Skip to main content

Use of Chitosan as a Bioactive Implant Coating for Bone-Implant Applications

  • Chapter
  • First Online:
Chitosan for Biomaterials II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 244))

Abstract

Chitosan is the deacetylated derivative of the natural polysaccharide, chitin. Chitosan has been shown to be biocompatible, biodegradable, osteoconductive, and to accelerate wound healing. These characteristics are largely due to its structural and chemical homology to hyaluronic acid and other proteoglycans found in extracellular matrices. Because of these properties, chitosan has been investigated as a coating for implant materials to promote osseointegration, and as a potential vehicle to deliver therapeutic agents to the local implant–tissue interface. The coating of chitosan onto implant alloy surfaces has been achieved via chemical reactions and electrodeposition mechanisms as well as by other methods such as dip coating and layer-by-layer assembly. This work examines the different mechanisms and bond strengths of chitosan coatings for implant alloys, coating composition and physiochemical properties, degradation, delivery of therapeutic agents, such as growth factors and antibiotics, and in vitro and in vivo compatibilities.

The authors Megan R. Leedy and Holly J. Martin contributed equally as first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Acadamy of Orthopedic Surgeons (2009) Arthritis and related conditions. AAOS Now 2009, vol 3. http://www.aaos.org/news/aaosnow/mar09/research6.asp. Accessed 28 Aug 2010

  2. American Academy of Implant Dentistry (2010) Dental implants facts and figures. http://www.aaid.com/about/Press_Room/Dental_Implants_FAQ.html. Accessed Dec 2010

  3. Epinette JA, Manley MT (2008) Uncemented stems in hip replacement–hydroxyapatite or plain porous: does it matter? Based on a prospective study of HA Omnifit stems at 15-years minimum follow-up. Hip Int 18(2):69–74

    Google Scholar 

  4. Eskelinen A et al (2006) Uncemented total hip arthroplasty for primary osteoarthritis in young patients: a mid-to long-term follow-up study from the Finnish Arthroplasty Register. Acta Orthop 77(1):57–70

    Google Scholar 

  5. Haddad SL et al (2007) Intermediate and long-term outcomes of total ankle arthroplasty and ankle arthrodesis. A systematic review of the literature. J Bone Joint Surg Am 89(9):1899–1905

    CAS  Google Scholar 

  6. Dixon MC et al (2005) Modular fixed-bearing total knee arthroplasty with retention of the posterior cruciate ligament. A study of patients followed for a minimum of fifteen years. J Bone Joint Surg Am 87(3):598–603

    Google Scholar 

  7. Simonis P, Dufour T, Tenenbaum H (2010) Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res 21(7):772–777

    Google Scholar 

  8. Pjetursson BE et al (2007) Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants Res 18(Suppl 3):97–113

    Google Scholar 

  9. Lambert FE et al (2009) Descriptive analysis of implant and prosthodontic survival rates with fixed implant-supported rehabilitations in the edentulous maxilla. J Periodontol 80(8):1220–1230

    Google Scholar 

  10. de Jonge LT et al (2008) Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res 25(10):2357–2369

    CAS  Google Scholar 

  11. Pilliar RM (2005) Cementless implant fixation–toward improved reliability. Orthop Clin North Am 36(1):113–119

    Google Scholar 

  12. Groll J et al (2009) Novel surface coatings modulating eukaryotic cell adhesion and preventing implant infection. Int J Artif Organs 32(9):655–662

    CAS  Google Scholar 

  13. Liu Y et al (2006) Incorporation of growth factors into medical devices via biomimetic coatings. Philos Transact A Math Phys Eng Sci 364(1838):233–248

    CAS  Google Scholar 

  14. Coelho PG et al (2009) Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 88(2):579–596

    Google Scholar 

  15. Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25(1):63–74

    Google Scholar 

  16. Yang Y, Kim KH, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process – an alternative to plasma spraying. Biomaterials 26(3):327–337

