Functionalized Biocompatible Nanoparticles for Site-Specific Imaging and Therapeutics

  • Ranu K. DuttaEmail author
  • Prashant K. Sharma
  • Hisatoshi Kobayashi
  • Avinash C. PandeyEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 247)


The applicability of nanoparticles is determined by their unique size-dependent properties, such as their optical and magnetic properties, which make them very attractive candidates for numerous biomedical applications such as drug delivery nanosystems, diagnostic biosensors, and imaging nanoprobes for magnetic resonance imaging contrast agents. Surface chemistry defines the functional properties and biological reactivity of these nanocrystals. Targeted delivery of therapeutics has the potential to localize therapeutic agents to a specific tissue as a mechanism to enhance treatment efficacy and mitigate side effects. Moieties that combine imaging and therapeutic modalities in a single macromolecular construct may confer advantages in the development and applications of nanomedicine. Here, an insight into the development of various kinds of functionalized biocompatible nanoparticles for site-specific imaging and therapeutics is discussed in detail.

Graphical Abstract

Folate-conjugated luminomagnetic nanocarrier-mediated targeted drug delivery, showing receptor-mediated endocytosis of folic acid and drug-conjugated luminomagnetic nanocarriers in cancer cells


Biocompatible Cancer diagnostics Functionalization Imaging Nanoparticles Surface modification Targeted drug delivery 



Authors are thankful to the Department of Science and Technology (DST) and Council of Scientific and Industrial Research (CSIR), India, for supporting the “Nanotechnology Application Centre” under “Nano-Mission” and “NMITLI” schemes.


