Skip to main content

Emerging Mass Spectrometric Tools for Analysis of Polymers and Polymer Additives

  • Chapter
  • First Online:
Mass Spectrometry of Polymers – New Techniques

Part of the book series: Advances in Polymer Science ((POLYMER,volume 248))

Abstract

The field of mass spectrometry has experienced enormous developments in the last few years. New interesting mass spectrometric techniques have arrived and there have been further developments in the existing methods that have opened up new possibilities for the analysis of increasingly complex polymer structures and compositions. Some of the most interesting emerging techniques for polymer analysis are briefly reviewed in this paper. These include new developments in laser desorption ionization techniques, like solvent-free matrix-assisted laser desorption ionization (solvent-free MALDI) and surface-assisted laser desorption ionization (SALDI) mass spectrometry, and the developments in secondary ion mass spectrometry (SIMS), such as gentle-SIMS and cluster SIMS. Desorption electrospray ionization (DESI) mass spectrometry and direct analysis in real time (DART) mass spectrometry offer great possibilities for analysis of solid samples in their native form, while mobility separation prior to mass spectrometric analysis in ion mobility spectrometry (IMS) mass spectrometry further facilitates the analysis of complex polymer structures. The potential of these new developments is still largely unexplored, but they will surely further strengthen the position of mass spectrometry as an irreplaceable tool for polymer characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCI:

Atmospheric pressure chemical ionization

APPI:

Atmospheric pressure photoionization

BFRs:

Brominated flame retardants

CHCA:

α-Cyano-4-hydroxycinnamic acid

CID:

Collision-induced dissociation

CNTs:

Carbon nanotubes

DART:

Direct analysis in real time

DBP:

Dibutyl phthalate

DEHP:

Di-2-ethylhexyl phthalate

DESI:

Desorption electrospray ionization

DHB:

2,5-Dihydroxybenzonic acid

DIDP:

Diisodecyl phthalate

DINP:

Diisononyl phthalate

DIOS:

Desorption ionization on porous silicon

DNOP:

Di-n-octyl phthalate

ECD:

Electron-capture dissociation

ERM:

European Reference Material

ESI-MS:

Electrospray ionization-mass spectrometry

FTICR-MS:

Fourier transform ion cyclotron resonance- mass spectrometry

FTMS:

Fourier transform mass spectrometry

GC-MS:

Gas chromatography–mass spectrometry

HDPE:

High density polyethylene

HPLC-UV:

High performance liquid chromatography–ultraviolet

ICP-MS:

Inductive coupled plasma–mass spectrometry

IMS-MS:

Ion mobility spectrometry–mass spectrometry

LC:

Liquid chromatography

LDI-MS:

Laser desorption ionization–mass spectrometry

LOD:

Limits of detection

m/z :

Mass-to-charge ratio

MALDI-MS:

Matrix-assisted laser desorption ionization–mass spectrometry

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NaI:

Sodium iodide

PAE:

Phthalic acid esters

PALDI-MS:

Polymer-assisted laser desorption ionization–mass spectrometry

PAM:

Polyacrylamide

PBBs:

Polybrominated biphenyls

PBDEs:

Polybrominated diphenyl ethers

PDMS:

Poly(dimethyl siloxane)

PEG:

Poly(ethylene glycol)

PET:

Poly(ethylene terephthalate)

PGS:

Pyrolytic highly oriented graphite polymer film

PLA:

Polylactide

PMMA:

Polymethylmethacrylate

PMS:

Poly(α-methyl styrene)

PP:

Polypropylene

ppb:

Parts per billion

PPEs:

Polyphosphoesters

PPG:

Poly(propylene glycol)

PS:

Polystyrene

PTMG:

Poly(tetramethylene glycol)

PVC:

Polyvinyl chloride

S/N:

Signal-to-noise ratio

SALDI-MS:

Surface-assisted laser desorption ionization-mass spectrometry

SIMS:

Secondary ion mass spectrometry

TFA:

Trifluoroacetic acid

TOF:

Time-of-flight

VOCs:

Volatile organic compounds

References

  1. Cohen L, Gusev A (2002) Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 373(7):571–586

    Article  CAS  Google Scholar 

  2. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399(6733):243–246

    Article  CAS  Google Scholar 

  3. Kruse RA, Li X, Bohn PW, Sweedler JV (2001) Experimental factors controlling analyte Ion generation in laser desorption/ionization mass spectrometry on porous silicon. Anal Chem 73(15):3639–3645

