Skip to main content

Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering

  • Chapter
  • First Online:
Chitosan for Biomaterials II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 244))

Abstract

Chitosan is a nontoxic, biodegradable, and biocompatible polysaccharide of β(1-4)-linked d-glucosamine and N-acetyl-d-glucosamine. This derivative of natural chitin presents remarkable properties that have paved the way for the introduction of chitosan in the biomedical and pharmaceutical fields. Nevertheless, the properties of chitosan, such as its poor solubility in water or in organic solvents, can limit its utilization for a specific application. An elegant way to improve or to impart new properties to chitosan is the chemical modification of the chain, generally by grafting of functional groups, without modification of the initial skeleton in order to conserve the original properties. The functionalization is carried out on the primary amine group, generally by quaternization, or on the hydroxyl group. This review aims to provide an overview of chitosan and chitosan derivatives used for drug delivery, with a special emphasis on chemical modifications of chitosan to achieve specific biomedical purpose. The synthesis of the main chitosan derivatives will be reviewed. The applications of chitosan and these chitosan derivatives will be illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park JH, Saravanakumar G et al (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41

    Article  CAS  Google Scholar 

  2. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  3. Bagheri-Khoulenjani S, Taghizadeh SM et al (2009) An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr Polym 78:773–778

    Article  CAS  Google Scholar 

  4. Varum KM, Myhr MM et al (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299:99–101

    Article  CAS  Google Scholar 

  5. VandeVord PJ, Matthew HWT et al (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59:585–590

    Article  CAS  Google Scholar 

  6. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908

    Article  CAS  Google Scholar 

  7. Rane KD, Hoover DG (1993) Production of chitosan by funghi. Food Biotechnol 7:11–33

    Article  CAS  Google Scholar 

  8. Aranaz I, Harris R et al (2010) Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 14:308–330

    Article  CAS  Google Scholar 

  9. Illum L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331

    Article  CAS  Google Scholar 

  10. Kumar M, Muzzarelli RAA et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  11. Paños I, Acosta N et al (2008) New drug delivery systems based on chitosan. Curr Drug Discov Technol 5:333–341

    Article  Google Scholar 

  12. Varshosaz J (2007) The promise of chitosan microspheres in drug delivery systems. Expert Opin Drug Deliv 4:263–273

    Article  CAS  Google Scholar 

  13. Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    Article  CAS  Google Scholar 

  14. Lehr C-M, Bouwstra JA et al (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78:43–48

    Article  CAS  Google Scholar 

  15. Yang J, Tian F et al (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res B Appl Biomater 84B:131–137

    Article  CAS  Google Scholar 

  16. Minagawa T, Okamura Y et al (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67:640–644

    Article  CAS  Google Scholar 

  17. Sudarshan NR, Hoover DG et al (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    Article  CAS  Google Scholar 

  18. Ong SY, Wu J et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    Article  CAS  Google Scholar 

  19. Calvo P, Remunan-López C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  20. Lee KY (2007) Chitosan and its derivatives for gene delivery. Macromol Res 15:195–201

    Article  CAS  Google Scholar 

  21. Guliyeva Ü, Öner F et al (2006) Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur J Pharm Biopharm 62:17–25

    Article  CAS  Google Scholar 

  22. Erbacher P, Zou SM et al (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339

    Article  CAS  Google Scholar 

  23. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    Article  CAS  Google Scholar 

  24. Kim S-K, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62:357–368

    Article  CAS  Google Scholar 

  25. Einbu A, Grasdalen H et al (2007) Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydr Res 342:1055–1062

    Article  CAS  Google Scholar 

  26. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  CAS  Google Scholar 

  27. Yang YM, Hu W et al (2007) The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med 18:2117–2121

    Article  CAS  Google Scholar 

  28. Thanou MM, Kotze AF et al (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64:15–25

    Article  CAS  Google Scholar 

  29. Kotze AF, Thanou MM et al (1999) Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). Eur J Pharm Biopharm 47:269–274

