Skip to main content

Chitosan: Its Applications in Drug-Eluting Devices

  • Chapter
  • First Online:
Book cover Chitosan for Biomaterials I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 243))

Abstract

Chitosan, a naturally occurring polysaccharide derived from chitin, has been widely applied in drug delivery, tissue regeneration, wound healing, blood coagulation, and immunostimulation due to its well-known biocompatibility and biodegradability. Additionally, because of its unique cationic nature and the gel/film/matrix-forming capabilities, chitosan has been considered as a promising material for the development of medical devices. The current concept for developing medical devices often comprises the functionality of controlled release of bioactive agents such as drugs, proteins, or growth factors in order to fulfill their clinical applications. However, in biological fluids, the hydrophilic chitosan matrices may swell and deform dramatically through hydration, thus resulting in a rapid loss of the encapsulated drugs from the delivery device. Considerable efforts have therefore been made in chemically modifying chitosan to improve its physical properties and functionality. This review article focuses on the versatile modifications of chitosan matrices (ionic or chemical crosslinking) and the most recent research activities in drug-eluting devices, including vascular stents, artificial skin, bone grafts, and nerve guidance conduits.

Graphical Abstract

The authors Mei-Chin Chen and Fwu-Long Mi contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Synowiecki J, Al-Khateeb NA (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43:145–171

    CAS  Google Scholar 

  2. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  3. Shi C, Zhu Y, Ran X et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    CAS  Google Scholar 

  4. Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    CAS  Google Scholar 

  5. Hsieh CY, Tsai SP, Wang DM et al (2005) Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials 26:5617–5623

    CAS  Google Scholar 

  6. Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    CAS  Google Scholar 

  7. Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52:105–115

    CAS  Google Scholar 

  8. Mi FL, Shyu SS, Wu YB et al (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    CAS  Google Scholar 

  9. Ishihara M, Nakanishi K, Ono K et al (2002) Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–840

    CAS  Google Scholar 

  10. Amidi M, Mastrobattista E, Jiskoot W et al (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62:59–82

    CAS  Google Scholar 

  11. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    CAS  Google Scholar 

  12. Ta HT, Dass CR, Dunstan DE (2008) Injectable chitosan hydrogels for localised cancer therapy. J Control Release 126:205–216

    CAS  Google Scholar 

  13. Park JH, Saravanakumar G, Kim K et al (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41

    CAS  Google Scholar 

  14. Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653

    CAS  Google Scholar 

  15. Kim TH, Jiang HL, Jere D et al (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32:726–753

    CAS  Google Scholar 

  16. Liu X, Howard KA, Dong M et al (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28:1280–1288

    CAS  Google Scholar 

  17. Peng SF, Yang MJ, Su CJ et al (2009) Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials 30:1797–1808

    CAS  Google Scholar 

  18. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    CAS  Google Scholar 

  19. Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971

    CAS  Google Scholar 

  20. Tharanathan RN, Kittur FS (2003) Chitin – the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    CAS  Google Scholar 

  21. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908

    CAS  Google Scholar 

  22. Muzzarelli RAA (1977) Chitin. Pergamon Press, Oxford, 140

    Google Scholar 

  23. Ning M, Wang Q, Sun SL et al (2004) Progress in chemical modification of chitin and chitosan. Prog Chem 16:643–653

    Google Scholar 

  24. Kumar MN, Muzzarelli RA, Muzzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Google Scholar 

  25. Muzzarelli RAA (1985) Chitin. In: Kroschwitz JI (eds) Encyclopedia of Polymer Science and Technology, vol 3. Wiley, New York, p 430

    Google Scholar 

  26. Van der Lubben IM, Verhoef JC, Borchard G et al (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207

    Google Scholar 

  27. Jiang GB, Quan DP, Liao KR et al (2006) Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohyd Polym 66:514–520

    CAS  Google Scholar 

  28. Jiang GB, Quan D, Liao K et al (2006) Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol Pharm 3:152–160

    CAS  Google Scholar 

  29. Hu Y, Du YM, Yang JH et al (2007) Self-aggregation and antibacterial activity of N-acylated chitosan. Polymer 48:3098–3106

    CAS  Google Scholar 

  30. Felix L, Hernandez J, Arguelles-Monal WM et al (2005) Kinetics of gelation and thermal sensitivity of N-isobutyryl chitosan hydrogels. Biomacromolecules 6:2408–2415

    CAS  Google Scholar 

  31. Zhang J, Chen XG, Li YY et al (2007) Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed Nanotechnol 3:258–265

    CAS  Google Scholar 

  32. Tong YJ, Wang SF, Xu JW et al (2005) Synthesis of O, O'-dipalmitoyl chitosan and its amphiphilic properties and capability of cholesterol absorption. Carbohyd Polym 60:229–233