  1. 1.
    McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV (2009) Biomaterials 30:2329–2339CrossRefGoogle Scholar
  2. 2.
    Felton EJ, Reich DH (2007) Biological applications of multifunctional magnetic nanowires. In: Labhasetwa V, Leslie-Pelecky DL (eds) Biomedical applications of nanotechnology. Wiley, Hoboken, pp 1–22 doi: 10.1002/9780470152928 ch1Google Scholar
  3. 3.
    Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Biotechnol Adv 28(1):142–150, Jan-FebCrossRefGoogle Scholar
  4. 4.
    Pandey AC, Sharma PK, Dutta RK (2007) Recent advances in biomedical applications of multifunctional composites. In: Tiwari A (ed) Recent developments in bio-nanocomposites for biomedical applications.Nova Science, Hauppauge, pp 409–432Google Scholar
  5. 5.
    Sinha R, Kim GJ, Nie S, Shin DM (2006) Mol Cancer Ther 5:1909CrossRefGoogle Scholar
  6. 6.
    Chen PC, Mwakwari SC, Oyelere AK (2008) Nanotechnol Sci Appl 1:45–66Google Scholar
  7. 7.
    Liu M, Fréchet JM (1999) Pharm Sci Technol Today 2(10):393, 1CrossRefGoogle Scholar
  8. 8.
    James R, Baker J (2009) Dendrimer-based nanoparticles for cancer therapy. Hematology 2009(1):708CrossRefGoogle Scholar
  9. 9.
    Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR (2008) Int J Nanomedicine 3(2):201–210CrossRefGoogle Scholar
  10. 10.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS (2006) Nano Lett 6:2427–2430CrossRefGoogle Scholar
  11. 11.
    Kukowska-Latallo JF, Candido KA, Cao Z (2005) Cancer Res 65:5317–5324CrossRefGoogle Scholar
  12. 12.
    Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Proc Natl Acad Sci USA 102:11600CrossRefGoogle Scholar
  13. 13.
    Correa-Duarte MA, Giersig M, Liz-Marzán LM (1998) Chem Phys Lett 286(5–6):497CrossRefGoogle Scholar
  14. 14.
    Green M, Howman E (2005) Chem Commun (1):121–123Google Scholar
  15. 15.
    Miyawaki A, Sawano A, Kogure T (2003) Nat Cell Biol 5 (suppl):S1–S7Google Scholar
  16. 16.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Nat Med 10(9):993CrossRefGoogle Scholar
  17. 17.
    Bruchez M Jr, Moronne M, Gin P et al (1998) Science 281:2013CrossRefGoogle Scholar
  18. 18.
    Hemmila I (1991) Applications of fluorescence in immunoassays, 1st edn. Wiley Interscience, New YorkGoogle Scholar
  19. 19.
    LaConte L, Nitin N, Bao G (2005) Mater Today 8:32CrossRefGoogle Scholar
  20. 20.
    Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86CrossRefGoogle Scholar
  21. 21.
    Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Br J Pharmacol 146(6):882CrossRefGoogle Scholar
  22. 22.
    Koole R, van Schooneveld MM, Hilhorst J, Castermans K, Cormode DP, Strijkers GJ, De Mello Doneg C, Vanmaekelbergh D, Griffioen AW, Nicolay K, Fayad ZA, Meijerink A, Mulder WJ (2008) Bioconjug Chem 19(12):2471CrossRefGoogle Scholar
  23. 23.
    Sharma PK, Ranu K, Dutta MK, Singh PK, Pandey AC, Singh VN (2011) IEEE Trans Nanotech 10(1):163CrossRefGoogle Scholar
  24. 24.
    Dutta RK, Sharma PK, Pandey AC (2010) Appl Phys Lett 97:253702CrossRefGoogle Scholar
  25. 25.
    Katari JE, Colvin VL, Alivisatos AP (1994) J Phys Chem 98:4109CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Kohler N, Zhang M (2002) Biomaterials 23:1553CrossRefGoogle Scholar
  27. 27.
    Fortin M-A, Petoral RMP Jr, Soderlind F, Klasson A, Engstrom M, Veres T, Kall P-O, Uvdal K (2007) Nanotechnology 18:395501CrossRefGoogle Scholar
  28. 28.
    Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, VanderElst L, Muller R, Roux S, Perriat P, Tillement OJ (2007) J Am Chem Soc 129:5076CrossRefGoogle Scholar
  29. 29.
    Kohler N, Fryxell GE, Zhang MJ (2004) J Am Chem Soc 126:7206CrossRefGoogle Scholar
  30. 30.
    Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Eur J Inorg Chem:2477Google Scholar
  31. 31.
    Lemarchand C, Gref R, Couvreur P (2004) Eur J Pharm Biopharm 58:327CrossRefGoogle Scholar
  32. 32.
    Lacava LM, Lacava ZGM, Da Silva MF, Silva O, Chaves SB, Azevedo RB, Pelegrini F, Gansau C, Buske N, Sabolovic D, Morais PC (2001) Biophys J 80:2483CrossRefGoogle Scholar
  33. 33.
    McDonald MA, Watkin KL (2006) Acad Radiol 13:421CrossRefGoogle Scholar
  34. 34.
    Xie J, Huang J, Li X, Sun S, Chen X (2009) Curr Med Chem 16:1278CrossRefGoogle Scholar