    Article  CAS  Google Scholar 

  30. Verheul RJ, Amidi M et al (2008) Synthesis, characterization and in vitro biological properties of O-methyl free N, N, N-trimethylated chitosan. Biomaterials 29:3642–3649

    Article  CAS  Google Scholar 

  31. Lee M, Nah JW et al (2001) Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm Res 18:427–431

    Article  CAS  Google Scholar 

  32. Koping-Hoggard M, Tubulekas I et al (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121

    Article  CAS  Google Scholar 

  33. Sieval AB, Thanou M et al (1998) Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym 36:157–165

    Article  CAS  Google Scholar 

  34. Kean T, Roth S et al (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653

    Article  CAS  Google Scholar 

  35. Verheul RJ, van der Wal S et al (2010) Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles. Biomacromolecules 11:1965–1971

    Article  CAS  Google Scholar 

  36. Varkouhi AK, Verheul RJ et al (2010) Gene silencing activity of siRNA polyplexes based on thiolated N, N, N-trimethylated chitosan. Bioconjug Chem 21:2339–2346

    Article  CAS  Google Scholar 

  37. Yin LC, Ding JY et al (2009) Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 30:5691–5700

    Article  CAS  Google Scholar 

  38. Langoth N, Kahlbacher H et al (2006) Thiolated chitosans: design and in vivo evaluation of a mucoadhesive buccal peptide drug delivery system. Pharm Res 23:573–579

    Article  CAS  Google Scholar 

  39. Toh EK-W, Chen H-Y et al (2011) Succinated chitosan as a gene carrier for improved chitosan solubility and gene transfection. Nanomedicine 7(2):174–183

    CAS  Google Scholar 

  40. Jiang H-L, Kim Y-K et al (2009) Mannosylated chitosan-graft-polyethylenimine as a gene carrier for Raw 264.7 cell targeting. Int J Pharm 375:133–139

    Article  CAS  Google Scholar 

  41. Jiang H-L, Kim Y-K et al (2007) Chitosan-graft-polyethylenimine as a gene carrier. J Control Release 117:273–280

    Article  CAS  Google Scholar 

  42. Li Z-T, Guo J et al (2010) Chitosan-graft-polyethylenimine with improved properties as a potential gene vector. Carbohydr Polym 80:254–259

    Article  CAS  Google Scholar 

  43. Jere D, Jiang H-L et al (2009) Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int J Pharm 378:194–200

    Article  CAS  Google Scholar 

  44. Gao J-Q, Zhao Q-Q et al (2010) Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. Int J Pharm 387:286–294

    Article  CAS  Google Scholar 

  45. Noh SM, Park MO et al (2010) Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release 145:159–164

    Article  CAS  Google Scholar 

  46. Ghosn B, Kasturi SP et al (2008) Enhancing polysaccharide-mediated delivery of nucleic acids through functionalization with secondary and tertiary amines. Curr Top Med Chem 8:331–340

    Article  CAS  Google Scholar 

  47. Ercelen S, Zhang X et al (2006) Physicochemical properties of low molecular weight alkylated chitosans: a new class of potential nonviral vectors for gene delivery. Colloids Surf B 51:140–148

    Article  CAS  Google Scholar 

  48. Huo M, Zhang Y et al (2010) Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int J Pharm 394:162–173

    Article  CAS  Google Scholar 

  49. Zhang C, Ding Y et al (2007) Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives. Colloids Surf B 55:192–199

    Article  CAS  Google Scholar 

  50. Desbrieres J, Martinez C et al (1996) Hydrophobic derivatives of chitosan: characterization and rheological behaviour. Int J Biol Macromol 19:21–28

    Article  CAS  Google Scholar 

  51. Rinaudo M, Auzely R et al (2005) Specific interactions in modified chitosan systems. Biomacromolecules 6:2396–2407

    Article  CAS  Google Scholar 

  52. Ortona O, D'Errico G et al (2008) The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution. Carbohydr Polym 74:16–22

