Skip to main content

Chitosan-Based Nanoparticles in Cancer Therapy

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 243))

Abstract

In recent years, many nanotechnology platforms in the area of medical biology, including cancer therapy, have attracted remarkable attention. In particular, research in targeted, polymeric nanoparticles for cancer therapy has increased dramatically in the past 5–10 years. However, the potential success of nanoparticles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Recent work has suggested that chitosan materials hold much promise in advancing nanoparticle-based therapeutics. The field of oncology could soon be revolutionized by novel strategies for therapy employing chitosan-based nanotherapeutics. Several aspects of cancer therapy would be involved. Chitosans can also be applied to a variety of cancer therapies to improve their safety and efficacy. Further applications of chitosans in cancer therapy are being examined. This review focuses on providing brief updates on chitosan nanoparticles for cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5-ALA:

5-Aminolaevulinic acid

CNP:

Chitosan-based nanoparticle

CPT:

Camptothecin

CS:

Chitosan

DOX:

Doxorubicin hydrochloride

DTX:

Docetaxel

EA:

Ellagic acid

ePC:

Egg phosphatidylcholine

FACN:

Folic acid conjugated chitosan nanoparticle

GC:

Glycol chitosan

Gd-NCT:

Gadolinium neutron capture therapy

GMO:

Glyceryl monooleate

HACTNP:

Hyaluronic acid-coupled chitosan nanoparticles

HGC:

Hydrophobically modified glycol chitosan

HPMC:

Hydroxypropyl methylcellulose

IL-12:

Interleukin 12

IO:

Iron oxide

MMC:

Mitomycin C

MMP2:

Matrix metalloprotease-2

MTX:

Methotrexate

NFBG:

Nonfasting blood glucose

NP:

Nanoparticle

OCH:

Oleoyl chitosan

PLGA:

Poly(lactide-co-glycolide)

PTX:

Paclitaxel

QD:

Quantum dot

RGD-CNP:

Arg-Gly-Asp peptide-labeled chitosan nanoparticle

siRNA:

Small interfering RNA

SNAP:

Sertoli cell nanoparticle protocol

SPION:

Superparamagnetic iron oxide nanoparticle

TC:

6-N,N,N-Trimethyltriazole–chitosan

TMC:

N-Trimethyl chtiosan

References

  1. Brgger I, Dubernet C, Couvreur P (2002) Adv Drug Deliv Rev 54:631

    Article  Google Scholar 

  2. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:1–10

    Article  CAS  Google Scholar 

  3. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  Google Scholar 

  4. Shenoy DB, Amiji MM (2005) Poly(ethylene oxide)-modified poly(epsiloncaprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 293(1–2):261–270

    Article  CAS  Google Scholar 

  5. Glen A (2005) The impact of nanotechnology in drug delivery: global developments, market analysis, and future prospects. Nanomarkets, Sterling, VA. Available at http://www.pharmamanufacturing.com/Media/MediaManager/NanoMarkets_Drug_Delivery_122004.pdf. Accessed 16 May 2011.

  6. Safra T et al (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11(8):1029–1033

    Article  CAS  Google Scholar 

  7. Schroeder U et al (1998) Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci 87(11):1305–1307

    Article  CAS  Google Scholar 

  8. Raghuvanshi RS et al (2002) Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm 245(1–2):109–121

    Article  CAS  Google Scholar 

  9. Kreutera J et al (1997) Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. J Control Release 49:81

    Article  Google Scholar 

  10. Fassas A et al (2003) Safety of high-dose liposomal daunorubicin (daunoxome) for refractory or relapsed acute myeloblastic leukaemia. Br J Haematol 122(1):161–163

    Article  Google Scholar 

  11. Jean-Christophe L et al (1996) Biodegradable nanoparticles – from sustained release formulations to improved site specific drug delivery. J Control Release 39:339