  35. 35.
    Li ZB, Cai W, Chen XJ (2007) J Nanosci Nanotechnol 7:2567CrossRefGoogle Scholar
  36. 36.
    Gupta AK, Gupta M (2005) Biomaterials 26:3995CrossRefGoogle Scholar
  37. 37.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435CrossRefGoogle Scholar
  38. 38.
    Bahr JL, Tour JMJ (2002) J Mater Chem 12:1952CrossRefGoogle Scholar
  39. 39.
    Rosi NL, Mirkin CA (2005) Chem Rev 105:1547CrossRefGoogle Scholar
  40. 40.
    Sharma PK, Dutta RK, Kumar M, Singh PK, Pandey AC (2009) J Lumin 129:605CrossRefGoogle Scholar
  41. 41.
    Chin SF, Iyer KS, Raston CL (2009) Cryst Growth Des 9:2685CrossRefGoogle Scholar
  42. 42.
    Yong K-T, Rui Hu, Roy I, Ding H, Vathy LA, Bergey EJ, Mizuma M, Maitra A, Prasad PN (2009) ACS Appl Mater Interfaces 1(3):710CrossRefGoogle Scholar
  43. 43.
    Chen SH, Fan ZY, Carroll DL (2002) J Phys Chem B 106:10777CrossRefGoogle Scholar
  44. 44.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759CrossRefGoogle Scholar
  45. 45.
    Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J et al (2003) J Am Chem Soc 125(16):4700CrossRefGoogle Scholar
  46. 46.
    Nitin N, Laconte LEW, Zurkiya O, Hu X, Bao G (2004) J Biol Inorg Chem 9:706–712CrossRefGoogle Scholar
  47. 47.
    Anas A, Okuda T, Kawashima N, Nakayama K, Itoh T, Ishikawa M, Biju V (2009) ACS Nano 3(8):2419CrossRefGoogle Scholar
  48. 48.
    Fahmy TM, Fong PM, Park J, Constable T, Saltzman WM (2007) AAPS J 9(2):E171–E180CrossRefGoogle Scholar
  49. 49.
    Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130(11):3610–3618CrossRefGoogle Scholar
  50. 50.
    Medley CD, Bamrungsap S, Tan W, Smith JE (2011) Anal Chem 83(3):727CrossRefGoogle Scholar
  51. 51.
    Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Anal Chem 78:2918CrossRefGoogle Scholar
  52. 52.
    Nicolas J, Couvreur P (2009) WIREs Nanomed Nanobiotech 1:111. doi:10.1002/wnan.15, Jan/Feb 2009CrossRefGoogle Scholar
  53. 53.
    Foldvari M, Bagonluri M (2008) Nanomedicine 4(3):183Google Scholar
  54. 54.
    Bianco A, Kostarelos K, Prato M (2005) Curr Opin Chem Biol 9(6):674CrossRefGoogle Scholar
  55. 55.
    Hilder TA, Hill JM (2008) Current Appl Phys 8:258CrossRefGoogle Scholar
  56. 56.
    Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRefGoogle Scholar
  57. 57.
    Couvreur P, Vauthier C (2006) Pharm Res 23:1417CrossRefGoogle Scholar
  58. 58.
    Sudimack J, Lee RJ (2000) Adv Drug Deliv Rev 41:147CrossRefGoogle Scholar
  59. 59.
    Gabizon A, Horowitz T, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, Zalipsky S (1999) Bioconjug Chem 10:289CrossRefGoogle Scholar
  60. 60.
    Sun YP, Fu K, Lin Y, Huang W (2002) Acc Chem Res 35:1096CrossRefGoogle Scholar
  61. 61.
    Taft BJ, Lazareck AD, Withey GD, Yin A, Xu JM, Kelley SO (2004) Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J Am Chem Soc 126:12750CrossRefGoogle Scholar
  62. 62.
    Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55CrossRefGoogle Scholar
  63. 63.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun:801–802Google Scholar
  64. 64.
    Brust M, Fink J, Bethell D, Schiffrin DJ, Keily CJ (1995) J Chem Soc Chem Commun:1655–1656Google Scholar
  65. 65.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706CrossRefGoogle Scholar
  66. 66.
    Wangoo N, Bhasin KK, Boro R, Suri CR (2008) Analytica Chim Acta 610:142–148CrossRefGoogle Scholar
  67. 67.
    Yang J, Lee JY, Too HP (2007) Anal Chim Acta 588(1):34, 1CrossRefGoogle Scholar
  68. 68.
    Zkar SO, Finke RG (2003) Langmuir 19:6247CrossRefGoogle Scholar
  69. 69.
    Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Int J Nanomed 1(1):51Google Scholar
  70. 70.
    Berry CR (1967) Phys Rev 161:848CrossRefGoogle Scholar
  71. 71.
    Healy MD, Laibinis PE, Stupik PD, Barron AR (1989) J Chem Soc Chem Commun:359Google Scholar
  72. 72.
    Manna L, Scher EC, Alivisatos AP (2000) J Am Chem Soc 122:12700CrossRefGoogle Scholar
  73. 73.
    Peng ZA, Peng X (2002) J Am Chem Soc 12:3343CrossRefGoogle Scholar
  74. 74.
    Callis PR (1979) Chem Phys Lett 61:563CrossRefGoogle Scholar
  75. 75.
    Sharma PK, Dutta RK, Pandey AC, Liu CH, Pandey R (2010) Mater Lett 64(10):1183CrossRefGoogle Scholar
  76. 76.
    Dutta RK, Sharma PK, Pandey AC (2010) J Nanopart Res 12:4CrossRefGoogle Scholar
