Advertisement

PEGylation Technology in Nanomedicine

  • Yutaka Ikeda
  • Yukio NagasakiEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 247)

Abstract

PEGylation refers to the covalent attachment of polyethylene glycol to proteins to reduce immunogenicity and extend their time in blood circulation. PEGylation is recognized as a promising method for increasing the therapeutic efficacy of medicines in clinical settings. The main advantages of PEGylation are (1) an increase in the size of drug molecule, resulting in reduced filtration by kidneys, (2) an increase in solubility, and (3) protection from enzymatic digestion and recognition by antibodies. A variety of molecules, such as small molecules, peptides, proteins, enzymes, antibodies and their fragments, and nanoparticles have been modified with PEG. Several PEGylated drugs have been approved by the US Food and Drug Administration (FDA) and several more are being tested in clinical settings. This review summarizes the methodologies and effects of PEGylation on drug delivery and highlights recent developments in PEGylated drugs.

Keywords

Drug delivery Nanomedicine Nanoparticle PEGylated drug PEGylation 

References

  1. 1.
    Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581Google Scholar
  2. 2.
    Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586Google Scholar
  3. 3.
    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476CrossRefGoogle Scholar
  4. 4.
    Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, Zhao H, Peng P, Wu D, Zhang Z, Hua J, Hsieh MC, Zhou J, Petti G, Li X, Janjua A, Mendez M, Liu J, Longley C, Zhang Z, Mehlig M, Borowski V, Viswanathan M, Filpula D (2006) Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 17:618–630CrossRefGoogle Scholar
  5. 5.
    Balan S, Choi JW, Godwin A, Teo I, Laborde CM, Heidelberger S, Zloh M, Shaunak S, Brocchini S (2007) Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjug Chem 18:61–76CrossRefGoogle Scholar
  6. 6.
    Brocchini S, Godwin A, Balan S, Choi JW, Zloh M, Shaunak S (2008) Disulfide bridge based PEGylation of proteins. Adv Drug Deliv Rev 60:3–12CrossRefGoogle Scholar
  7. 7.
    Wong SS (1991) Chemistry of Protein Conjugation and Cross- linking. CRC Press, BostonGoogle Scholar
  8. 8.
    Hu J, Sebald W (2011) N-terminal specificity of PEGylation of human bone morphogenetic protein-2 at acidic pH. Int J Pharm 413:140–146CrossRefGoogle Scholar
  9. 9.
    Lee H, Jang IH, Ryu SH, Park TG (2003) N-terminal site-specific mono-PEGylation of epidermal growth factor. Pharm Res 20:818–825CrossRefGoogle Scholar
  10. 10.
    Renwick W, Pettengell R, Green M (2009) Use of filgrastim and pegfilgrastim to support delivery of chemotherapy: twenty years of clinical experience. BioDrugs 23:175–186CrossRefGoogle Scholar
  11. 11.
    Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54:487–504CrossRefGoogle Scholar
  12. 12.
    Lorand L, Parameswaran KN, Stenberg P, Tong YS, Velasco PT, Jönsson NA, Mikiver L, Moses P (1979) Specificity of guinea pig liver transglutaminase for amine substrates. Biochemistry 18:1756–1765CrossRefGoogle Scholar
  13. 13.
    Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396CrossRefGoogle Scholar
  14. 14.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28CrossRefGoogle Scholar
  15. 15.
    Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419CrossRefGoogle Scholar
  16. 16.
    Nagasaki Y, Iijima M, Kato M, Kataoka K (1995) Primary amino-terminal heterobifunctional poly(ethylene oxide). Facile synthesis of poly(ethylene oxide) with a primary amino group at one end and a hydroxyl group at the other end. Bioconjug Chem 6:702–704CrossRefGoogle Scholar
  17. 17.
    Nagasaki Y, Kutsuna T, Iijima M, Kato M, Kataoka K, Kitano S, Kadoma Y (1995) Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end. Bioconjug Chem 6:231–233CrossRefGoogle Scholar
  18. 18.
    Akiyama Y, Nagasaki Y, Kataoka K (2004) Synthesis of heterotelechelic poly(ethylene glycol) derivatives having alpha-benzaldehyde and omega-pyridyl disulfide groups by ring opening polymerization of ethylene oxide using 4-(diethoxymethyl)benzyl alkoxide as a novel initiator. Bioconjug Chem 15:424–427CrossRefGoogle Scholar