    Article  CAS  Google Scholar 

  4. Arakawa R, Shimomae Y, Morikawa H, Ohara K, Okuno S (2004) Mass spectrometric analysis of low molecular mass polyesters by laser desorption/ionization on porous silicon. J Mass Spectrom 39(8):961–965

    Article  CAS  Google Scholar 

  5. Okuno S, Wada Y, Arakawa R (2005) Quantitative analysis of polypropyleneglycol mixtures by desorption/ionization on porous silicon mass spectrometry. Int J Mass Spectrom 241(1):43–48

    Article  CAS  Google Scholar 

  6. Shen Z, Thomas JJ, Averbuj C, Broo KM, Engelhard M, Crowell JE, Finn MG, Siuzdak G (2000) Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal Chem 73(3):612–619

    Article  CAS  Google Scholar 

  7. Thomas JJ, Shen Z, Blackledge R, Siuzdak G (2001) Desorption-ionization on silicon mass spectrometry: an application in forensics. Anal Chim Acta 442(2):183–190

    Article  CAS  Google Scholar 

  8. Ladasiu Ciolacu FC, Choudhury NR, Dutta N, Voelcker NH (2006) MALDI-TOF MS and DIOS-MS investigation of the degradation and discoloration of poly(ethylene terephthalate). Macromolecules 39(23):7872–7881

    Article  CAS  Google Scholar 

  9. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153

    Article  CAS  Google Scholar 

  10. Sunner J, Dratz E, Chen Y-C (1995) Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal Chem 67(23):4335–4342

    Article  CAS  Google Scholar 

  11. Watanabe T, Kawasaki H, Yonezawa T, Arakawa R (2008) Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J Mass Spectrom 43(8):1063–1071

    Article  CAS  Google Scholar 

  12. Schürenberg M, Dreisewerd K, Hillenkamp F (1999) Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem 71(1):221–229

    Article  Google Scholar 

  13. Hua L, Chen J, Ge L, Tan S (2007) Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides. J Nanopart Res 9(6):1133–1138

    Article  CAS  Google Scholar 

  14. Pan C, Xu S, Hu L, Su X, Ou J, Zou H, Guo Z, Zhang Y, Guo B (2005) Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J Am Soc Mass Spectrom 16(6):883–892

    Article  CAS  Google Scholar 

  15. Chen Y-C, Shiea J, Sunner J (2000) Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14(2):86–90

    Article  Google Scholar 

  16. Shariatgorji M, Amini N, Thorsen G, Crescenzi C, Ilag LL (2008) m-trap for the SALDI-MS screening of organic compounds prior to LC/MS analysis. Anal Chem 80(14):5515–5523

    Article  CAS  Google Scholar 

  17. Shariatgorji M, Amini N, Ilag L (2009) Silicon nitride nanoparticles for surface-assisted laser desorption/ionization of small molecules. J Nanopart Res 11(6):1509–1512

    Article  CAS  Google Scholar 

  18. Kinumi T, Saisu T, Takayama M, Niwa H (2000) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J Mass Spectrom 35(3):417–422

    Article  CAS  Google Scholar 

  19. Grant DC, Helleur RJ (2007) Surfactant-mediated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Rapid Commun Mass Spectrom 21(6):837–845

    Article  CAS  Google Scholar 

  20. Feuerstein I, Najam-ul-Haq M, Rainer M, Trojer L, Bakry R, Aprilita NH, Stecher G, Huck CW, Bonn GK, Klocker H, Bartsch G, Guttman A (2006) Material-enhanced laser desorption/ionization (MELDI)–a New protein profiling tool utilizing specific carrier materials for time of flight mass spectrometric analysis. J Am Soc Mass Spectrom 17(9):1203–1208

    Article  CAS  Google Scholar 

  21. Tetsu YHK, Akira T, Takehiro W, Ryuichi A, Toshihiro S, Fumitaka M (2009) Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal Sci 25(339–346)

    Google Scholar 

  22. Schurenberg M, Dreisewerd K, Hillenkamp F (1998) Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem 71(1):221–229

    Article  Google Scholar 

  23. Osaka I, Okumura K, Miyake N, Watanabe T, Nozaki K, Kawasaki H, Arakawa R (2010) Quantitative analysis of an antioxidant additive in insoluble plastics by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using TiO2 nanoparticles. J Mass Spectrom Soc Jpn 58(4):123–127

    Article  CAS  Google Scholar 

  24. Aminlashgari N, Shariatgorji M, Ilag LL, Hakkarainen M (2011) Nanocomposites as novel surfaces for laser desorption ionization mass spectrometry. Analytical Methods 3(1):192–197