    Article  CAS  Google Scholar 

  53. Zhang C, Qineng P et al (2004) Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids Surf B 39:69–75

    Article  CAS  Google Scholar 

  54. Zhang C, Ping Q et al (2003) Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohydr Polym 54:137–141

    Article  CAS  Google Scholar 

  55. Yao Z, Zhang C et al (2007) A series of novel chitosan derivatives: synthesis, characterization and micellar solubilization of paclitaxel. Carbohydr Polym 68:781–792

    Article  CAS  Google Scholar 

  56. Qu G, Yao Z et al (2009) PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur J Pharm Sci 37:98–105

    Article  CAS  Google Scholar 

  57. Xiangyang X, Ling L et al (2007) Preparation and characterization of N-succinyl-N'-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity. Colloids Surf B 55:222–228

    Article  CAS  Google Scholar 

  58. Li H, Liu J et al (2009) Synthesis of novel pH-sensitive chitosan graft copolymers and micellar solubilization of paclitaxel. Int J Biol Macromol 44:249–256

    Article  CAS  Google Scholar 

  59. Liu J, Li H et al (2010) Novel pH-sensitive chitosan-derived micelles loaded with paclitaxel. Carbohydr Polym 82:432–439

    Article  CAS  Google Scholar 

  60. Lao S-B, Zhang Z-X et al (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142

    Article  CAS  Google Scholar 

  61. Koutroumanis KP, Avgoustakis K et al (2010) Synthesis of cross-linked N-(2-carboxybenzyl)chitosan pH sensitive polyelectrolyte and its use for drug controlled delivery. Carbohydr Polym 82:181–188

    Article  CAS  Google Scholar 

  62. Opanasopit P, Ngawhirunpat T et al (2007) N-Phthaloylchitosan-g-mPEG design for all-trans retinoic acid-loaded polymeric micelles. Eur J Pharm Sci 30:424–431

    Article  CAS  Google Scholar 

  63. Opanasopit P, Ngawhirunpat T et al (2007) Camptothecin-incorporating N-phthaloylchitosan-g-mPEG self-assembly micellar system: effect of degree of deacetylation. Colloids Surf B 60:117–124

    Article  CAS  Google Scholar 

  64. Jiang G-B, Quan D et al (2006) Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydr Polym 66:514–520

    Article  CAS  Google Scholar 

  65. Du Y-Z, Lu P et al (2010) Stearic acid grafted chitosan oligosaccharide micelle as a promising vector for gene delivery system: factors affecting the complexation. Int J Pharm 391:260–266

    Article  CAS  Google Scholar 

  66. Du Y-Z, Wang L et al (2011) Linoleic acid-grafted chitosan oligosaccharide micelles for intracellular drug delivery and reverse drug resistance of tumor cells. Int J Biol Macromol 48(1):215–222

    Article  CAS  Google Scholar 

  67. Du Y-Z, Wang L et al (2009) Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf B 69:257–263

    Article  CAS  Google Scholar 

  68. Ye Y-Q, Yang F-L et al (2008) Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. Int J Pharm 352:294–301

    Article  CAS  Google Scholar 

  69. Li Q, Du Y-Z et al (2010) Synthesis of Lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur J Pharm Sci 41:498–507

    Article  CAS  Google Scholar 

  70. Hu F-Q, X-l Wu et al (2008) Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur J Pharm Biopharm 69:117–125

    Article  CAS  Google Scholar 

  71. Zhang J, Chen XG et al (2010) Effect of molecular weight on the oleoyl-chitosan nanoparticles as carriers for doxorubicin. Colloids Surf B 77:125–130

    Article  CAS  Google Scholar 

  72. Park K, Kim JH et al (2007) Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release 122:305–314

    Article  CAS  Google Scholar 

  73. Kim JH, Kim YS et al (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127:41–49

    Article  CAS  Google Scholar 

  74. Hwang HY, Kim IS et al (2008) Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 128:23–31

    Article  CAS  Google Scholar 

  75. Park Y, Hong HY et al (2008) A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides. J Control Release 128:217–223