    Article  Google Scholar 

  12. Budhian A, Siegel SJ, Winey KI (2005) Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 22(7):773–785

    Article  CAS  Google Scholar 

  13. Gomez-Gaete C et al (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm 331(2):153–159

    Article  CAS  Google Scholar 

  14. Cheng Q et al (2008) Brain transport of neurotoxin-I with PLA nanoparticles through intranasal administration in rats: a microdialysis study. Biopharm Drug Dispos 29:431

    Article  CAS  Google Scholar 

  15. Mu L, Feng SS (2003) A novel controlled release formulation for the anticancer drug paclitaxel (taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86(1):33–48

    Article  CAS  Google Scholar 

  16. Coester C et al (2000) Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm 196(2):147–149

    Article  CAS  Google Scholar 

  17. Damge C, Maincent P, Ubrich N (2007) Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117(2):163–170

    Article  CAS  Google Scholar 

  18. Date AA, Joshi MD, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 59(6):505–521

    Article  CAS  Google Scholar 

  19. Calvo P et al (2001) PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods 111(2):151–155

    Article  CAS  Google Scholar 

  20. Ahmad Z et al (2006) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48(3):171–176

    Google Scholar 

  21. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  Google Scholar 

  22. Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  23. Illum L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331

    Article  CAS  Google Scholar 

  24. Mumper RJ, Wang JJ, Claspell JM, Rolland AP (1995) Novel polymeric condensing carriers for gene delivery. In: Proceedings of the international symposium on controlled release bioactive materials, vol 22. Controlled Release Society, Deerfield, IL, pp 178–179

    Google Scholar 

  25. Park JH, Saravanakumar G, Kim K, Kwon IC (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62(1):28–41

    Article  CAS  Google Scholar 

  26. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26(1):57–64

    Article  CAS  Google Scholar 

  27. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    Article  CAS  Google Scholar 

  28. Bellocq NC, Pun SH, Jensen GS, Davis ME (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14(6):1122–1132

    Article  CAS  Google Scholar 

  29. Betancourt T, Brown B, Brannon-Peppas L (2007) Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine 2(2):219–232

    Article  CAS  Google Scholar 

  30. Sutton D, Nasongkla N, Blanco E, Gao J (2007) Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 24(6):1029–1046

    Article  CAS  Google Scholar 

  31. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10(21):1451–1458

    Article  CAS  Google Scholar 

  32. Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8(3):214–222

    Article  CAS  Google Scholar 

  33. Flenniken ML, Liepold LO, Crowley BE, Willits DA, Young MJ, Douglas T (2005) Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. Chem Commun (Camb) (4):447–449

    Google Scholar 

  34. Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targetedphotothermal ablation of tumor cells. Int J Nanomed 1(2):149–154

    Article  CAS  Google Scholar 

  35. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605

    Article  CAS  Google Scholar 

  36. Gabizon AA (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7:223–225

    CAS  Google Scholar 

  37. Konishi M, Tabata Y, Kariya M, Suzuki A, Mandai M, Nanbu K, Takakura K, Fujii S (2003) In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel. J Control Release 92:301–313

    Article  CAS  Google Scholar 

  38. Kopecek J, Kopeckova P, Minko T, Lu Z (2000) HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 50:61–81

    Article  CAS  Google Scholar 

  39. Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103:405–418

    Article  CAS  Google Scholar 

  40. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63:8977–8983

    CAS  Google Scholar 

  41. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS (2002) PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79:123–135

    Article  CAS  Google Scholar 

  42. Chytil P, Etrych T, Konak C, Sirova M, Mrkvan T, Rihova B, Ulbrich K (2006) Properties of HPMA copolymer–doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification. J Control Release 115:26–36

    Article  CAS  Google Scholar 

  43. Mitra A, Coleman T, Borgman M, Nan A, Ghandehari H, Line BR (2006) Polymeric conjugates of mono- and bi-cyclic alphaVbeta3 binding peptides for tumor targeting. J Control Release 114:175–183