    Article  CAS  Google Scholar 

  25. Hakkarainen M, Adamus G, Höglund A, Kowalczuk M, Albertsson A-C (2008) ESI-MS reveals the influence of hydrophilicity and architecture on the water-soluble degradation product patterns of biodegradable homo- and copolyesters of 1,5-dioxepan-2-one and ε-caprolactone. Macromolecules 41:3547–3554

    Article  CAS  Google Scholar 

  26. Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson A-C (2010) Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromolecules 11:1067–1073

    Article  CAS  Google Scholar 

  27. Hakkarainen M, Höglund A, Odelius K, Albertsson A-C (2007) Tuning the release rate of acidic degradation products through macromolecular design of caprolactone-based copolymers. J Am Chem Soc 129:6308–6312

    Article  CAS  Google Scholar 

  28. Gröning M, Hakkarainen M, Albertsson A-C (2008) Quantitative determination of volatiles in polymers and quality control of recycled materials by static headspace techniques. Adv Polym Sci 211:51–84

    Article  CAS  Google Scholar 

  29. Kawasaki H, Takahashi N, Fujimori H, Okumura K, Watanabe T, Matsumura C, Takemine S, Nakano T, Arakawa R (2009) Functionalized pyrolytic highly oriented graphite polymer film for surface-assisted laser desorption/ionization mass spectrometry in environmental analysis. Rapid Commun Mass Spectrom 23(20):3323–3332

    Article  CAS  Google Scholar 

  30. Woldegiorgis A, Fv K, Dahlstedt E, Hellberg J, Brinck T, Roeraade J (2004) Polymer-assisted laser desorption/ionization analysis of small molecular weight compounds. Rapid Commun Mass Spectrom 18(8):841–852

    Article  CAS  Google Scholar 

  31. Woldegiorgis A, Löwenhielm P, Björk A, Roeraade J (2004) Matrix-assisted and polymer-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of low molecular weight polystyrenes and polyethylene glycols. Rapid Commun Mass Spectrom 18(23):2904–2912

    Article  CAS  Google Scholar 

  32. Peterson DS, Luo Q, Hilder EF, Svec F, Fréchet JMJ (2004) Porous polymer monolith for surface-enhanced laser desorption/ionization time-of-flight mass spectrometry of small molecules. Rapid Commun Mass Spectrom 18(13):1504–1512

    Article  CAS  Google Scholar 

  33. Soltzberg LJ, Patel P (2004) Small molecule matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a polymer matrix. Rapid Commun Mass Spectrom 18(13):1455–1458

    Article  CAS  Google Scholar 

  34. S-f R, Zhang L, Z-h C, Y-l G (2005) Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: applications to neutral small carbohydrates. J Am Soc Mass Spectrom 16(3):333–339

    Article  CAS  Google Scholar 

  35. Kalkan AK, Fonash SJ (2004) Carbon/Nafion ® nanocomposite thin films as potential matrix-free laser desorption-ionization mass spectroscopy substrates. Mater Res Soc Proc 788:L8.49

    Google Scholar 

  36. Trimpin S, Grimsdale AC, Räder HJ, Müllen K (2002) Characterization of an insoluble poly(9,9-diphenyl-2,7-fluorene) by solvent-free sample preparation for MALDI-TOF mass spectrometry. Anal Chem 74(15):3777–3782

    Article  CAS  Google Scholar 

  37. Simpson CD, Mattersteig G, Martin K, Gherghel L, Bauer RE, Räder HJ, Müllen K (2004) Nanosized molecular propellers by cyclodehydrogenation of polyphenylene dendrimers. J Am Chem Soc 126(10):3139–3147

    Article  CAS  Google Scholar 

  38. Trimpin S, Keune S, Räder HJ, Müllen K (2006) Solvent-free MALDI-MS: developmental improvements in the reliability and the potential of MALDI in the analysis of synthetic polymers and giant organic molecules. J Am Soc Mass Spectrom 17(5):661–671

    Article  CAS  Google Scholar 

  39. Trimpin S, Rouhanipour A, Az R, Räder HJ, Müllen K (2001) New aspects in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a universal solvent-free sample preparation. Rapid Commun Mass Spectrom 15(15):1364–1373

    Article  CAS  Google Scholar 

  40. Skelton R, Dubois F, Zenobi R (2000) A MALDI sample preparation method suitable for insoluble polymers. Anal Chem 72(7):1707–1710

    Article  CAS  Google Scholar 

  41. Hanton SD, Parees DM (2005) Extending the solvent-free MALDI sample preparation method. J Am Soc Mass Spectrom 16(1):90–93