    CAS  Google Scholar 

  17. Kitsugi T et al (1996) Bone-bonding behavior of plasma-sprayed coatings of Bioglass R, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J Biomed Mater Res 30(2):261–269

    CAS  Google Scholar 

  18. Ducheyne P (1985) Bioglass coatings and bioglass composites as implant materials. J Biomed Mater Res 19(3):273–291

    CAS  Google Scholar 

  19. Bjursten LM et al (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92(3):1218–1224

    Google Scholar 

  20. Vignoletti F et al (2009) Early healing of implants placed into fresh extraction sockets: an experimental study in the beagle dog. De novo bone formation. J Clin Periodontol 36(3):265–277

    Google Scholar 

  21. Webster TJ, Smith TA (2005) Increased osteoblast function on PLGA composites containing nanophase titania. J Biomed Mater Res A 74(4):677–686

    Google Scholar 

  22. Zhao L et al (2010) The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31(19):5072–5082

    CAS  Google Scholar 

  23. Khor E (2001) Chitin: fulfilling a biomaterials promise. Elseveir, Amsterdam

    Google Scholar 

  24. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349

    CAS  Google Scholar 

  25. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990

    Google Scholar 

  26. Kim IY et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26(1):1–21

    CAS  Google Scholar 

  27. Jayakumar R et al (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150

    CAS  Google Scholar 

  28. Sinha VR et al (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274(1–2):1–33

    CAS  Google Scholar 

  29. Panos I, Acosta N, Heras A (2008) New drug delivery systems based on chitosan. Curr Drug Discov Technol 5(4):333–341

    CAS  Google Scholar 

  30. Kumar MN et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Google Scholar 

  31. Muzzarelli R et al (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9(3):247–252

    CAS  Google Scholar 

  32. Muzzarelli RA et al (1999) Biochemistry, histology and clinical uses of chitins and chitosans in wound healing. EXS 87:251–264

    CAS  Google Scholar 

  33. Muzzarelli RA et al (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15(13):1075–1081

    CAS  Google Scholar 

  34. Ueno H et al (1999) Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20(15):1407–1414

    CAS  Google Scholar 

  35. Masuoka K et al (2005) The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials 26(16):3277–3284

    CAS  Google Scholar 

  36. Azad AK et al (2004) Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater 69(2):216–222

    Google Scholar 

  37. Kratz G et al (1998) Immobilised heparin accelerates the healing of human wounds in vivo. Scand J Plast Reconstr Surg Hand Surg 32(4):381–385

    CAS  Google Scholar 

  38. Amaral IF et al (2007) Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. J Biomater Sci Polym Ed 18(4):469–485

    CAS  Google Scholar 

  39. Bumgardner JD et al (2003) Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J Biomater Sci Polym Ed 14(12):1401–1409

    CAS  Google Scholar 

  40. Chang J et al (2008) Biological properties of chitosan films with different degree of deacetylation. J Mater Sci Technol 24(5):700–708

    CAS  Google Scholar 

  41. Mao JS et al (2004) A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials 25(18):3973–3981

    CAS  Google Scholar 

  42. Prasitsilp M et al (2000) Cellular responses to chitosan in vitro: the importance of deacetylation. J Mater Sci Mater Med 11(12):773–778

    CAS  Google Scholar 

  43. Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22(3):261–268

    CAS  Google Scholar 

  44. Hamilton V et al (2007) Bone cell attachment and growth on well-characterized chitosan films. Polym Int 56(5):241–247

    Google Scholar 

  45. Luna SM, Silva SS, Gomez ME, Mano JF, Reis RL (2010) Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification. J Biomater Appl (in press) doi: 10.1177/0885328210362924

    Google Scholar 

  46. Bumgardner JD et al (2003) Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomater Sci Polym Ed 14(5):423–438

    CAS  Google Scholar 

  47. Chung L et al (1994) Biocompatibility of potential wound management products: fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J Biomed Mater Res 28:463–469