    CAS  Google Scholar 

  33. Freier T, Koh HS, Kazazian K et al (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26:5872–5878

    CAS  Google Scholar 

  34. Mi FL, Peng CK, Huang MF et al (2005) Preparation and characterization of N-acetylchitosan, N-propionylchitosan and N-butyrylchitosan microspheres for controlled release of 6-mercaptourine. Carbohyd Polym 60:219–227

    CAS  Google Scholar 

  35. Sashiwa H, Kawasaki N, Nakayama A et al (2002) Chemical modification of chitosan. 13. (1) Synthesis of organosoluble, palladium adsorbable, and biodegradable chitosan derivatives toward the chemical plating on plastics. Biomacromolecules 3:1120–1125

    CAS  Google Scholar 

  36. Wu YS, Hisada K, Maeda S et al (2007) Fabrication and structural characterization of the Langmuir-Blodgett films from a new chitosan derivative containing cinnamate chromophores. Carbohyd Polym 68:766–772

    CAS  Google Scholar 

  37. Xu C, Pan H, Jiang H et al (2008) Biocompatibility evaluation of N, O-hexanoyl chitosan as a biodegradable hydrophobic polycation for controlled drug release. J Mater Sci Mater Med 19:2525–2532

    CAS  Google Scholar 

  38. Chiu YL, Chen SC, Su CJ et al (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30:4877–4888

    CAS  Google Scholar 

  39. Chiu YL, Chen MC, Chen CY et al (2009) Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation. Soft Matter 5:962–965

    CAS  Google Scholar 

  40. Chiu YL, Ho YC, Chen YM et al (2010) The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J Control Release 146:152–159

    CAS  Google Scholar 

  41. Domard A, Rinaudo M, Terrassin C (1986) New method for the quaternization of chitosan. Int J Biol Macromol 8:105–107

    CAS  Google Scholar 

  42. Thanou M, Verhoef JC, Marbach P et al (2000) Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci 89:951–957

    CAS  Google Scholar 

  43. Di Colo G, Burgalassi S, Zambito Y et al (2004) Effects of different N-trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation. J Pharm Sci 93:2851–2862

    Google Scholar 

  44. Hamman JH, Stander M, Kotze AF (2002) Effect of the degree of quaternisation of N-trimethyl chitosan chloride on absorption enhancement: in vivo evaluation in rat nasal epithelia. Int J Pharm 232:235–242

    CAS  Google Scholar 

  45. Boonyo W, Junginger HE, Waranuch N et al (2007) Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J Control Release 121:168–175

    CAS  Google Scholar 

  46. Amidi M, Romeijn SG, Borchard G et al (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 111:107–116

    CAS  Google Scholar 

  47. Mi FL, Wu YY, Lin YH et al (2008) Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 19:1248–1255

    CAS  Google Scholar 

  48. Zheng Y, Cai Z, Song XR et al (2009) Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. J Drug Target 17:294–303

    CAS  Google Scholar 

  49. Xu Y, Du Y, Huang R et al (2003) Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials 24:5015–5022

    CAS  Google Scholar 

  50. Hall LD, Yalpani MD (1980) Formation of branched-chain, soluble polysaccharides from chitosan. J Chem Soc Chem Commun 38:1153–1154

    Google Scholar 

  51. Morimoto M, Saimoto H, Usui H et al (2001) Biological activities of carbohydrate-branched chitosan derivatives. Biomacromolecules 2:1133–1136

    CAS  Google Scholar 

  52. Wu CH, Wu GY (1998) Receptor-mediated delivery of foreign genes to hepatocytes. Adv Drug Deliv Rev 29:243–248

    CAS  Google Scholar 

  53. Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51:531–554

    CAS  Google Scholar 

  54. Kato Y, Onishi H, Machida Y (2001) Biological characteristics of lactosaminated N-succinyl-chitosan as a liver-specific drug carrier in mice. J Control Release 70:295–307

    CAS  Google Scholar 

  55. Park IK, Yang J, Jeong HJ et al (2003) Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 24:2331–2337

    CAS  Google Scholar 

  56. Murata J, Ohya Y, Ouchi T (1997) Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool. Carbohyd Polym 32:105–109

    CAS  Google Scholar 

  57. Mi FL, Wu YY, Chiu YL et al (2007) Synthesis of a novel glycoconjugated chitosan and preparation of its derived nanoparticles for targeting HepG2 cells. Biomacromolecules 8:892–898