    Article  CAS  Google Scholar 

  42. Trimpin S, McEwen CN (2007) Multisample preparation methods for the solvent-free MALDI-MS analysis of synthetic polymers. J Am Soc Mass Spectrom 18(3):377–381

    Article  CAS  Google Scholar 

  43. Trimpin S, Wijerathne K, McEwen CN (2009) Rapid methods of polymer and polymer additives identification: multi-sample solvent-free MALDI, pyrolysis at atmospheric pressure, and atmospheric solids analysis probe mass spectrometry. Anal Chim Acta 654(1):20–25

    Article  CAS  Google Scholar 

  44. Sroka-Bartnicka A, Ciesielski W, Libiszowski J, Duda A, Sochacki M, Potrzebowski MJ (2009) Complementarity of solvent-free MALDI TOF and solid-state NMR spectroscopy in spectral analysis of polylactides. Anal Chem 82(1):323–328

    Article  CAS  Google Scholar 

  45. Venter A, Nefliu M, Graham Cooks R (2008) Ambient desorption ionization mass spectrometry. Trends Analyt Chem 27(4):284–290

    Article  CAS  Google Scholar 

  46. Harris GA, Nyadong L, Fernandez FM (2008) Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133(10):1297–1301

    Article  CAS  Google Scholar 

  47. Weston DJ (2010) Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst 135(4):661–668

    Article  CAS  Google Scholar 

  48. Zn T, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473

    Article  CAS  Google Scholar 

  49. Bereman M, Muddiman D (2007) Detection of attomole amounts of analyte by desorption electrospray ionization mass spectrometry (DESI-MS) determined using fluorescence spectroscopy. J Am Soc Mass Spectrom 18(6):1093–1096

    Article  CAS  Google Scholar 

  50. Leuthold LA, Mandscheff J-F, Fathi M, Giroud C, Augsburger M, Varesio E, Hopfgartner G (2006) Desorption electrospray ionization mass spectrometry: direct toxicological screening and analysis of illicit Ecstasy tablets. Rapid Commun Mass Spectrom 20(2):103–110

    Article  CAS  Google Scholar 

  51. Williams JP, Scrivens JH (2005) Rapid accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples. Rapid Commun Mass Spectrom 19(24):3643–3650

    Article  CAS  Google Scholar 

  52. Van Berkel GJ, Ford MJ, Deibel MA (2005) Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Anal Chem 77(5):1207–1215

    Article  CAS  Google Scholar 

  53. Bereman MS, Williams TI, Muddiman DC (2007) Carbohydrate analysis by desorption electrospray ionization fourier transform Ion cyclotron resonance mass spectrometry. Anal Chem 79(22):8812–8815

    Article  CAS  Google Scholar 

  54. Hu Q, Talaty N, Noll RJ, Cooks RG (2006) Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides. Rapid Commun Mass Spectrom 20(22):3403–3408

    Article  CAS  Google Scholar 

  55. Reiter S, Buchberger W, Klampfl C (2011) Rapid identification and semi-quantitative determination of polymer additives by desorption electrospray ionization/time-of-flight mass spectrometry. Anal Bioanal Chem 400:2317–2322

    Article  CAS  Google Scholar 

  56. Nefliu M, Venter A, Cooks RG (2006) Desorption electrospray ionization and electrosonic spray ionization for solid- and solution-phase analysis of industrial polymers. Chem Commun 2006(8):888–890

    Article  CAS  Google Scholar 

  57. Latourte L, Blais J-C, Tabet J-C, Cole RB (1997) Desorption behavior and distributions of fluorinated polymers in MALDI and electrospray ionization mass spectrometry. Anal Chem 69(14):2742–2750

    Article  CAS  Google Scholar 

  58. Jackson AT, Williams JP, Scrivens JH (2006) Desorption electrospray ionisation mass spectrometry and tandem mass spectrometry of low molecular weight synthetic polymers. Rapid Commun Mass Spectrom 20(18):2717–2727

    Article  CAS  Google Scholar 

  59. Ifa DR, Manicke NE, Rusine AL, Cooks RG (2008) Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces. Rapid Commun Mass Spectrom 22(4):503–510

    Article  CAS  Google Scholar 

  60. Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77(8):2297–2302

    Article  CAS  Google Scholar 

  61. Ackerman LK, Noonan GO, Begley TH (2009) Assessing direct analysis in real-time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26(12):1611–1618

    CAS  Google Scholar 

  62. Haunschmidt M, Klampfl CW, Buchberger W, Hertsens R (2009) Rapid identification of stabilisers in polypropylene using time-of-flight mass spectrometry and DART as ion source. Analyst 135(1):80–85