    CAS  Google Scholar 

  48. Klokkevold PR et al (1996) Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol 67(11):1170–1175

    CAS  Google Scholar 

  49. Ohara N et al (2004) Early gene expression analyzed by cDNA microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide. Biomaterials 25(10):1749–1754

    CAS  Google Scholar 

  50. Fakhry A et al (2004) Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 25(11):2075–2079

    CAS  Google Scholar 

  51. Lahiji A et al (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51(4):586–595

    CAS  Google Scholar 

  52. Aiba S (1991) Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int J Biol Macromol 13(1):40–44

    CAS  Google Scholar 

  53. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7):567–575

    CAS  Google Scholar 

  54. Kurita K et al (2000) Enzymatic degradation of β-chitin: susceptibility and the influence of deacetylation. Carbohydr Polym 42(1):19–21

    CAS  Google Scholar 

  55. Nguyen T et al (2008) Molecular stability of chitosan in acid solutions stored at various conditions. J Appl Polym Sci 107:2588–2593

    CAS  Google Scholar 

  56. Kohn P, Winzler J, Hoffman RC (1962) Metabolism of D-glucosamine and N-acetyl-D-glucosamine in the intact rat. J Biol Chem 237:304–308

    CAS  Google Scholar 

  57. Abarrategi A et al (2009) Gene expression profile on chitosan/rhBMP-2 films: a novel osteoinductive coating for implantable materials. Acta Biomater 5(7):2633–2646

    CAS  Google Scholar 

  58. Matsunaga T et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720

    Google Scholar 

  59. Li Q et al (1992) Applications and properties of chitosan. J Bioactive Compatible Polym 7(4):370–397

    CAS  Google Scholar 

  60. Hidaka Y et al (1999) Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Mater Res 46(3):418–423

    CAS  Google Scholar 

  61. Bagheri-Khoulenjani S, Taghizadeh S, Mirzadeh H (2009) An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr Polym 78(4):773–778

    CAS  Google Scholar 

  62. Bumgardner JD et al (2007) The integration of chitosan-coated titanium in bone: an in vivo study in rabbits. Implant Dent 16(1):66–79

    Google Scholar 

  63. Chesnutt BM et al (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng A 15(9):2571–2579

    CAS  Google Scholar 

  64. Reves B (2008) Preliminary investigation of lyophilization to improve drug delivery of chitosan-calcium phosphate bone scaffold construct. MS Thesis, Biomedical Engineering, University of Memphis

    Google Scholar 

  65. Muzzarelli RA et al (1993) Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery. Biomaterials 14(1):39–43

    CAS  Google Scholar 

  66. Shi C et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192

    CAS  Google Scholar 

  67. Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22(11):2387–2399

    CAS  Google Scholar 

  68. Morra M (2006) Biochemical modification of titanium surfaces: peptides and ECM proteins. Eur Cell Mater 12:1–15

    CAS  Google Scholar 

  69. Puleo DA, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20(23–24):2311–2321

    CAS  Google Scholar 

  70. Shriver-Lake L (1998) Silane-modified surfaces for biomaterial immobilization. In: Cass AEG, Ligler FS (eds) Immobilized biomolecules in analysis: a practical approach. Oxford University Press, Oxford, p 216

    Google Scholar 

  71. Weetall HH (1993) Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl Biochem Biotechnol 41(3):157–188

    CAS  Google Scholar 

  72. Hanawa T (2009) An overview of biofunctionalization of metals in Japan. J R Soc Interface 6(Suppl 3):S361–S369

    CAS  Google Scholar 

  73. Arroyo-Hernandez M, Perez-Rigueiro J, Martinez-Duart JM (2006) Formation of amine functionalized films by chemical vapour deposition. Mater Sci Eng C Biomimetic Supramol Syst 26(5–7):938–941

    CAS  Google Scholar 

  74. Topchiev AV, Andrianov KA (1953) Basic nomenclature and classification of low-molecularweight organo-silicon compounds. Russ Chem Bull 2(3):439