  19. 19.
    Akiyama Y, Otsuka H, Nagasaki Y, Kato M, Kataoka K (2000) Selective synthesis of heterobifunctional poly(ethylene glycol) derivatives containing both mercapto and acetal terminals. Bioconjug Chem 11:947–950CrossRefGoogle Scholar
  20. 20.
    Hiki S, Kataoka K (2007) A facile synthesis of azido-terminated heterobifunctional poly(ethylene glycol)s for “click” conjugation. Bioconjug Chem 18:2191–2196CrossRefGoogle Scholar
  21. 21.
    Hiki S, Kataoka K (2010) Versatile and selective synthesis of “click chemistry” compatible heterobifunctional poly(ethylene glycol)s possessing azide and alkyne functionalities. Bioconjug Chem 21:248–254CrossRefGoogle Scholar
  22. 22.
    Pasut G, Veronese FM (2007) Polymer-drug conjugation, recent achievements and general strategies. Progr Polym Sci 32:933–961CrossRefGoogle Scholar
  23. 23.
    Zhao H, Yang K, Martinez A, Basu A, Chintala R, Liu HC, Janjua A, Wang M, Filpula D (2006) Linear and branched bicin linkers for releasable PEGylation of macromolecules: controlled release in vivo and in vitro from mono- and multi-PEGylated proteins. Bioconjug Chem 17:341–351CrossRefGoogle Scholar
  24. 24.
    Veronese FM, Caliceti P, Schiavon O (1997) Branched and linear poly(ethylene glycol): Influence of the polymer structure on enzymological, pharmacokinetic and immunological properties of proteinconjugates. J Bioact Compatible Polym 12:196–207Google Scholar
  25. 25.
    Aghemo A, Rumi MG, Colombo M (2010) Pegylated interferons alpha2a and alpha2b in the treatment of chronic hepatitis C. Nat Rev Gastroenterol Hepatol 7:485–494CrossRefGoogle Scholar
  26. 26.
    Campa C, Harding SP (2011) Anti-VEGF compounds in the treatment of neovascular age related macular degeneration. Curr Drug Targets 12:173–181CrossRefGoogle Scholar
  27. 27.
    Patel AM, Moreland LW (2010) Certolizumab pegol: a new biologic targeting rheumatoid arthritis. Expert Rev Clin Immunol 6:855–866CrossRefGoogle Scholar
  28. 28.
    Fee CJ (2007) Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules. Biotechnol Bioeng 98:725–731CrossRefGoogle Scholar
  29. 29.
    Veronese FM, Schiavon O, Pasut G, Mendichi R, Andersson L, Tsirk A, Ford J, Wu G, Kneller S, Davies J, Duncan R (2005) PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug Chem 16:775–784CrossRefGoogle Scholar
  30. 30.
    Pinholt C, Bukrinsky JT, Hostrup S, Frokjaer S, Norde W, Jorgensen L (2011) Influence of PEGylation with linear and branched PEG chains on the adsorption of glucagon to hydrophobic surfaces. Eur J Pharm Biopharm 77:139–147CrossRefGoogle Scholar
  31. 31.
    Somack R, Saifer MG, Williams LD (1991) Preparation of long-acting superoxide dismutase using high molecular weight polyethylene glycol (41,000–72,000 daltons). Free Radic Res Commun 12–13:553–562CrossRefGoogle Scholar
  32. 32.
    Knauf MJ, Bell DP, Hirtzer P, Luo ZP, Young JD, Katre NV (1988) Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J Biol Chem 263:15064–15070Google Scholar
  33. 33.
    Brandenberger C, Mühlfeld C, Ali Z, Lenz AG, Schmid O, Parak WJ, Gehr P, Rothen-Rutishauser B (2010) Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6:1669–1678CrossRefGoogle Scholar
  34. 34.
    Robers MJ, Harris JM (1998) Attachment of degradable Poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy. J Pharm sci 11:1440–1445CrossRefGoogle Scholar
  35. 35.
    Peleg-Shulman T, Tsubery H, Mironchik M, Fridkin M, Schreiber G, Shechter Y (2004) Reversible PEGylation: a novel technology to release native interferon alpha2 over a prolonged time period. J Med Chem 47:4897–4904CrossRefGoogle Scholar
  36. 36.
    Zalipsky S, Qazen M, Walker JA 2nd, Mullah N, Quinn YP, Huang SK (1999) New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem 10:703–707CrossRefGoogle Scholar
  37. 37.
    Filpula D, Zhao H (2008) Releasable PEGylation of proteins with customized linkers. Adv Drug Deliv Rev 60:29–49CrossRefGoogle Scholar