    Article  CAS  Google Scholar 

  63. Rothenbacher T, Schwack W (2009) Rapid and nondestructive analysis of phthalic acid esters in toys made of poly(vinyl chloride) by direct analysis in real time single-quadrupole mass spectrometry. Rapid Commun Mass Spectrom 23(17):2829–2835

    Article  CAS  Google Scholar 

  64. Rothenbacher T, Schwack W (2009) Rapid identification of additives in poly(vinyl chloride) lid gaskets by direct analysis in real time ionisation and single-quadrupole mass spectrometry. Rapid Commun Mass Spectrom 24(1):21–29

    Article  CAS  Google Scholar 

  65. Jeckelmann N, Haefliger OP (2010) Release kinetics of actives from chewing gums into saliva monitored by direct analysis in real time mass spectrometry. Rapid Commun Mass Spectrom 24(8):1165–1171

    Article  CAS  Google Scholar 

  66. Domin MA, Steinberg BD, Quimby JM, Smith NJ, Greene AK, Scott LT (2010) Routine analysis and characterization of highly insoluble polycyclic aromatic compounds by direct analysis in real time mass spectrometry (DART). Analyst 135(4):700–704

    Article  CAS  Google Scholar 

  67. Dey M, Castoro JA, Wilkins CL (1995) Determination of molecular weight distributions of polymers by MALDI-FTMS. Anal Chem 67(9):1575–1579

    Article  CAS  Google Scholar 

  68. Miladinovic S, Robotham S, Wilkins C (2008) Wide mass range trapping using a 7-T internal source matrix-assisted laser desorption/ionization Fourier transform mass spectrometer. Anal Bioanal Chem 392(4):585–594

    Article  CAS  Google Scholar 

  69. Simonsick W, Petkovska V (2008) Detailed structural elucidation of polyesters and acrylates using Fourier transform mass spectrometry. Anal Bioanal Chem 392(4):575–583

    Article  CAS  Google Scholar 

  70. Heeren RMA, Kleinnijenhuis AJ, McDonnell LA, Mize TH (2004) A mini-review of mass spectrometry using high-performance FTICR-MS methods. Anal Bioanal Chem 378(4):1048–1058

    Article  CAS  Google Scholar 

  71. Kaczorowska MA, Cooper HJ (2009) Characterization of polyphosphoesters by fourier transform Ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 20(12):2238–2247

    Article  CAS  Google Scholar 

  72. Jaber AJ, Wilkins CL (2005) Hydrocarbon polymer analysis by external MALDI fourier transform and reflectron time of flight mass spectrometry. J Am Soc Mass Spectrom 16(12):2009–2016

    Article  CAS  Google Scholar 

  73. van Rooij G, Duursma M, Heeren R, Boon J, de Koster C (1996) High resolution end group determination of low molecular weight polymers by matrix-assisted laser desorption ionization on an external ion source fourier transform ion cyclotron resonance mass spectrometer. J Am Soc Mass Spectrom 7(5):449–457

    Article  Google Scholar 

  74. O'Connor PB, McLafferty FW (1995) Oligomer characterization of 4–23 kDa polymers by electrospray fourier transform mass spectrometry. J Am Chem Soc 117(51):12826–12831

    Article  Google Scholar 

  75. Koster S, Duursma MC, Boon JJ, Heeren RMA (2000) Endgroup determination of synthetic polymers by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 11(6):536–543

    Article  CAS  Google Scholar 

  76. Koster S, Duursma MC, Boon JJ, Nielen MWF, de Koster CG, Heeren RMA (2000) Structural analysis of synthetic homo- and copolyesters by electrospray ionization on a Fourier transform ion cyclotron resonance mass spectrometer. J Mass Spectrom 35(6):739–748

    Article  CAS  Google Scholar 

  77. Sarrabi S, Colin X, Tcharkhtchi A, Heninger M, Leprovost J, Hln M (2009) Real time analysis of volatile organic compounds from polypropylene thermal oxidation using chemical ionization fourier transform Ion cyclotron resonance mass spectrometry. Anal Chem 81(15):6013–6020

    Article  CAS  Google Scholar 

  78. Eljarrat E, Barceló D (2004) Sample handling and analysis of brominated flame retardants in soil and sludge samples. Trends Analyt Chem 23(10–11):727–736

    Article  CAS  Google Scholar 

  79. Vázquez AS, Costa-Fernandez JM, Encinar JR, Pereiro R, Sanz-Medel A (2008) Bromine determination in polymers by inductively coupled plasma-mass spectrometry and its potential for fast first screening of brominated flame retardants in polymers and paintings. Anal Chim Acta 623(2):140–145