    Google Scholar 

  75. Duchet J et al (1997) Influence of the deposition process on the structure of grafted alkylsilane layers. Langmuir 13(8):2271

    CAS  Google Scholar 

  76. Van Der Voort P, Vansant EF (1996) Silylation of the silica surface: a review. J Liq Chromatogr Related Technol 19(17):2723–2752

    Google Scholar 

  77. ACS (1974) Chapter 38: silicon compounds. In: Fletcher JH, Dermer OC, Fox RB (eds) Nomenclature of organic compounds: principles and practice, vol 126. American Chemical Society, Washington, pp 293–298

    Google Scholar 

  78. Kallury K, MacDonald P, Thompson M (1994) Effect of surface water and base catalysis on the silaniation of silica by (aminopropyl)alkoxysilanes studied by x-ray photoelectron spectroscopy and 13C cross-polarization/magic angle spinning nuclear magnetic resonance. Langmuir 10(2):492–499

    CAS  Google Scholar 

  79. Puleo DA (1995) Activity of enzyme immobilized on silanized Co-Cr-Mo. J Biomed Mater Res 29(8):951–957

    CAS  Google Scholar 

  80. Puleo DA (1997) Retention of enzymatic activity immobilized on silanized Co-Cr-Mo and Ti-6Al-4V. J Biomed Mater Res 37(2):222–228

    CAS  Google Scholar 

  81. Dee KC, Andersen TT, Bizios R (1998) Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 40(3):371–377

    CAS  Google Scholar 

  82. Zreiqat H et al (2003) Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A 64(1):105–113

    CAS  Google Scholar 

  83. Martin HJ et al (2007) XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface. Langmuir 23(12):6645

    CAS  Google Scholar 

  84. Martin HJ et al (2008) An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan. Appl Surf Sci 254(15):4599

    CAS  Google Scholar 

  85. Martin HJ et al (2008) Enhanced bonding of chitosan to implant quality titanium via four treatment combinations. Thin Solid Films 516(18):6277

    CAS  Google Scholar 

  86. Yuan Y et al (2008) Mechanical property, degradation rate, and bone cell growth of chitosan coated titanium influenced by degree of deacetylation of chitosan. J Biomed Mater Res B Appl Biomater 86(1):245–252

    Google Scholar 

  87. Martin H, Schulz KH, Bumgardner J (2008) Comparing the attachment and growth of bone cells on chitosan bound by two silane molecules to titanium for use in joint replacements. In: American Institute of chemical engineers annual meeting, Philadelphia

    Google Scholar 

  88. Greene AH et al (2008) Chitosan-coated stainless steel screws for fixation in contaminated fractures. Clin Orthop Relat Res 466(7):1699–1704

    Google Scholar 

  89. Wang SF et al (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 90(1):123

    CAS  Google Scholar 

  90. Majd S et al (2009) Effects of material property and heat treatment on nanomechanical properties of chitosan films. J Biomed Mater Res B Appl Biomater 90(1):283–289

    Google Scholar 

  91. Freier T et al (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26(29):5872–5878

    CAS  Google Scholar 

  92. Wenling C et al (2005) Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films. J Biomater Appl 20(2):157–177

    Google Scholar 

  93. Strand SP et al (2010) Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials 31(5):975–987

    CAS  Google Scholar 

  94. Hamilton V et al (2006) Characterization of chitosan films and effects on fibroblast cell attachment and proliferation. J Mater Sci Mater Med 17(12):1373–1381

    CAS  Google Scholar 

  95. Rhazi M et al (2000) Investigation of different natural sources of chitin: influence of the source and deacetylatino process on the physicochemical characteristics of chitosan. Polym Int 49:337–344

    CAS  Google Scholar 

  96. Norowski P (2008) Chitosan as an antimicrobial coating for titanium implants. MS Thesis, Biomedical engineering. University of Memphis