    CAS  Google Scholar 

  58. Kim TH, Park IK, Nah JW et al (2004) Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 25:3783–3792

    CAS  Google Scholar 

  59. Park IK, Ihm JE, Park YH et al (2003) Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier Preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1). J Control Release 86:349–359

    CAS  Google Scholar 

  60. Jayakumar R, Prabaharan M, Nair SV et al (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55:675–709

    CAS  Google Scholar 

  61. Kim CH, Choi KS (1998) Synthesis and properties of carboxyalkyl chitosan derivatives. J Ind Eng Chem 4:19–25

    CAS  Google Scholar 

  62. Muzzarelli RAA, Tanfani F, Emanuelli M et al (1982) N-(carboxymethylidene)chitosans and N-(carboxymethyl)-chitosans – novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr Res 107:199–214

    CAS  Google Scholar 

  63. Muzzarelli RAA (1988) Carboxymethylated chitins and chitosans. Carbohyd Polym 8:1–21

    CAS  Google Scholar 

  64. Pavlov GM, Korneeva EV, Harding SE et al (1998) Dilute solution properties of carboxymethylchitins in high ionic-strength solvent. Polymer 39:6951–6961

    CAS  Google Scholar 

  65. Hayes ER (1986) N,O-carboxymethyl chitosan and preparative methods therefor. US Patent 4,619,995

    Google Scholar 

  66. Chen LY, Tian ZG, Du YM (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732

    CAS  Google Scholar 

  67. Lin YH, Liang HF, Chung CK et al (2005) Physically crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26:2105–2113

    CAS  Google Scholar 

  68. Chen SC, Wu YC, Mi FL et al (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300

    CAS  Google Scholar 

  69. Yin LC, Fei LK, Cui FY et al (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266

    CAS  Google Scholar 

  70. Kato Y, Onishi H, Machida Y (2002) Depolymerization of N-succinyl-chitosan by hydrochloric acid. Carbohydr Res 337:561–562

    CAS  Google Scholar 

  71. Zhu AP, Chen T, Yuan LH et al (2006) Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres. Carbohyd Polym 66:274–279

    CAS  Google Scholar 

  72. Kato Y, Onishi H, Machida Y (2000) Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer. Biomaterials 21:1579–1585

    CAS  Google Scholar 

  73. Kato Y, Onishi H, Machida Y (2004) N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials 25:907–915

    CAS  Google Scholar 

  74. Jayakumar R, Nwe N, Tokura S et al (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40:175–181

    CAS  Google Scholar 

  75. Vikhoreva G, Bannikova G, Stolbushkina P et al (2005) Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohydr Polym 62:327–332

    CAS  Google Scholar 

  76. Je JY, Park PJ, Kim SK (2005) Prolyl endopeptidase inhibitory activity of chitosan sulfates with different degree of deacetylation. Carbohydr Polym 60:553–556

    CAS  Google Scholar 

  77. Can Z, Ping QN, Zhang HJ et al (2003) Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohyd Polym 54:137–141

    Google Scholar 

  78. Xing RE, Liu S, Yu HH et al (2005) Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro. Carbohyd Polym 61:148–154

    CAS  Google Scholar 

  79. Horton D, Just EK (1973) Preparation from chitin of (1-4)-2-amino-2-deoxy-beta-D-glucopyranuronan and its 2-sulfoamino analog having blood anticoagulant properties. Carbohydr Res 29:173–179

    CAS  Google Scholar 

  80. Whistler RL, Kosik M (1971) Anticoagulant activity of oxidized and N-sulfated and O-sulfated chitosan. Arch Biochem Biophys 142:106–110

    CAS  Google Scholar 

  81. Muzzarelli RAA, Tanfani F, Emanuelli M et al (1986) In: Muzzarelli R, Jeuniaux C, Goodday WG (eds) Chitin in nature and technology. Plenum, New York, p 469

    Google Scholar 

  82. Zhou HJ, Qian JC, Wang J et al (2009) Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials 30:1715–1724

    CAS  Google Scholar 

  83. Ho YC, Wu SJ, Mi FL et al (2010) Thiol-modified chitosan sulfate nanoparticles for protection and release of basic fibroblast growth factor. Bioconjug Chem 21:28–38

    CAS  Google Scholar 

  84. Kast CE, Bernkop-Schnurch A (2001) Thiolated polymers – thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22:2345–2352

    CAS  Google Scholar 

  85. Kast CE, Bernkop-Schnurch A (2002) Polymer-cysteamine conjugates: new mucoadhesive excipients for drug delivery? Int J Pharm 234:91–99