  38. 38.
    Yatuv R, Robinson M, Dayan I, Baru M (2010) Enhancement of the efficacy of therapeutic proteins by formulation with PEGylated liposomes; a case of FVIII, FVIIa and G-CSF. Expert Opin Drug Deliv 7:187–201CrossRefGoogle Scholar
  39. 39.
    Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63:152–160CrossRefGoogle Scholar
  40. 40.
    Ishida T, Kiwada H (2008) Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm 354:56–62CrossRefGoogle Scholar
  41. 41.
    Xu H, Wang KQ, Deng YH, da Chen W (2010) Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. Biomaterials 31:4757–4763CrossRefGoogle Scholar
  42. 42.
    Hatakeyama H, Akita H, Ito E, Hayashi Y, Oishi M, Nagasaki Y, Danev R, Nagayama K, Kaji N, Kikuchi H, Baba Y, Harashima H (2011) Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32:4306–4016CrossRefGoogle Scholar
  43. 43.
    Kubetzko S, Sarkar CA, Plückthun A (2005) Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol Pharmacol 68:1439–1454CrossRefGoogle Scholar
  44. 44.
    Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606CrossRefGoogle Scholar
  45. 45.
    Chapman AP, Antoniw P, Spitali M, West S, Stephens S, King DJ (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol 17:780–783CrossRefGoogle Scholar
  46. 46.
    Kubetzko S, Balic E, Waibel R, Zangemeister-Wittke U, Plückthun A (2006) PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem 281:35186–35201CrossRefGoogle Scholar
  47. 47.
    Andresen H, Bier FF (2009) Peptide microarrays for serum antibody diagnostics. Methods Mol Biol 509:123–134CrossRefGoogle Scholar
  48. 48.
    Yoshimoto K, Nishio M, Sugasawa H, Nagasaki Y (2010) Direct observation of adsorption-induced inactivation of antibody fragments surrounded by mixed-PEG layer on a gold surface. J Am Chem Soc 132:7982–7989CrossRefGoogle Scholar
  49. 49.
    Uchida K, Otsuka H, Kaneko M, Kataoka K, Nagasaki Y (2005) A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio: the substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Anal Chem 77:1075–1080CrossRefGoogle Scholar
  50. 50.
    Yu D, Peng P, Dharap SS, Wang Y, Mehlig M, Chandna P, Zhao H, Filpula D, Yang K, Borowski V, Borchard G, Zhang Z, Minko T (2005) Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J Control Release 110:90–102CrossRefGoogle Scholar
  51. 51.
    Chabot GG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 33:245–259CrossRefGoogle Scholar
  52. 52.
    Zhao H, Rubio B, Sapra P, Wu D, Reddy P, Sai P, Martinez A, Gao Y, Lozanguiez Y, Longley C, Greenberger LM, Horak ID (2008) Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers. Bioconjug Chem 19:849–859CrossRefGoogle Scholar
  53. 53.
    Pastorino F, Loi M, Sapra P, Becherini P, Cilli M, Emionite L, Ribatti D, Greenberger LM, Horak ID, Ponzoni M (2010) Tumor regression and curability of preclinical neuroblastoma models by PEGylated SN38 (EZN-2208), a novel topoisomerase I inhibitor. Clin Cancer Res 16:4809–4821CrossRefGoogle Scholar
  54. 54.
    Hershfield MS (1995) PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency. Hum Mutat 5:107–112CrossRefGoogle Scholar
  55. 55.
    Burns CM, Wortmann RL (2011) Gout therapeutics: new drugs for an old disease. Lancet 377:165–177CrossRefGoogle Scholar
  56. 56.
    Laden JC, Philibert P, Torreilles F, Pugnière M, Martineau P (2002) Expression and folding of an antibody fragment selected in vivo for high expression levels in Escherichia coli cytoplasm. Res Microbiol 153:469–474CrossRefGoogle Scholar
  57. 57.
    Jayson GC, Parker GJ, Mullamitha S, Valle JW, Saunders M, Broughton L, Lawrance J, Carrington B, Roberts C, Issa B, Buckley DL, Cheung S, Davies K, Watson Y, Zinkewich-Péotti K, Rolfe L, Jackson A (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981CrossRefGoogle Scholar
  58. 58.
    Ton NC, Parker GJ, Jackson A, Mullamitha S, Buonaccorsi GA, Roberts C, Watson Y, Davies K, Cheung S, Hope L, Power F, Lawrance J, Valle J, Saunders M, Felix R, Soranson JA, Rolfe L, Zinkewich-Peotti K, Jayson GC (2007) Phase I evaluation of CDP791, a PEGylated di-Fab' conjugate that binds vascular endothelial growth factor receptor 2. Clin Cancer Res 13:7113–7118CrossRefGoogle Scholar