    Article  CAS  Google Scholar 

  80. Hakkarainen M, Gröning M, Albertsson A-C (2003) Solid-phase microextraction (SPME) in polymer characterization—long-term properties and quality control of polymeric materials. J Appl Polym Sci 89(3):867–873

    Article  CAS  Google Scholar 

  81. Schlummer M, Brandl F, Mäurer A, van Eldik R (2005) Analysis of flame retardant additives in polymer fractions of waste of electric and electronic equipment (WEEE) by means of HPLC-UV/MS and GPC-HPLC-UV. J Chromatogr A 1064(1):39–51

    Article  CAS  Google Scholar 

  82. Pöhlein M, Llopis AS, Wolf M, Rv E (2005) Rapid identification of RoHS-relevant flame retardants from polymer housings by ultrasonic extraction and RP-HPLC/UV. J Chromatogr A 1066(1–2):111–117

    Article  CAS  Google Scholar 

  83. Dirtu AC, Ravindra K, Roosens L, van Grieken R, Neels H, Blust R, Covaci A (2008) Fast analysis of decabrominated diphenyl ether using low-pressure gas chromatography-electron-capture negative ionization mass spectrometry. J Chromatogr A 1186(1–2):295–301

    Article  CAS  Google Scholar 

  84. Vilaplana F, Karlsson P, Ribes-Greus A, Ivarsson P, Karlsson S (2008) Analysis of brominated flame retardants in styrenic polymers: comparison of the extraction efficiency of ultrasonication, microwave-assisted extraction and pressurised liquid extraction. J Chromatogr A 1196–1197:139–146

    Article  CAS  Google Scholar 

  85. Hosaka A, Watanabe C, Tsuge S (2005) Rapid determination of decabromodiphenyl ether in polystyrene by thermal desorption-GC/MS. Anal Sci 21(10):1145–1147

    Article  CAS  Google Scholar 

  86. Ranz A, Maier E, Trampitsch C, Lankmayr E (2008) Microwave-assisted extraction of decabromodiphenylether from polymers. Talanta 76(1):102–106

    Article  CAS  Google Scholar 

  87. Am A, Wolf M, van Eldik R (2003) Extraction of brominated flame retardants from polymeric waste material using different solvents and supercritical carbon dioxide. Anal Chim Acta 491(1):111–123

    Article  CAS  Google Scholar 

  88. Pöhlein M, Bertran RU, Wolf M, van Eldik R (2008) Versatile and fast gas chromatographic determination of frequently used brominated flame retardants in styrenic polymers. J Chromatogr A 1203(2):217–228

    Article  CAS  Google Scholar 

  89. Vonderheide AP, Montes-Bayon M, Caruso JA (2002) Development and application of a method for the analysis of brominated flame retardants by fast gas chromatography with inductively coupled plasma mass spectrometric detection. J Anal At Spectrom 17(11):1480–1485

    Article  CAS  Google Scholar 

  90. Mingwu S, Chao W, Yongjuan J, Xinhua D, Xiang F (2010) Determination of selected polybrominated diphenylethers and polybrominated biphenyl in polymers by ultrasonic-assisted extraction and high-performance liquid chromatography − inductively coupled plasma mass spectrometry. Anal Chem 82(12):5154–5159

    Article  CAS  Google Scholar 

  91. Resano M, García-Ruiz E, Vanhaecke F (2005) Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the multi-element analysis of polymers. Spectrochimica Acta Part B: Atomic Spectroscopy 60(11):1472–1481

    Article  CAS  Google Scholar 

  92. Stehrer T, Heitz J, Pedarnig J, Huber N, Aeschlimann B, Günther D, Scherndl H, Linsmeyer T, Wolfmeir H, Arenholz E (2010) LA-ICP-MS analysis of waste polymer materials. Anal Bioanal Chem 398(1):415–424

    Article  CAS  Google Scholar 

  93. Galuska AA (1997) Quantitative surface analysis of ethylene–propylene polymers using ToF-SIMS. Surf Interface Anal 25(1):1–4

    Article  CAS  Google Scholar 

  94. Reichlmaier S, Bryan SR, Briggs D (1995) Surface trimer crystallization on poly (ethylene terephthalate) studied by time-of-flight secondary ion mass spectrometry. In: Proceedings of the 41st National Symposium of the American Vacuum Society, Denver, CO. AVS, pp 1217–1223