    Article  CAS  Google Scholar 

  44. Duvillard C, Romanet P, Cosmidis A, Beaudouin N, Chauffert B (2004) Phase 2 study of intratumoral cisplatin and epinephrine treatment for locally recurrent head and neck tumors. Ann Otol Rhinol Laryngol 113:229–233

    Google Scholar 

  45. Walter KA, Tamargo RJ, Olivi A, Burger PC, Brem H (1995) Intratumoral chemotherapy. Neurosurgery 37:1128–1145

    CAS  Google Scholar 

  46. Lammers T, Peschke P, Kuhnlein R, Subr V, Ulbrich K, Huber P et al (2006) Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems. Neoplasia 8:788–795

    Article  CAS  Google Scholar 

  47. Park JH, Cho YW, Chung H, Kwon IC, Jeong SY (2003) Synthesis and characterization of sugar-bearing chitosan derivatives: aqueous solubility and biodegradability. Biomacromolecules 4:1087–1091

    Article  CAS  Google Scholar 

  48. Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim IS (2003) Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5b-cholanic acid. Langmuir 19:10188–10193

    Article  CAS  Google Scholar 

  49. Son YJ, Jang JS, Cho YW, Chung H, Park RW, Kwon IC et al (2003) Biodistribution and anti-tumor activity of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release 91:135–145

    Article  CAS  Google Scholar 

  50. Kim K, Kwon S, Park JH, Chung H, Jeong SY, Kwon IC (2005) Physicochemical characterizations of self-assembled nanoparticles of glycol chitosanedeoxycholic acid conjugates. Biomacromolecules 6:1154–1158

    Article  CAS  Google Scholar 

  51. Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY (2005) Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release 103:235–243

    Article  CAS  Google Scholar 

  52. Kim K, Kim JH, Kim S, Chung H, Choi K, Kwon IC et al (2005) Selfassembled nanoparticles of bile acid-modified glycol chitosans and their applications for cancer therapy. Macromol Res 13:167–175

    CAS  Google Scholar 

  53. Kim JH, Kim YS, Kim S, Park JH, Kim K, Choi K et al (2006) Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release 111:228–234

    Article  CAS  Google Scholar 

  54. Park JH, Kwon S, Nam JO, Park RW, Chung H, Seo SB et al (2004) Selfassembled nanoparticles based on glycol chitosan bearing 5b-cholanic acid for RGD peptide delivery. J Control Release 95:579–588

    Article  CAS  Google Scholar 

  55. Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY et al (2008) Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 29:1920–1930

    Article  CAS  Google Scholar 

  56. Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS et al (2006) Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubisin: in vivo biodistribution and anti-tumor activity. Biomaterials 27:119–126

    Article  CAS  Google Scholar 

  57. Cho YW, Park SA, Han TH, Son DH, Park JS, Oh SJ et al (2007) In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications. Biomaterials 28:1236–1247

    Article  CAS  Google Scholar 

  58. Kim JH, Kim YS, Park K, Nam HY, Park JH, Choi K et al (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127:41–49

    Article  CAS  Google Scholar 

  59. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo J et al (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor-targeting in cancer therapy. J Control Release 127:208–218

    Article  CAS  Google Scholar 

  60. Lee SJ, Park K, Oh Y-K, Kwon S-H, Her S, Kim I-S, Choi K, Lee SJ, Kim H, Lee SG, Kim K, Kwon IC (2009) Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials 30:2929–2939

    Article  CAS  Google Scholar 

  61. Son YJ, Jang JS, Cho YW, Chung H, Park RW, Kwon IC, Kim IS, Park JY, Seo SB, Park CR, Jeong SY (2003) Biodistribution and anti-tumor activity of doxorubicin loaded glycol chitosan nanoaggregates by EPR effect. J Control Release 91:135–145

    Article  CAS  Google Scholar 

  62. Kim K, Kim JH, Kim S, Chung H, Choi K, Kwon IC, Park JH, Kim YS, Park RW, Kim IS, Jeong SY (2005) Self-assembled nanoparticles of bile acid-modified glycol chitosans and their applications for cancer therapy. Macromol Res 13:167–175