    CAS  Google Scholar 

  86. Bernkop-Schnurch A, Hornof M, Zoidl T (2003) Thiolated polymers-thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharm 260:229–237

    CAS  Google Scholar 

  87. Kafedjiiski K, Krauland AH, Hoffer MH et al (2005) Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 26:819–826

    CAS  Google Scholar 

  88. Sakloetsakun D, Hombach JM, Bernkop-Schnurch A (2009) In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials 30:6151–6157

    CAS  Google Scholar 

  89. Hassan EE, Gallo JM (1990) A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharmaceut Res 7:491–495

    CAS  Google Scholar 

  90. Leitner VM, Walker GF, Bernkop-Schnurch A (2003) Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm 56:207–214

    CAS  Google Scholar 

  91. Foger F, Schmitz T, Bernkop-Schnurch A (2006) In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials 27:4250–4255

    Google Scholar 

  92. Werle M, Hoffer M (2006) Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J Control Release 111:41–46

    CAS  Google Scholar 

  93. Bernkop-Schnurch A, Kast CE, Guggi D (2003) Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release 93:95–103

    CAS  Google Scholar 

  94. Shu XZ, Zhu KJ (2002) Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm 233:217–225

    CAS  Google Scholar 

  95. Dambies L, Vincent T, Domard A et al (2001) Preparation of chitosan gel beads by ionotropic molybdate gelation. Biomacromolecules 2:1198–1205

    CAS  Google Scholar 

  96. Brack HP, Tirmizi SA, Risen WM (1997) A spectroscopic and viscometric study of the metal ion-induced gelation of the biopolymer chitosan. Polymer 38:2351–2362

    CAS  Google Scholar 

  97. Mi FL, Shyu SS, Lee ST et al (1999) Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. J Polym Sci Pol Phys 37:1551–1564

    CAS  Google Scholar 

  98. Mi FL, Shyu SS, Wong TB et al (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J Appl Polym Sci 74:1093–1107

    CAS  Google Scholar 

  99. Aydin Z, Akbuga J (1996) Chitosan beads for the delivery of salmon calcitonin: preparation and release characteristics. Int J Pharm 131:101–103

    CAS  Google Scholar 

  100. Shu XZ, Zhu KJ (2000) A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm 201:51–58

    CAS  Google Scholar 

  101. Bodmeier R, Oh KH, Pramar Y (1989) Preparation and evaluation of drug-containing chitosan beads. Drug Dev Ind Pharm 15:1475–1494

    CAS  Google Scholar 

  102. Janes KA, Fresneau MP, Marazuela A et al (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73:255–267

    CAS  Google Scholar 

  103. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C et al (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    CAS  Google Scholar 

  104. Peppas NA, Bures P, Leobandung W et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    CAS  Google Scholar 

  105. Mi FL, Kuan CY, Shyu SS et al (2000) The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohyd Polym 41:389–396

    CAS  Google Scholar 

  106. Gupta KC, Jabrail FH (2006) Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohyd Polym 66:43–54

    CAS  Google Scholar 

  107. Arguelles-Monal W, Goycoolea FM, Peniche C et al (1998) Rheological study of the chitosan glutaraldehyde chemical gel system. Polym Gels Netw 6:429–440

    CAS  Google Scholar 

  108. Hassan EE, Parish RC, Gallo JM (1992) Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm Res 9:390–397

    CAS  Google Scholar 

  109. Jameela SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775

    CAS  Google Scholar 

  110. Chung TW, Lin SY, Liu DZ et al (2009) Sustained release of 5-FU from poloxamer gels interpenetrated by crosslinking chitosan network. Int J Pharm 382:39–44

    CAS  Google Scholar 

  111. Thanoo BC, Sunny MC, Jayakrishnan A (1992) Cross-linked chitosan microspheres: preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J Pharm Pharmacol 44:283–286

    CAS  Google Scholar 

  112. Jameela SR, Kumary TV, Lal AV et al (1998) Progesterone-loaded chitosan microspheres: a long acting biodegradable controlled delivery system. J Control Release 52:17–24

    CAS  Google Scholar 

  113. Gupta KC, Jabrail FH (2006) Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr Res 341:744–756

    CAS  Google Scholar 

  114. Dini E, Alexandridou S, Kiparissides C (2003) Synthesis and characterization of cross-linked chitosan microspheres for drug delivery applications. J Microencapsul 20:375–385

    CAS  Google Scholar 

  115. Fujikawa S, Yokota T, Koga K et al (1987) The continuous hydrolysis of geniposide to genipin using immobilized beta-glucosidase on calcium alginate gel. Biotechnol Lett 9:697–702