    Google Scholar 

  95. Li L, Chan C-M, Weng L-T, Xiang M-L, Jiang M (1998) Specific interaction between poly(styrene-co-4-vinylphenol) and poly(styrene-co-4-vinylpyridine) studied by X-ray photoelectron spectroscopy and time-of-flight secondary Ion mass spectrometry. Macromolecules 31(21):7248–7255

    Article  CAS  Google Scholar 

  96. Bletsos IV, Hercules DM, Magill JH, VanLeyen D, Niehuis E, Benninghoven A (1988) Time-of-flight secondary ion mass spectrometry: detection of fragments from thick polymer films in the range m/z.Ltoreq. 4500. Anal Chem 60(9):938–944

    Article  CAS  Google Scholar 

  97. Lub J, van Vroonhoven FCBM, van Leyen D, Benninghoven A (1988) Static secondary ion mass spectrometry analysis of polycarbonate surfaces. Effect of structure and of surface modification on the spectra. Polymer 29(6):998–1003

    Article  CAS  Google Scholar 

  98. Lub J, van Velzen PNT, van Leyen D, Hagenhoff B, Benninghoven A (1988) TOF-SIMS analysis of the surface of insulators. Examples of chemically modified polymers and glass. Surf Interface Anal 12(1):53–57

    Article  Google Scholar 

  99. Bletsos IV, Hercules DM, VanLeyen D, Benninghoven A, Karakatsanis CG, Rieck JN (1989) Structural characterization of model polyurethanes using time-of-flight secondary ion mass spectrometry. Anal Chem 61(19):2142–2149

    Article  CAS  Google Scholar 

  100. Lee J-W, Gardella JA (2002) Quantitative TOF-SIMS analysis of oligomeric degradation products at the surface of biodegradable poly([alpha]-hydroxy acid)s. J Am Soc Mass Spectrom 13(9):1108–1119

    Article  CAS  Google Scholar 

  101. Gilmore IS, Seah MP (2000) Static SIMS: towards unfragmented mass spectra – the G-SIMS procedure. Appl Surf Sci 161(3–4):465–480

    Article  CAS  Google Scholar 

  102. Gilmore IS, Seah MP (2003) G-SIMS of crystallisable organics. Appl Surf Sci 203–204:551–555

    Article  Google Scholar 

  103. Gilmore IS, Seah MP (2004) Organic molecule characterization–G-SIMS. Appl Surf Sci 231–232:224–229

    Article  CAS  Google Scholar 

  104. Ogaki R, Green FM, Li S, Vert M, Alexander MR, Gilmore IS, Davies MC (2008) A comparison of the static SIMS and G-SIMS spectra of biodegradable homo-polyesters. Surf Interface Anal 40(8):1202–1208

    Article  CAS  Google Scholar 

  105. Van Royen P, Boschmans B, dos Santos A, Schacht E, Dubruel P, Cornelissen R, Beenaerts L, Van Vaeck L (2011) Static secondary ion mass spectrometry for the surface characterisation of individual nanofibres of polycaprolactone functionalised with an antibacterial additive. Anal Bioanal Chem 399(3):1163–1172

    Article  CAS  Google Scholar 

  106. Reynolds BJ, Ruegg ML, Mates TE, Radke CJ, Balsara NP (2006) Diblock copolymer surfactant transport across the interface between two homopolymers. Langmuir 22(22):9192–9200

    Article  CAS  Google Scholar 

  107. Kollmer F (2004) Cluster primary ion bombardment of organic materials. Appl Surf Sci 231–232:153–158

    Article  CAS  Google Scholar 

  108. Delcorte A (2006) Matrix-enhanced secondary ion mass spectrometry: the Alchemist's solution? Appl Surf Sci 252(19):6582–6587

    Article  CAS  Google Scholar 

  109. Adriaensen L, Vangaever F, Gijbels R (2004) Metal-assisted secondary ion mass spectrometry: influence of Ag and Au deposition on molecular ion yields. Anal Chem 76(22):6777–6785

    Article  CAS  Google Scholar 

  110. Gillen G, Roberson S (1998) Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid Commun Mass Spectrom 12(19):1303–1312

    Article  CAS  Google Scholar 

  111. Braun RM, Cheng J, Parsonage EE, Moeller J, Winograd N (2006) Surface and depth profiling investigation of a drug-loaded copolymer utilized to coat Taxus Express2 stents. Anal Chem 78(24):8347–8353

    Article  CAS  Google Scholar 

  112. Grade H, Cooks RG (1978) Secondary ion mass spectrometry. Cationization of organic molecules with metals. J Am Chem Soc 100(18):5615–5621