  59. 59.
    Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340CrossRefGoogle Scholar
  60. 60.
    Lares MR, Rossi JJ, Ouellet DL (2010) RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 28:570–579CrossRefGoogle Scholar
  61. 61.
    Joralemon MJ, McRae S, Emrick T (2010) PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem Commun (Camb) 46:1377–1393CrossRefGoogle Scholar
  62. 62.
    Tamura M, Ichinohe S, Tamura A, Ikeda Y, Nagasaki Y (2011) In vivo and in vitro characteristics of core-shell-type nanogel particles: optimization of core cross-linking density and surface PEG density in PEGylated nanogels. Acta Biomaterialia. doi: 10.1016/j.actbio.2011.05.027
  63. 63.
    Oishi M, Nagasaki Y (2010) Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine (Lond) 5:451–468CrossRefGoogle Scholar
  64. 64.
    Elbayoumi TA, Torchilin VP (2008) Liposomes for targeted delivery of antithrombotic drugs. Expert Opin Drug Deliv 5:1185–1198CrossRefGoogle Scholar
  65. 65.
    Jiang W, Lionberger R, Yu LX (2011) In vitro and in vivo characterizations of PEGylated liposomal doxorubicin. Bioanalysis 3:333–344CrossRefGoogle Scholar
  66. 66.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160CrossRefGoogle Scholar
  67. 67.
    Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237CrossRefGoogle Scholar
  68. 68.
    Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K (1991) Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 51:3229–3236Google Scholar
  69. 69.
    Alakhov V, Klinski E, Lemieux P, Pietrzynski G, Kabanov A (2001) Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin Biol Ther 1:583–602CrossRefGoogle Scholar
  70. 70.
    Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579CrossRefGoogle Scholar
  71. 71.
    Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63:8977–8983Google Scholar
  72. 72.
    Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784CrossRefGoogle Scholar
  73. 73.
    Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl 50:1980–1994CrossRefGoogle Scholar
  74. 74.
    Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684CrossRefGoogle Scholar
  75. 75.
    Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030CrossRefGoogle Scholar
  76. 76.
    Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol Cancer Ther 5:1014–1020CrossRefGoogle Scholar
  77. 77.
    Libutti SK, Paciotti GF, Byrnes AA, Alexander HR Jr, Gannon WE, Walker M, Seidel GD, Yuldasheva N, Tamarkin L (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16:6139–149CrossRefGoogle Scholar
  78. 78.
    Ishii T, Otsuka H, Kataoka K, Nagasaki Y (2004) Preparation of functionally Pegylated gold nanoparticles with narrow distribution through autoreduction of auric cation by alpha-biotinyl-PEG-block-[poly (2-(N, N-dimethylamino) ethyl methacrylate)]. Langmuir 20:561–564CrossRefGoogle Scholar
  79. 79.
    Miyamoto D, Oishi M, Kojima K, Yoshimoto K, Nagasaki Y (2008) Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Langmuir 24:5010–5017CrossRefGoogle Scholar
  80. 80.
    Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y (2008) Design of poly(ethylene glycol)/streptavidin co-immobilized upconversion nanophosphors and their application to fluorescence biolabeling. Langmuir 24:8864–8870CrossRefGoogle Scholar
  81. 81.
    Kamimura M, Kanayama N, Tokuzen K, Soga K, Nagasaki Y (2011) Near-infrared (1550 nm) In vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzyl phosphonate). Nanoscale. doi: 10.1039/C1NR10466G
  82. 82.
    Mullard A (2011) 2010 FDA drug approvals. Nat Rev Drug Discov 10:82–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Materials Science, Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Master’s School of Medical Sciences, Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Satellite LaboratoryInternational Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science (NIMS)TsukubaJapan

Personalised recommendations