    CAS  Google Scholar 

  63. Kim JH, Kim YS, Kim S, Park JH, Kim K, Choi K, Chung H, Jeong SY, Park RW, Kim IS, Kwon IC (2006) Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release 111:228–234

    Article  CAS  Google Scholar 

  64. Park JH, Kwon S, Nam JO, Park RW, Chung H, Seo SB, Kim IS, Kwon IC, Jeong SY (2004) Self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid for RGD peptide delivery. J Control Release 95:579–588

    Article  CAS  Google Scholar 

  65. Park K, Kim JH, Nam YS, Lee S, Nam HY, Kim K, Park JH, Kim IS, Choi K, Kim SY, Kwon IC (2007) Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release 122:305–341

    Article  CAS  Google Scholar 

  66. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, Park RW, Kim IS, Jeong SY, Kim K, Kwon IC (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127(3):208–218

    Article  CAS  Google Scholar 

  67. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571

    Article  CAS  Google Scholar 

  68. Pillé JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J, Malvy C, Soria C (2006) Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 17(10):1019–1026

    Article  Google Scholar 

  69. Wu P, He X, Wang K, Tan W, He C, Zheng M (2009) A novel methotrexate delivery system based on chitosan-methotrexate covalently conjugated nanoparticles. J Biomed Nanotechnol 5(5):557–64

    Article  CAS  Google Scholar 

  70. Le Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, Bosman F, Buchegger F, Doelker E (2010) The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials 1(4):691–705

    Article  CAS  Google Scholar 

  71. Gao Y, Zhang Z, Chen L, Gu W, Li Y (2009) Synthesis of 6-N, N, N-trimethyltriazole chitosan via “click chemistry” and evaluation for gene delivery. Biomacromolecules 10(8):2175–2182

    Article  CAS  Google Scholar 

  72. Lozano MV, Torrecilla D, Torres D, Vidal A, Domínguez F, Alonso MJ (2008) Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules 9(8):2186–2193

    Article  CAS  Google Scholar 

  73. Trickler WJ, Nagvekar AA, Dash AK (2008) A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech 9(2):486–493

    Article  CAS  Google Scholar 

  74. Cegnar M, Kos J, Kristl J (2006) Intracellular delivery of cysteine protease inhibitor cystatin by polymeric nanoparticles. J Nanosci Nanotechnol 6(9–10):3087–3094

    Article  CAS  Google Scholar 

  75. Pamujula S, Hazari S, Bolden G, Graves RA, Chinta DM, Dash S, Kishore V, Mandal TK (2010) Preparation and in-vitro/in-vivo evaluation of surface-modified poly (lactide-co-glycolide) fluorescent nanoparticles. Pharm Pharmacol 62(4):422–429

    CAS  Google Scholar 

  76. Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F (2010) Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomedicine 6(5):689–697

    CAS  Google Scholar 

  77. Feng S, Agoulnik IU, Truong A, Li Z, Creighton CJ, Kaftanovskaya EM, Pereira R, Han HD, Lopez-Berestein G, Klonisch T, Ittmann MM, Sood AK, Agoulnik AI (2010) Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocr Relat Cancer 17(4):1021–1033

    Article  CAS  Google Scholar 

  78. Lee CM, Jeong HJ, Cheong SJ, Kim EM, Kim DW, Lim ST, Sohn MH (2010) Prostate cancer-targeted imaging using magnetofluorescent polymeric nanoparticles functionalized with bombesin. Pharm Res 27(4):712–721

    Article  CAS  Google Scholar 

  79. Springate CM, Jackson JK, Gleave ME, Burt HM (2008) Clusterin antisense complexed with chitosan for controlled intratumoral delivery. Int J Pharm 350(1–2):53–64

    Article  CAS  Google Scholar 

  80. Springate CM, Jackson JK, Gleave ME, Burt HM (2005) Efficacy of an intratumoral controlled release formulation of clusterin antisense oligonucleotide complexed with chitosan containing paclitaxel or docetaxel in prostate cancer xenograft models. Cancer Chemother Pharmacol 56(3):239–247

