

  187. Pallfy-Muhoray P (2012) Liquid Crystal Elastomers and Light. Adv Polym Sci. doi:10.1007/12_2011_165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zentel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohm, C., Brehmer, M., Zentel, R. (2012). Applications of Liquid Crystalline Elastomers. In: de Jeu, W. (eds) Liquid Crystal Elastomers: Materials and Applications. Advances in Polymer Science, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_164

Download citation

Publish with us

Policies and ethics