    CAS  Google Scholar 

  116. Sung HW, Huang RN, Huang LL et al (1999) In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed 10:63–78

    CAS  Google Scholar 

  117. Mi FL, Tan YC, Liang HC et al (2001) In vitro evaluation of a chitosan membrane cross-linked with genipin. J Biomater Sci Polym Ed 12:835–850

    CAS  Google Scholar 

  118. Mi FL, Tan YC, Liang HF et al (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191

    CAS  Google Scholar 

  119. Mi FL, Sung HW, Shyu SS (2000) Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J Polym Sci Pol Chem 38:2804–2814

    CAS  Google Scholar 

  120. Mi FL, Shyu SS, Peng CK (2005) Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polym Sci Pol Chem 43:1985–2000

    CAS  Google Scholar 

  121. Mi FL, Sung HW, Shyu SS (2002) Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohyd Polym 48:61–72

    CAS  Google Scholar 

  122. Liu BS, Huang TB, Yao CH et al (2009) Novel wound dressing of non-woven fabric coated with genipin-crosslinked chitosan and bletilla striata herbal extract. J Med Biol Eng 29:60–67

    Google Scholar 

  123. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym 77:1–9

    CAS  Google Scholar 

  124. Mi FL, Sung HW, Shyu SS et al (2003) Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer 44:6521–6530

    CAS  Google Scholar 

  125. Wei YC, Hudson SM, Mayer JM et al (1992) The crosslinking of chitosan fibers. J Polym Sci A Polym Chem 30:2187–2193

    CAS  Google Scholar 

  126. Welsh ER, Price RR (2003) Chitosan cross-linking with a water-soluble, blocked diisocyanate. 2. Solvates and hydrogels. Biomacromolecules 4:1357–1361

    CAS  Google Scholar 

  127. Roy SK, Todd JG, Glasser WG (1998) Crosslinked hydrogel beads from chitosan. US Patent 5,770,712

    Google Scholar 

  128. Wang SL, Liu WS, Han BQ et al (2009) Study on a hydroxypropyl chitosan-gelatin based scaffold for corneal stroma tissue engineering. Appl Surf Sci 255:8701–8705

    CAS  Google Scholar 

  129. Subramanian A, Rau AV, Kaligotla H (2006) Surface modification of chitosan for selective surface-protein interaction. Carbohyd Polym 66:321–332

    CAS  Google Scholar 

  130. Yu SH, Mi FL, Shyu SS et al (2006) Miscibility, mechanical characteristic and platelet adhesion of 6-O-carboxymethylchitosan/polyurethane semi-IPN membranes. J Membr Sci 276:68–80

    CAS  Google Scholar 

  131. Chen MC, Chang Y, Liu CT et al (2009) The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 30:79–88

    CAS  Google Scholar 

  132. Mi FL, Shyu SS, Chen CT et al (1999) Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials 20:1603–1612

    CAS  Google Scholar 

  133. Mi FL, Shyu SS, Chen CT et al (2002) Adsorption of indomethacin onto chemically modified chitosan beads. Polymer 43:757–765

    CAS  Google Scholar 

  134. Chenite A, Chaput C, Wang D et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    CAS  Google Scholar 

  135. Sakai S, Yamada Y, Zenke T et al (2009) Novel chitosan derivative soluble at neutral pH and in-situ gellable via peroxidase-catalyzed enzymatic reaction. J Mater Chem 19:230–235

    CAS  Google Scholar 

  136. Jin R, Moreira Teixeira LS, Dijkstra PJ et al (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551

    CAS  Google Scholar 

  137. Babapulle MN, Eisenberg MJ (2002) Coated stents for the prevention of restenosis: Part I. Circulation 106:2734–2740

    Google Scholar 

  138. Betriu A, Masotti M, Serra A et al (1999) Randomized comparison of coronary stent implantation and balloon angioplasty in the treatment of de novo coronary artery lesions (START): a four-year follow-up. J Am Coll Cardiol 34:1498–1506

    CAS  Google Scholar 

  139. Chen MC, Liang HF, Chiu YL et al (2005) A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Release 108:178–189

    CAS  Google Scholar 

  140. Wessely R (2010) New drug-eluting stent concepts. Nat Rev Cardiol 7:194–203

    CAS  Google Scholar 

  141. Honda Y (2009) Drug-eluting stents. Insights from invasive imaging technologies. Circ J 73:1371–1380

    CAS  Google Scholar 

  142. Kukreja N, Onuma Y, Daemen J et al (2008) The future of drug-eluting stents. Pharmacol Res 57:171–180

    CAS  Google Scholar 

  143. Wykrzykowska JJ, Onuma Y, Serruys PW (2009) Advances in stent drug delivery: the future is in bioabsorbable stents. Expert Opin Drug Deliv 6:113–126