    Article  CAS  Google Scholar 

  76. Yu JM, Li YH et al (2008) Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate: Preparation, characterization, and preliminary assessment as a new drug delivery carrier. Eur Polym J 44:555–565

    Article  CAS  Google Scholar 

  77. Liu Y, Tian F et al (2004) Synthesis and characterization of a brush-like copolymer of polylactide grafted onto chitosan. Carbohydr Res 339:845–851

    Article  CAS  Google Scholar 

  78. Liu L, Li Y et al (2004) Synthesis and characterization of chitosan-graft-polycaprolactone copolymers. Eur Polym J 40:2739–2744

    Article  CAS  Google Scholar 

  79. Wu H, Wang S et al (2011) Chitosan-polycaprolactone copolymer microspheres for transforming growth factor-[beta]1 delivery. Colloids Surf B 82:602–608

    Article  CAS  Google Scholar 

  80. Duan K, Zhang X et al (2010) Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin. Colloids Surf B 76:475–482

    Article  CAS  Google Scholar 

  81. Gnanou Y (1996) Design and synthesis of new model polymers. J Macromol Sci, Rev Macromol Chem Phys C36:77–117

    CAS  Google Scholar 

  82. Zohuriaan-Mehr MJ (2005) Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iran Polym J 14:235–265

    CAS  Google Scholar 

  83. Liu L, Chen LX et al (2006) Self-catalysis of phthaloylchitosan for graft copolymerization of epsilon-caprolactone with chitosan. Macromol Rapid Commun 27:1988–1994

    Article  CAS  Google Scholar 

  84. Liu L, Wang YS et al (2005) Preparation of chitosan-g-polycaprolactone copolymers through ring-opening polymerization of epsilon-caprolactone onto phthaloyl-protected chitosan. Biopolymers 78:163–170

    Article  CAS  Google Scholar 

  85. Casettari L, Vllasaliu D et al (2010) Effect of PEGylation on the toxicity and permeability enhancement of chitosan. Biomacromolecules 11:2854–2865

    Article  CAS  Google Scholar 

  86. Cai G, Jiang H et al (2009) A facile route for regioselective conjugation of organo-soluble polymers onto chitosan. Macromol Biosci 9:256–261

    Article  CAS  Google Scholar 

  87. Yoksan R, Akashi M et al (2003) Controlled hydrophobic/hydrophilicity of chitosan for spheres without specific processing technique. Biopolymers 69:386–390

    Article  CAS  Google Scholar 

  88. Gorochovceva N, Makuska R (2004) Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers. Eur Polym J 40:685–691

    Article  CAS  Google Scholar 

  89. Zhou Y, Liedberg B et al (2007) Chitosan-N-poly (ethylene oxide) brush polymers for reduced nonspecific protein adsorption. J Colloid Interface Sci 305:62–71

    Article  CAS  Google Scholar 

  90. Saito H, Wu XD et al (1997) Graft copolymers of poly(ethylene glycol) (PEG) and chitosan. Macromol Rapid Commun 18:547–550

    Article  CAS  Google Scholar 

  91. Ouchi T, Nishizawa H et al (1998) Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer 39:5171–5175

    Article  CAS  Google Scholar 

  92. Liu L, Xu X et al (2009) Synthesis and self-assembly of chitosan-based copolymer with a pair of hydrophobic/hydrophilic grafts of polycaprolactone and poly(ethylene glycol). Carbohydr Polym 75:401–407

    Article  CAS  Google Scholar 

  93. Lee J-Y, Nam S-H et al (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 78:187–197

    Article  CAS  Google Scholar 

  94. Madhumathi K, Shalumon KT et al (2009) Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 45:12–15

    Article  CAS  Google Scholar 

  95. Bhattarai N, Ramay HR et al (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624

    Article  CAS  Google Scholar 

  96. Kim MS, Choi YJ et al (2007) Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res A 83A:674–682

    Article  CAS  Google Scholar 

  97. Poon YF, Cao Y et al (2010) Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation. ACS Appl Mater Interfaces 2:2012–2025