    Article  CAS  Google Scholar 

  113. Linton RW, Mawn MP, Belu AM, DeSimone JM, Hunt MO, Menceloglu YZ, Cramer HG, Benninghoven A (1993) Time-of-flight secondary ion mass spectrometric analysis of polymer surfaces and additives. Surf Interface Anal 20(12):991–999

    Article  CAS  Google Scholar 

  114. Wu KJ, Odom RW (1996) Matrix-enhanced secondary Ion mass spectrometry: a method for molecular analysis of solid surfaces. Anal Chem 68(5):873–882

    Article  CAS  Google Scholar 

  115. Wittmaack K, Szymczak W, Hoheisel G, Tuszynski W (2000) Time-of-flight secondary ion mass spectrometry of matrix-diluted oligo- and polypeptides bombarded with slow and fast projectiles: Positive and negative matrix and analyte ion yields, background signals, and sample aging. J Am Soc Mass Spectrom 11(6):553–563

    Article  CAS  Google Scholar 

  116. Delcorte A, Poleunis C, Bertrand P (2006) Stretching the limits of static SIMS with C60+. Appl Surf Sci 252(19):6494–6497

    Article  CAS  Google Scholar 

  117. Delcorte A, Garrison BJ (2007) keV fullerene interaction with hydrocarbon targets: projectile penetration, damage creation and removal. Nucl Instr Meth Phys Res B 255(1):223–228

    Article  CAS  Google Scholar 

  118. Delcorte A, Yunus S, Wehbe N, Nieuwjaer N, Poleunis C, Felten A, Houssiau L, Pireaux JJ, Bertrand P (2007) Metal-assisted secondary Ion mass spectrometry using atomic (Ga+, in+) and fullerene projectiles. Anal Chem 79(10):3673–3689

    Article  CAS  Google Scholar 

  119. Mahoney CM, Roberson SV, Gillen G (2004) Depth profiling of 4-acetamindophenol-doped poly(lactic acid) films using cluster secondary Ion mass spectrometry. Anal Chem 76(11):3199–3207

    Article  CAS  Google Scholar 

  120. Mahoney CM, Fahey AJ, Belu AM (2008) Three-dimensional compositional analysis of drug eluting stent coatings using cluster secondary Ion mass spectrometry. Anal Chem 80(3):624–632

    Article  CAS  Google Scholar 

  121. McMahon J, Dookeran N, Todd P (1995) Organic ion imaging beyond the limit of static secondary ion mass spectrometry. J Am Soc Mass Spectrom 6(11):1047–1058

    Article  CAS  Google Scholar 

  122. Ober CK (2000) Shape persistence of synthetic polymers. Science 288(5465):448–449

    Article  CAS  Google Scholar 

  123. Trimpin S, Clemmer DE (2008) Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal Chem 80(23):9073–9083

    Article  CAS  Google Scholar 

  124. Fenn L, McLean J (2008) Biomolecular structural separations by ion mobility–mass spectrometry. Anal Bioanal Chem 391(3):905–909. doi:10.1007/s00216-008-1951-x

    Article  CAS  Google Scholar 

  125. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility–mass spectrometry. J Mass Spectrom 43(1):1–22

    Article  CAS  Google Scholar 

  126. Trimpin S, Plasencia M, Isallovic D, Clemmer DE (2007) Resolving oligomers from fully grown polymers with IMS/MS. Anal Chem 79(21):7965–7974

    Article  CAS  Google Scholar 

  127. Bagal D, Zhang H, Schnier PD (2008) Gas-phase proton-transfer chemistry coupled with TOF mass spectrometry and Ion mobility-MS for the facile analysis of poly(ethylene glycols) and PEGylated polypeptide conjugates. Anal Chem 80(7):2408–2418

    Article  CAS  Google Scholar 

  128. Hilton GR, Jackson AT, Thalassinos K, Scrivens JH (2008) Structural analysis of synthetic polymer mixtures using Ion mobility and tandem mass spectrometry. Anal Chem 80(24):9720–9725

    Article  CAS  Google Scholar 

  129. Song J, Grün CH, Heeren RMA, Janssen H-G, van den Brink OF (2010) High-resolution Ion mobility spectrometry–mass spectrometry on poly(methyl methacrylate). Angew Chem Int Ed Engl 49(52):10168–10171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Hakkarainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aminlashgari, N., Hakkarainen, M. (2011). Emerging Mass Spectrometric Tools for Analysis of Polymers and Polymer Additives. In: Hakkarainen, M. (eds) Mass Spectrometry of Polymers – New Techniques. Advances in Polymer Science, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_152

Download citation

Publish with us

Policies and ethics