    CAS  Google Scholar 

  144. Luscher TF, Steffel J, Eberli FR et al (2007) Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 115:1051–1058

    Google Scholar 

  145. Virmani R, Guagliumi G, Farb A et al (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705

    Google Scholar 

  146. Tsimikas S (2006) Drug-eluting stents and late adverse clinical outcomes lessons learned, lessons awaited. J Am Coll Cardiol 47:2112–2115

    CAS  Google Scholar 

  147. Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48:193–202

    Google Scholar 

  148. Meng S, Liu Z, Shen L et al (2009) The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials 30:2276–2283

    CAS  Google Scholar 

  149. Hardhammar PA, van Beusekom HM, Emanuelsson HU et al (1996) Reduction in thrombotic events with heparin-coated Palmaz-Schatz stents in normal porcine coronary arteries. Circulation 93:423–430

    CAS  Google Scholar 

  150. Thierry B, Winnik FM, Merhi Y et al (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4:1564–1571

    CAS  Google Scholar 

  151. Heublein B, Evagorou EG, Rohde R et al (2002) Polymerized degradable hyaluronan – a platform for stent coating with inherent inhibitory effects on neointimal formation in a porcine coronary model. Int J Artif Organs 25:1166–1173

    CAS  Google Scholar 

  152. Morra M (2000) On the molecular basis of fouling resistance. J Biomater Sci Polym Ed 11:547–569

    CAS  Google Scholar 

  153. Wang PG, Xian M, Tang X et al (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134

    CAS  Google Scholar 

  154. Provost P, Merhi Y (1997) Endogenous nitric oxide release modulates mural platelet thrombosis and neutrophil-endothelium interactions under low and high shear conditions. Thromb Res 85:315–326

    CAS  Google Scholar 

  155. Shirota T, Yasui H, Shimokawa H et al (2003) Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials 24:2295–2302

    CAS  Google Scholar 

  156. Aoki J, Serruys PW, van Beusekom H et al (2005) Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol 45:1574–1579

    CAS  Google Scholar 

  157. Campbell PG, Hall JA, Harcombe AA et al (2000) The Jomed covered stent graft for coronary artery aneurysms and acute perforation: a successful device which needs careful deployment and may not reduce restenosis. J Invasive Cardiol 12:272–276

    CAS  Google Scholar 

  158. Schachinger V, Hamm CW, Munzel T et al (2003) A randomized trial of polytetrafluoroethylene-membrane-covered stents compared with conventional stents in aortocoronary saphenous vein grafts. J Am Coll Cardiol 42:1360–1369

    Google Scholar 

  159. Roukoz B, Arjornand H, Surabhi S et al (2003) Initial US experience with membrane-covered stents in the treatment of saphenous vein graft lesions: roll-in phase of the barricade trial. J Am Coll Cardiol 41:82A

    Google Scholar 

  160. Thierry B, Merhi Y, Silver J et al (2005) Biodegradable membrane-covered stent from chitosan-based polymers. J Biomed Mater Res A 75:556–566

    Google Scholar 

  161. Yakacki CM, Shandas R, Lanning C et al (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263

    CAS  Google Scholar 

  162. Nebeker JR, Virmani R, Bennett CL et al (2006) Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J Am Coll Cardiol 47:175–181

    Google Scholar 

  163. Azarbal B, Currier JW (2006) Allergic reactions after the implantation of drug-eluting stents: is it the pill or the polymer? J Am Coll Cardiol 47:182–183

    Google Scholar 

  164. Koster R, Vieluf D, Kiehn M et al (2000) Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 356:1895–1897

    CAS  Google Scholar 

  165. Chen MC, Tsai HW, Chang Y et al (2007) Rapidly self-expandable polymeric stents with a shape-memory property. Biomacromolecules 8:2774–2780

    CAS  Google Scholar 

  166. Chen MC, Tsai HW, Liu CT et al (2009) A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials 30:2102–2111

    CAS  Google Scholar 

  167. Tamai H, Igaki K, Kyo E et al (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404

    CAS  Google Scholar 

  168. Venkatraman SS, Tan LP, Joso JF et al (2006) Biodegradable stents with elastic memory. Biomaterials 27:1573–1578

    CAS  Google Scholar 

  169. Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–2559

    CAS  Google Scholar 

  170. Ip JH, Fuster V, Israel D et al (1991) The role of platelets, thrombin and hyperplasia in restenosis after coronary angioplasty. J Am Coll Cardiol 17:77B–88B