    Article  CAS  Google Scholar 

  81. Seong SK, Ryu JM, Shin DH, Bae EJ, Shigematsu A, Hatori Y, Nishigaki J, Kwak C, Lee SE, Park KB (2005) Biodistribution and excretion of radioactivity after the administration of 166Ho-chitosan complex (DW-166HC) into the prostate of rat. Eur J Nucl Med Mol Imaging 32(8):910–917

    Article  CAS  Google Scholar 

  82. Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, Nordquist RE (2002) Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Res 62(15):4295–4299

    CAS  Google Scholar 

  83. Kumar A, Glaum M, El-Badri N, Mohapatra S, Haller E, Park S, Patrick L, Nattkemper L, Vo D, Cameron DF (2010) Initial observations of cell mediated drug delivery to the deep lung. Cell Transplant (in press). doi:10.3727/096368910X536491

    Google Scholar 

  84. Zhang J, Chen XG, Sun GZ, Huang L, Cheng XJ (2010) Effect of molecular weight on the oleoyl-chitosan nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces 77(2):125–130

    Article  CAS  Google Scholar 

  85. Beisner J, Dong M, Taetz S, Nafee N, Griese EU, Schaefer U, Lehr CM, Klotz U, Mürdter TE (2010) Nanoparticle mediated delivery of 2′-O-methyl-RNA leads to efficient telomerase inhibition and telomere shortening in human lung cancer cells. Lung Cancer 68(3):346–354

    Article  Google Scholar 

  86. Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y (2009) Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells. Int J Pharm 382(1–2):198–204

    Article  CAS  Google Scholar 

  87. Yang R, Shim WS, Cui FD, Cheng G, Han X, Jin QR, Kim DD, Chung SJ, Shim CK (2009) Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm 371(1–2):142–147

    Article  CAS  Google Scholar 

  88. Zhang J, Chen XG, Liu CS, Park HJ (2009) Investigation of polymeric amphiphilic nanoparticles as antitumor drug carriers. J Mater Sci Mater Med 20(4):991–999

    Article  CAS  Google Scholar 

  89. Bae KH, Ha YJ, Kim C, Lee KR, Park TG (2008) Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles. J Biomater Sci Polym Ed 19(12):1571–1583

    Article  CAS  Google Scholar 

  90. Taetz S, Nafee N, Beisner J, Piotrowska K, Baldes C, Mürdter TE, Huwer H, Schneider M, Schaefer UF, Klotz U, Lehr CM (2009) The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2′-O-methyl-RNA directed against telomerase in lung cancer cells. Eur J Pharm Biopharm 72(2):358–369

    Article  CAS  Google Scholar 

  91. Yang R, Yang SG, Shim WS, Cui F, Cheng G, Kim IW, Kim DD, Chung SJ, Shim CK (2009) Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci 98(3):970–984

    Article  CAS  Google Scholar 

  92. Hwang HY, Kim IS, Kwon IC, Kim YH (2008) Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 128(1):23–31

    Article  CAS  Google Scholar 

  93. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM (2007) Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine 3(3):173–183

    CAS  Google Scholar 

  94. Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B, Bignardi G, De Totero D, Aiello C, Viale M (2007) Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. J Control Release 121(1–2):110–123

    Article  CAS  Google Scholar 

  95. Liu X, Howard KA, Dong M, Andersen MØ, Rahbek UL, Johnsen MG, Hansen OC, Besenbacher F, Kjems J (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28(6):1280–1288

    Article  CAS  Google Scholar 

  96. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, Nam EJ, Mora EM, Stone RL, Lu C, Lee SJ, Roh JW, Nick AM, Lopez-Berestein G, Sood AK (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922