  77. 77.
    Salazar MD, Ratnam M (2007) Cancer Metastasis Rev 26:141. doi: 10.1007/s10555-007-9048-0 CrossRefGoogle Scholar
  78. 78.
    Zong X, Feng Y, Knoll W, Man H (2003) J Am Chem Soc 125:13559CrossRefGoogle Scholar
  79. 79.
    Yang HM et al (2010) Biomacromolecules 11:2866CrossRefGoogle Scholar
  80. 80.
    Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) J Phys D Appl Phys 4(2):224001CrossRefGoogle Scholar
  81. 81.
    Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD (1988) The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6(6):647–653CrossRefGoogle Scholar
  82. 82.
    McCarron PA, Marouf WM, Quinn DJ et al (2008) Bioconjug Chem 19:1561CrossRefGoogle Scholar
  83. 83.
    Pan B, Cui D, Sheng Y et al (2007) Cancer Res 67:8156–8163CrossRefGoogle Scholar
  84. 84.
    Kroft LJ, de Roos A (1999) J Magn Reson Imaging 10:395CrossRefGoogle Scholar
  85. 85.
    de Lussanet QG, Langereis S, Beets-Tan RG, van Genderen MH, Griffioen AW, van Engelshoven JM, Backes WH (2005) Radiology 235:65CrossRefGoogle Scholar
  86. 86.
    Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) J Am Chem Soc 126:16316CrossRefGoogle Scholar
  87. 87.
    Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Nat Med 4:623CrossRefGoogle Scholar
  88. 88.
    Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K (2006) NMR Biomed 19:142–164CrossRefGoogle Scholar
  89. 89.
    Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) Nat Biotechnol 18:321CrossRefGoogle Scholar
  90. 90.
    Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Nat Biotechnol 18:410–414CrossRefGoogle Scholar
  91. 91.
    Crich SG, Biancone L, Cantaluppi V, Duo D, Esposito G, Russo S, Camussi G, Aime S (2004) Magn Reson Med 51:938CrossRefGoogle Scholar
  92. 92.
    Yang L, Peng XH, Wang YA, Wang X, Cao Z, Ni C, Karna P, Zhang X, Wood WC, Gao X, Nie S, Mao H (2009) Clin Cancer Res 15(14):4722CrossRefGoogle Scholar
  93. 93.
    Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285CrossRefGoogle Scholar
  94. 94.
    Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S, Cheon J (2007) Nat Med 13:95–99CrossRefGoogle Scholar
  95. 95.
    Jun Y, Huh Y-M, Choi J-S, Lee J-H, Song H-T, Kim S-J, Yoon S, Kim K-S, Shin J-S, Suh J-S, Cheon J (2005) J Am Chem Soc 127:5732CrossRefGoogle Scholar
  96. 96.
    Huh Y-M, Jun YW, Song H-T, Kim SJ, Choi J-S, Lee J-H, Yoon S, Kim K-S, Shin J-S, Suh J-S, Cheon J (2005) J Am Chem Soc 127:12387CrossRefGoogle Scholar
  97. 97.
    Zhu M et al (2011) Biomaterials 32(7):1986CrossRefGoogle Scholar
  98. 98.
    Schellenberger EA, Sosnovik D, Weissleder R, Josephson L (2004) Bioconjug Chem 15:1062CrossRefGoogle Scholar
  99. 99.
    Jung HI, Kettunen MI, Davletov B, Brindle KM (2004) Bioconjug Chem 15:983–987CrossRefGoogle Scholar
  100. 100.
    Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Nat Med 7:1241–1244CrossRefGoogle Scholar
  101. 101.
    Soini E, Hemmila I (1979) Clin Chem 25:353Google Scholar
  102. 102.
    Hemmila I, Ståhlberg T, Mottram P (1995) Bioanalytical applications of labelling technologies, 2nd edn. Wallac Oy, Turku, FinlandGoogle Scholar
  103. 103.
    Bünzli JCG (2010) Chem Rev 110(5):2729–2755 doi: 10.1021/cr900362eGoogle Scholar
  104. 104.
    Evelyn Ning Man Cheung (2010) Chem Mater 22(16):4728–4739CrossRefGoogle Scholar
  105. 105.
    Ahren M et al (2010) Langmuir 26(8):5753CrossRefGoogle Scholar
  106. 106.
    Maeda H (2001) Adv Enzyme Regul 41:189CrossRefGoogle Scholar
  107. 107.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Clin Cancer Res 14:1310CrossRefGoogle Scholar
  108. 108.
    Carmeliet P, Jain RK (2000) Nature 407:249CrossRefGoogle Scholar
  109. 109.
    Duke News Service (2009) Duke develops nano-scale drug delivery for chemotherapy. The Herald Sun, 1 Nov 2009. Available at Last accessed 2 Sept 2011
  110. 110.
    MacKay JA, Chen M, McDaniel JR, Liu W, Simnick AJ, Chilkoti A (2009) Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 8:993–999CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Nanotechnology Application CentreUniversity of AllahabadAllahabadIndia
  2. 2.Biomaterials Research GroupNational Institute of Material ScienceTsukubaJapan

Personalised recommendations