    CAS  Google Scholar 

  171. Casscells W (1992) Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 86:723–729

    CAS  Google Scholar 

  172. Marx SO, Jayaraman T, Go LO et al (1995) Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res 76:412–417

    CAS  Google Scholar 

  173. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521

    CAS  Google Scholar 

  174. Ko CS, Wu CH, Huang HH et al (2007) Genipin cross-linking of type II collagen-chondroitin sulfate-hyaluronan scaffold for articular cartilage therapy. J Med Biol Eng 27:7–14

    Google Scholar 

  175. Cauich-Rodriguez JV, Deb S, Smith R (1996) Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)-poly(vinyl alcohol-vinyl acetate). Biomaterials 17:2259–2264

    CAS  Google Scholar 

  176. Chen MC, Liu CT, Tsai HW et al (2009) Mechanical properties, drug eluting characteristics and in vivo performance of a genipin-crosslinked chitosan polymeric stent. Biomaterials 30:5560–5571

    CAS  Google Scholar 

  177. Sung HW, Hsu CS, Lee YS et al (1996) Crosslinking characteristics of an epoxy-fixed porcine tendon: effects of pH, temperature, and fixative concentration. J Biomed Mater Res 31:511–518

    CAS  Google Scholar 

  178. Sung HW, Liang IL, Chen CN et al (2001) Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res 55:538–546

    CAS  Google Scholar 

  179. Yin M, Yuan Y, Liu C et al (2009) Development of mussel adhesive polypeptide mimics coating for in-situ inducing re-endothelialization of intravascular stent devices. Biomaterials 30:2764–2773

    CAS  Google Scholar 

  180. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering – an overview. Mar Drugs 8:2252–2266

    CAS  Google Scholar 

  181. Hu Q, Li B, Wang M et al (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25:779–785

    CAS  Google Scholar 

  182. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    CAS  Google Scholar 

  183. Campos M, Cordi L, Duran N et al (2006) Antibacterial activity of chitosan solution for wound dressing. Macromol Symp 245–246:515–518

    Google Scholar 

  184. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    CAS  Google Scholar 

  185. Obara K, Ishihara M, Ishizuka T et al (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24:3437–3444

    CAS  Google Scholar 

  186. Mizuno K, Yamamura K, Yano K et al (2003) Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res A 64(1):177–181

    Google Scholar 

  187. Liu Y, Cai S, Shu XZ et al (2007) Realease of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen 15:245–251

    Google Scholar 

  188. Kawai K, Suzuki S, Tabata Y et al (2000) Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 21:489–499

    CAS  Google Scholar 

  189. Judith R, Nithya M, Rose C et al (2010) Application of a PDGF-containing novel gel for cutaneous wound healing. Life Sci 87:1–8

    CAS  Google Scholar 

  190. Choi JS, Yoo HS (2010) Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A 95A:564–573

    CAS  Google Scholar 

  191. Sato M, Asazuma T, Ishihara M et al (2003) An atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc. J Biomed Mater Res A 64A:249–256

    CAS  Google Scholar 

  192. Pannier AK, Shea LD (2004) Controlled release systems for DNA delivery. Mol Ther 10:19–26

    CAS  Google Scholar 

  193. Guo R, Xu S, Ma L et al (2011) The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents. Biomaterials 32:1019–1031

    CAS  Google Scholar 

  194. Fujie T, Saito A, Kinoshita M et al (2010) Dual therapeutic action of antibiotic-loaded nanosheets for the treatment of gastrointestinal tissue defects. Biomaterials 31:6269–6278

    CAS  Google Scholar 

  195. Ong SY, Wu J, Moochhala SM et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    CAS  Google Scholar 

  196. Mi FL, Wu YB, Shyu SS et al (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59:438–449

    CAS  Google Scholar 

  197. Jin R, Teixeira LSM, Dijkstra PJ et al (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551

    CAS  Google Scholar 

  198. Lahiji A, Sohrabi A, Hungerford DS et al (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51:586–595

    CAS  Google Scholar 

  199. Sechriest VF, Miao YJ, Niyibizi C et al (1999) GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res 49:534–541

    Google Scholar 

  200. Nettles DL, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8:1009–1016

    CAS  Google Scholar 

  201. Ragetly G, Griffon DJ, Chung YS (2010) The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomater 6:3988–3997

    CAS  Google Scholar 

  202. Ragetly GR, Slavik GJ, Cunningham BT et al (2010) Cartilage tissue engineering on fibrous chitosan scaffolds produced by a replica molding technique. J Biomed Mater Res A 93:46–55