    Article  CAS  Google Scholar 

  97. Liu Q, Ge YQ, Li FQ, Zhang SX, Gu N, Wang ZQ, Lu GM (2009) Biological activity assays and cellular imaging of anti-human sperm protein 17 immunomagnetic nanoparticles. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 25(11):987–990

    CAS  Google Scholar 

  98. Yang Y, Wang Z, Li M, Lu S (2009) Chitosan/pshRNA plasmid nanoparticles targeting MDR1 gene reverse paclitaxel resistance in ovarian cancer cells. J Huazhong Univ Sci Technol Med Sci 29(2):239–242

    Article  CAS  Google Scholar 

  99. Lim Soo P, Cho J, Grant J, Ho E, Piquette-Miller M, Allen C (2008) Drug release mechanism of paclitaxel from a chitosan-lipid implant system: effect of swelling, degradation and morphology. Eur J Pharm Biopharm 69(1):149–57

    Article  CAS  Google Scholar 

  100. Grant J, Blicker M, Piquette-Miller M, Allen C (2005) Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel. J Pharm Sci 94(7):1512–1527

    Article  CAS  Google Scholar 

  101. Zhou L, Du L, Chen X, Li X, Li Z, Wen Y, Li Z, He X, Wei Y, Zhao X, Qian Z (2010) The antitumor and antimetastatic effects of N-trimethyl chitosan-encapsulated camptothecin on ovarian cancer with minimal side effects. Oncol Rep 24(4):941–948

    CAS  Google Scholar 

  102. Li X, Kong X, Zhang J, Wang Y, Wang Y, Shi S, Guo G, Luo F, Zhao X, Wei Y, Qian Z (2011) A novel composite hydrogel based on chitosan and inorganic phosphate for local drug delivery of camptothecin nanocolloids. J Pharm Sci 100(1):232–241

    Article  CAS  Google Scholar 

  103. Qu G, Yao Z, Zhang C, Wu X, Ping Q (2009) PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur J Pharm Sci 37(2):98–105

    Article  CAS  Google Scholar 

  104. Vassileva V, Grant J, De Souza R, Allen C, Piquette-Miller M (2007) Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemother Pharmacol 60(6):907–914

    Article  CAS  Google Scholar 

  105. Lee D, Lockey R, Mohapatra S (2006) Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans. J Nanosci Nanotechnol 6(9–10):2860–2866

    Article  CAS  Google Scholar 

  106. Zaharoff DA, Hance KW, Rogers CJ, Schlom J, Greiner JW (2010) Intratumoral immunotherapy of established solid tumors with chitosan/IL-12. J Immunother 33(7):697–705

    Article  CAS  Google Scholar 

  107. Trickler WJ, Khurana J, Nagvekar AA, Dash AK (2010) Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment. AAPS PharmSciTech 11(1):392–401

    Article  CAS  Google Scholar 

  108. Yang KC, Wu CC, Lin FH, Qi Z, Kuo TF, Cheng YH, Chen MP, Sumi S (2008) Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation 15(6):407–416

    Article  Google Scholar 

  109. Yang KC, Wu CC, Cheng YH, Kuo TF, Lin FH (2008) Chitosan/gelatin hydrogel prolonged the function of insulinoma/agarose microspheres in vivo during xenogenic transplantation. Transplant Proc 40(10):3623–3626

    Article  CAS  Google Scholar 

  110. Yakovlev GI, Mitkevich VA, Struminskaya NK, Varlamov VP, Makarov AA (2007) Low molecular weight chitosan is an efficient inhibitor of ribonucleases. Biochem Biophys Res Commun 357(3):584–588

    Article  CAS  Google Scholar 

  111. Kanthamneni N, Chaudhary A, Wang J, Prabhu S (2010) Nanoparticulate delivery of novel drug combination regimens for the chemoprevention of colon cancer. Int J Oncol 37(1):177–185

    CAS  Google Scholar 

  112. Jain A, Jain SK, Ganesh N, Barve J, Beg AM (2010) Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine 6(1):179–190