    Article  CAS  Google Scholar 

  98. Shi W, Ji Y et al (2010) Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery. J Pharm Sci 100(3):886–895

    Article  CAS  Google Scholar 

  99. Lee SY, Pereira BP et al (2009) Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration. Acta Biomater 5:1919–1925

    Article  CAS  Google Scholar 

  100. Liang Y, Liu WS et al (2011) An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloids Surf B 82:1–7

    Article  CAS  Google Scholar 

  101. Tan HP, Chu CR et al (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  CAS  Google Scholar 

  102. Park KM, Lee SY et al (2009) Thermosensitive chitosan-pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965

    Article  CAS  Google Scholar 

  103. Wang JY, Chen L et al (2009) Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels. J Mater Sci Mater Med 20:583–590

    Article  CAS  Google Scholar 

  104. Verma IM, Somia N (1997) Gene therapy – promises, problems and prospects. Nature 389:239–242

    Article  CAS  Google Scholar 

  105. Rolland A, Felgner PL (1998) Non-viral gene delivery systems – preface. Adv Drug Deliv Rev 30:1–3

    Article  CAS  Google Scholar 

  106. Mao SR, Sun W et al (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  CAS  Google Scholar 

  107. Han HD, Mangala LS et al (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16:3910–3922

    Article  CAS  Google Scholar 

  108. Howard KA, Rahbek UL et al (2006) RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol Ther 14:476–484

    Article  CAS  Google Scholar 

  109. Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    Article  CAS  Google Scholar 

  110. Csaba N, Koping-Hoggard M et al (2009) Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm 382:205–214

    Article  CAS  Google Scholar 

  111. Thibault M, Nimesh S et al (2010) Intracellular trafficking and decondensation kinetics of chitosan-pDNA polyplexes. Mol Ther 18:1787–1795

    Article  CAS  Google Scholar 

  112. Liu X, Howard KA et al (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28:1280–1288

    Article  CAS  Google Scholar 

  113. Zhao X, Yu SB et al (2006) Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Release 112:223–228

    Article  CAS  Google Scholar 

  114. Lai WF, Lin MCM (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Release 134:158–168

    Article  CAS  Google Scholar 

  115. Moreira C, Oliveira H et al (2009) Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater 5:2995–3006

    Article  CAS  Google Scholar 

  116. Torchilin VP (2007) Nanocarriers. Pharmaceut Res 24:2333–2334

    Article  CAS  Google Scholar 

  117. Hombach J, Hoyer H et al (2008) Thiolated chitosans: development and in vitro evaluation of an oral tobramycin sulphate delivery system. Eur J Pharm Sci 33:1–8

    Article  CAS  Google Scholar 

  118. Saravanakumar G, Min KH et al (2009) Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution. J Control Release 140:210–217

    Article  CAS  Google Scholar 

  119. Rekha MR, Sharma CP (2009) Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release 135:144–151

    Article  CAS  Google Scholar 

  120. Kim J-H, Kim Y-S et al (2006) Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release 111:228–234

    Article  CAS  Google Scholar 

  121. Ngawhirunpat T, Wonglertnirant N et al (2009) Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin. Colloids Surf B 74:253–259

    Article  CAS  Google Scholar 

  122. Wang Y, Tu S et al (2010) Cholesterol succinyl chitosan anchored liposomes: preparation, characterization, physical stability, and drug release behavior. Nanomed Nanotechnol Biol Med 6:471–477

    Article  CAS  Google Scholar 

  123. Zhou Y-Y, Du Y-Z et al (2010) Preparation and pharmacodynamics of stearic acid and poly (lactic-co-glycolic acid) grafted chitosan oligosaccharide micelles for 10-hydroxycamptothecin. Int J Pharm 393:144–152

    Article  CAS  Google Scholar 

  124. Hu F-Q, Meng P et al (2008) PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy. Eur J Pharm Biopharm 70:749–757