    Google Scholar 

  203. Swieszkowski W, Tuan BH, Kurzydlowski KJ et al (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24:489–495

    CAS  Google Scholar 

  204. Frenkel SR, Bradica G, Brekke JH et al (2005) Regeneration of articular cartilage – evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis Cartilage 13:798–807

    CAS  Google Scholar 

  205. Malafaya PB, Oliveira JT, Reis RL (2010) The effect of insulin-loaded chitosan particle-aggregated scaffolds in chondrogenic differentiation. Tissue Eng A 16:735–747

    CAS  Google Scholar 

  206. Lee JE, Kim KE, Kwon IC et al (2004) Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25:4163–4173

    CAS  Google Scholar 

  207. Kim IY, Seo SJ, Moon HS et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    CAS  Google Scholar 

  208. Ignotz RA, Massague J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345

    CAS  Google Scholar 

  209. Kim SE, Park JH, Cho YW et al (2003) Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering. J Control Release 91:365–374

    CAS  Google Scholar 

  210. Guo T, Zhao J, Chang J et al (2006) Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials 27:1095–1103

    CAS  Google Scholar 

  211. De la Riva B, Sanchez E, Hernandez A et al (2010) Local controlled release of VEGF and PDGF from a combined brushite-chitosan system enhances bone regeneration. J Control Release 143:45–52

    Google Scholar 

  212. Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041

    CAS  Google Scholar 

  213. Kim IS, Park JW, Kwon IC et al (2002) Role of BMP, betaig-h3, and chitosan in early bony consolidation in distraction osteogenesis in a dog model. Plast Reconstr Surg 109:1966–1977

    Google Scholar 

  214. Park YJ, Lee YM, Lee JY et al (2000) Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. J Control Release 67:385–394

    CAS  Google Scholar 

  215. Lee JY, Nam SH, Im SY et al (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 78:187–197

    CAS  Google Scholar 

  216. Moore DC, Ehrlich MG, McAllister SC et al (2009) Recombinant human platelet-derived growth factor-BB augmentation of new-bone formation in a rat model of distraction osteogenesis. J Bone Joint Surg Am 91:1973–1984

    Google Scholar 

  217. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404

    Google Scholar 

  218. Yilgor P, Tuzlakoglu K, Reis RL et al (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559

    CAS  Google Scholar 

  219. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    CAS  Google Scholar 

  220. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2:1–13

    CAS  Google Scholar 

  221. White AP, Vaccaro AR, Hall JA et al (2007) Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int Orthop 31:735–741

    Google Scholar 

  222. McKay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop 31:729–734

    Google Scholar 

  223. Zhang Y, Zhang M (2002) Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res 62:378–386

    CAS  Google Scholar 

  224. Jia WT, Zhang X, Zhang CQ et al (2010) Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite. Int J Pharm 387:184–186

    CAS  Google Scholar 

  225. Bhattarai N, Li ZS, Gunn J et al (2009) Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater 21:2792–2797

    CAS  Google Scholar 

  226. Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    CAS  Google Scholar 

  227. Pfister LA, Alther E, Papaloizos M et al (2008) Controlled nerve growth factor release from multi-ply alginate/chitosan-based nerve conduits. Eur J Pharm Biopharm 69:563–572

    CAS  Google Scholar 

  228. Ao Q, Fung CK, Tsui AY et al (2011) The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32:787–796

    CAS  Google Scholar 

  229. Ding F, Wu J, Yang Y et al (2010) Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng A 16:3779–3790

    CAS  Google Scholar 

  230. Jiao H, Yao J, Yang Y et al (2009) Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials 30:5004–5018

    CAS  Google Scholar 

  231. Wang X, Hu W, Cao Y et al (2005) Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 128:1897–1910

    Google Scholar 

  232. Boyd JG, Gordon T (2003) Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 27:277–324

    CAS  Google Scholar 

  233. Hoke A, Redett R, Hameed H et al (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655

    CAS  Google Scholar 

  234. Deumens R, Bozkurt A, Meek MF et al (2010) Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 92:245–276

    Google Scholar 

  235. Patel M, Mao L, Wu B et al (2009) GDNF blended chitosan nerve guides: an in vivo study. J Biomed Mater Res A 90:154–165

    Google Scholar 

  236. Patel M, Mao L, Wu B et al (2007) GDNF-chitosan blended nerve guides: a functional study. J Tissue Eng Regen Med 1:360–367

    CAS  Google Scholar 

Download references

Acknowledgment

Ted Knoy is appreciated for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Wen Sung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, MC., Mi, FL., Liao, ZX., Sung, HW. (2011). Chitosan: Its Applications in Drug-Eluting Devices. In: Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials I. Advances in Polymer Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_116

Download citation

Publish with us

Policies and ethics