    CAS  Google Scholar 

  113. Jain A, Jain SK (2008) In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci 35(5):404–416

    Article  CAS  Google Scholar 

  114. Yang SJ, Shieh MJ, Lin FH, Lou PJ, Peng CL, Wei MF, Yao CJ, Lai PS, Young TH (2009) Colorectal cancer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles. Cancer Lett 273(2):210–220

    Article  CAS  Google Scholar 

  115. Park JS, Koh YS, Bang JY, Jeong YI, Lee JJ (2008) Antitumor effect of all-trans retinoic acid-encapsulated nanoparticles of methoxy poly(ethylene glycol)-conjugated chitosan against CT-26 colon carcinoma in vitro. J Pharm Sci 97(9):4011–4019

    Article  CAS  Google Scholar 

  116. Qi L, Xu Z, Jiang X, Li Y, Wang M (2005) Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett 15(5):1397–1399

    Article  CAS  Google Scholar 

  117. Yang SJ, Lin FH, Tsai KC, Wei MF, Tsai HM, Wong JM, Shieh MJ (2010) Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug Chem 21(4):679–689

    Article  CAS  Google Scholar 

  118. Ji AM, Su D, Che O, Li WS, Sun L, Zhang ZY, Yang B, Xu F (2009) Functional gene silencing mediated by chitosan/siRNA nanocomplexes. Nanotechnology 20(40):405103

    Article  CAS  Google Scholar 

  119. Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B (2010) Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26(8):5428–5434

    Article  CAS  Google Scholar 

  120. Yang SJ, Lin FH, Tsai HM, Lin CF, Chin HC, Wong JM, Shieh MJ (2011) Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials 32(8):2174–2182

    Article  CAS  Google Scholar 

  121. Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, Kim K, Park JH, Chi DY, Park RW, Kim IS, Choi K, Kwon IC (2008) Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 29(12):1920–1930

    Article  CAS  Google Scholar 

  122. Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y (2002) In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm 53(1):57–63

    Article  CAS  Google Scholar 

  123. Wu W, Shen J, Banerjee P, Zhou S (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381

    Article  CAS  Google Scholar 

  124. Liu SS, Ben SB, Zhao HL (2008) Construction of apoptin gene delivery system and its effect on apoptosis of A375 cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 24(2):133–135

    CAS  Google Scholar 

  125. Hyung Park J, Kwon S, Lee M, Chung H, Kim JH, Kim YS, Park RW, Kim IS, Bong Seo S, Kwon IC, Young Jeong S (2006) Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials 27(1):119–26

    Article  CAS  Google Scholar 

  126. Kabbaj M, Phillips NC (2001) Anticancer activity of mycobacterial DNA: effect of formulation as chitosan nanoparticles. J Drug Target 9(5):317–328

    Article  CAS  Google Scholar 

  127. Tokumitsu H, Hiratsuka J, Sakurai Y, Kobayashi T, Ichikawa H, Fukumori Y (2000) Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett 150(2):177–182

    Article  CAS  Google Scholar 

  128. Tokumitsu H, Ichikawa H, Fukumori Y (1999) Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res 16(12):1830–1835

    Article  CAS  Google Scholar 

  129. Wang R, Huang J, Wei M, Zeng X (2010) The synergy of 6-O-sulfation and N- or 3-O-sulfation of chitosan is required for efficient inhibition of P-selectin-mediated human melanoma A375 cell adhesion. Biosci Biotechnol Biochem 74(8):1697–1700

    Article  CAS  Google Scholar 

  130. Liu XP, Zhou ST, Li XY, Chen XC, Zhao X, Qian ZY, Zhou LN, Li ZY, Wang YM, Zhong Q, Yi T, Li ZY, He X, Wei YQ (2010) Anti-tumor activity of N-trimethyl chitosan-encapsulated camptothecin in a mouse melanoma model. J Exp Clin Cancer Res 29:76

    Article  CAS  Google Scholar 

  131. Mandala Rayabandla SK, Aithal K, Anandam A, Shavi G, Nayanabhirama U, Arumugam K, Musmade P, Bhat K, Bola Sadashiva SR (2010) Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv 17(3):103–13