    Article  CAS  Google Scholar 

  125. Bian F, Jia L et al (2009) Self-assembled micelles of N-phthaloylchitosan-g-polyvinylpyrrolidone for drug delivery. Carbohydr Polym 76:454–459

    Article  CAS  Google Scholar 

  126. Chen C, Cai GQ et al (2011) Chitosan-poly(epsilon-caprolactone)-poly(ethylene glycol) graft copolymers: synthesis, self-assembly, and drug release behavior. J Biomed Mater Res A 96A:116–124

    Article  CAS  Google Scholar 

  127. Cai G, Jiang H et al (2009) Synthesis, characterization and self-assemble behavior of chitosan-O-poly([epsilon]-caprolactone). Eur Polym J 45:1674–1680

    Article  CAS  Google Scholar 

  128. Lu Y, Liu L et al (2007) Novel amphiphilic ternary polysaccharide derivates chitosan-g- PCL-b-MPEG: synthesis, characterization, and aggregation in aqueous solution. Biopolymers 86:403–408

    Article  CAS  Google Scholar 

  129. Yan JH, Yang L et al (2010) Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro. J Biomater Appl 24:625–637

    Article  CAS  Google Scholar 

  130. Qi B, Yu A et al (2010) The preparation and cytocompatibility of injectable thermosensitive chitosan/poly(vinyl alcohol) hydrogel. J Huazhong Univ Sci Technolog Med Sci 30:89–93

    Article  CAS  Google Scholar 

  131. Crompton KE, Prankerd RJ et al (2005) Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem 117:47–53

    Article  CAS  Google Scholar 

  132. Ruel-Gariepy E, Shive M et al (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63

    Article  CAS  Google Scholar 

  133. Ruel-Gariepy E, Chenite A et al (2000) Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 203:89–98

    Article  CAS  Google Scholar 

  134. Kim S, Nishimoto SK et al (2010) A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31:4157–66

    Article  CAS  Google Scholar 

  135. Chenite A, Chaput C et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  CAS  Google Scholar 

  136. Song K, Qiao M et al (2010) Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. J Mater Sci Mater Med 21:2835–42

    Article  CAS  Google Scholar 

  137. Crompton KE, Goud JD et al (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28:441–449

    Article  CAS  Google Scholar 

  138. Crompton KE, Tomas D et al (2006) Inflammatory response on injection of chitosan/GP to the brain. J Mater Sci Mater Med 17:633–9

    Article  CAS  Google Scholar 

  139. Zheng L, Ao Q et al (2010) Evaluation of the chitosan/glycerol-beta-phosphate disodium salt hydrogel application in peripheral nerve regeneration. Biomed Mater 5:35003

    Article  CAS  Google Scholar 

  140. Lu S, Wang H et al (2010) Both the transplantation of somatic cell nuclear transfer- and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng A 16:1303–15

    Article  Google Scholar 

  141. Wang H, Zhang X et al (2010) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29:881–7

    Article  CAS  Google Scholar 

  142. Zuidema JM, Pap MM et al (2010) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7(4):1634–1643

    Article  CAS  Google Scholar 

  143. Ngoenkam J, Faikrua A et al (2010) Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm 391:115–24

    Article  CAS  Google Scholar 

  144. Sung JH, Hwang MR et al (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232–40

    Article  CAS  Google Scholar 

  145. Tang Y, Du Y et al (2009) A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery. J Biomed Mater Res A 91:953–63

    Google Scholar 

  146. Kim IY, Seo SJ et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  CAS  Google Scholar 

  147. Wu ZM, Zhang XG et al (2009) Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 37:198–206

    Article  CAS  Google Scholar 

  148. Liang Y, Liu W et al (2011) An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloids Surf B Biointerfaces 82:1–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Préat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riva, R., Ragelle, H., des Rieux, A., Duhem, N., Jérôme, C., Préat, V. (2011). Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering. In: Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials II. Advances in Polymer Science, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_137

Download citation

Publish with us

Policies and ethics