    Article  CAS  Google Scholar 

  132. Kim S, Liu Y, Gaber MW, Bumgardner JD, Haggard WO, Yang Y (2009) Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J Biomed Mater Res B Appl Biomater 90(1):145–155

    Google Scholar 

  133. Bae KH, Moon CW, Lee Y, Park TG (2009) Intracellular delivery of heparin complexed with chitosan-g-poly(ethylene glycol) for inducing apoptosis. Pharm Res 26(1):93–100

    Article  CAS  Google Scholar 

  134. Gorzelanny C, Pöppelmann B, Strozyk E, Moerschbacher BM, Schneider SW (2007) Specific interaction between chitosan and matrix metalloprotease 2 decreases the invasive activity of human melanoma cells. Biomacromolecules 8(10):3035–3040

    Article  CAS  Google Scholar 

  135. Hojo K, Maeda M, Mu Y, Kamada H, Tsutsumi Y, Nishiyama Y, Yoshikawa T, Kurita K, Block LH, Mayumi T, Kawasaki K (2000) Facile synthesis of a chitosan hybrid of a laminin-related peptide and its antimetastatic effect in mice. J Pharm Pharmacol 52(1):67–73

    Article  CAS  Google Scholar 

  136. Bilensoy E, Sarisozen C, Esendağli G, Doğan AL, Aktaş Y, Sen M, Mungan NA (2009) Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm 371(1–2):170–176

    Article  CAS  Google Scholar 

  137. Ghosn B, van de Ven AL, Tam J, Gillenwater A, Sokolov KV, Richards-Kortum R, Roy K (2010) Efficient mucosal delivery of optical contrast agents using imidazole-modified chitosan. J Biomed Opt 15(1):015003

    Article  CAS  Google Scholar 

  138. Zaharoff DA, Hoffman BS, Hooper HB, Benjamin CJ Jr, Khurana KK, Hance KW, Rogers CJ, Pinto PA, Schlom J, Greiner JW (2009) Intravesical immunotherapy of superficial bladder cancer with chitosan/interleukin-12. Cancer Res 69(15):6192–6199

    Article  CAS  Google Scholar 

  139. Oztürk E, Eroğlu M, Ozdemir N, Denkbaş EB (2004) Bioadhesive drug carriers for postoperative chemotherapy in bladder cancer. Adv Exp Med Biol 553:231–242

    Google Scholar 

  140. Eroğlu M, Irmak S, Acar A, Denkbaş EB (2002) Design and evaluation of a mucoadhesive therapeutic agent delivery system for postoperative chemotherapy in superficial bladder cancer. Int J Pharm 235(1–2):51–59

    Article  Google Scholar 

  141. Lekka M, Laidler P, Ignacak J, Łabedz M, Lekki J, Struszczyk H, Stachura Z, Hrynkiewicz AZ (2001) The effect of chitosan on stiffness and glycolytic activity of human bladder cells. Biochim Biophys Acta 1540(2):127–136

    Article  CAS  Google Scholar 

  142. Bharali DJ, Mousa SA (2010) Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol Ther 128(2):324–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of DST fast track scheme to VKL (Ref No SERC/LS-0558/2009), and to RJ (Ref No SR/FT/CS-005/2008) is gratefully acknowledged. SVN is also grateful to DST, India, which partially supported this work, under a center grant of the Nanoscience and Nanotechnology Initiative program monitored by C. N. R. Rao. The author RJ is also grateful to Department of Biotechnology (DBT), Govt. of India for providing research support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinoth-Kumar Lakshmanan or Rangasamy Jayakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lakshmanan, VK., Snima, K.S., Bumgardner, J.D., Nair, S.V., Jayakumar, R. (2011). Chitosan-Based Nanoparticles in Cancer Therapy. In: Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials I. Advances in Polymer Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_132

Download citation

Publish with us

Policies and ethics