    Google Scholar 

  97. Norowski PA, Courtney HS, Babu J, Haggard WO, Bumgardner JD (2011) Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dent 20:56–67

    Google Scholar 

  98. Leedy M (2009) In vitro evaluation of 87.4% DDA chitosan on titanium for the local delivery of vascular endothelial growth factor. MS Thesis, Biomedical Engineering, University of Memphis

    Google Scholar 

  99. Wasserman S, Tao Y, Whitesides G (1989) Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir 5(4):1074–1087

    CAS  Google Scholar 

  100. Gelest (2004) Aminopropyltriethoxysilane. Material safety data sheet, Version 1. http://www.gelest.com/msds.asp?SIA0610.1. Accessed 12 Feb 2009

  101. Gelest (2007) Triethoxysilylbutyraldehyde. Material safety data sheet, Version 3. http://www.gelest.com/msds.asp?SIT8185.3. Gelest, Morrisville, PA, Accessed 12 Feb 2009

  102. Martin HJ, Schulz KH, Bumgardner JD (2008) Comparing the mechanical properties of chitosan films bound to titanium following deposition, neutralization, and sterilization. In: Abstracts American Institute of chemical engineers annual meeting, Philadelphia, Nov 2008. 613a. http://aiche.confex.com/aiche/2008/techprogram/P128853.HTM

  103. Muller R et al (2006) Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials 27(22):4059–4068

    Google Scholar 

  104. Pegg EC et al (2009) Mono-functional aminosilanes as primers for peptide functionalization. J Biomed Mater Res A 90(4):947–958

    Google Scholar 

  105. Martinex-Corria R et al (2011) The use of chitosan/BMP-2 complex in bone substitutes and implant surfaces. In: Gottlander R, van Steenberghe D (eds) Proceedings of the first P-I Brånemark scientific symposium, Gothenburg 2009: osseointegration and related treatment modalities: future perspectives, quality of life and treatment simplification. Quintessence Publishing, London, pp 105–122

    Google Scholar 

  106. López-Lacomba JL et al (2006) Use of rhBMP-2 activated chitosan films to improve osseointegration. Biomacromolecules 7(3):p792–p798

    Google Scholar 

  107. Abarrategi A et al (2008) Chitosan film as rhBMP2 carrier: delivery properties for bone tissue applications. Biomacromolecules 9(2):771–718

    Google Scholar 

  108. Abarrategi A et al (2008) Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier films for bone tissue application. Tissue Eng A 14(8):1305–1319

    CAS  Google Scholar 

  109. Peña J et al (2006) Room temperature synthesis of chitosan/apatite powders and coatings. J Europ Ceram Soc 26:3631–3638

    Google Scholar 

  110. Peña J et al (2006) New method to obtain chitosan/apatite materials at room temperature. Solid State Sci 8:513–519

    Google Scholar 

  111. Kawai T et al (2009) Biological fixation of fibrous materials to bone using chitin/chitosan as a bone formation accelerator. J Biomed Mater Res B Appl Biomater 88(1):264–270

    Google Scholar 

  112. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52(1):1

    CAS  Google Scholar 

  113. Van der Biest OO, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 29(1):327–352

    Google Scholar 

  114. Lu X, Leng Y, Zhang Q (2008) Electrochemical deposition of octacalcium phosphate micro-fiber/chitosan composite coatings on titanium substrates. Surf Coat Technol 202(13):3142

    CAS  Google Scholar 

  115. Redepenning J et al (2003) Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J Biomed Mater Res A 66(2):411–416

    Google Scholar 

  116. Sun F, Pang X, Zhitomirsky I (2009) Electrophoretic deposition of composite hydroxyapatite-chitosan-heparin coatings. J Mater Process Technol 209(3):1597

    CAS  Google Scholar 

  117. Sharma S, Soni VP, Bellare JR (2009) Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants. J Mater Sci Mater Med 20(7):1427–1436

    CAS  Google Scholar 

  118. Pang X, Zhitomirsky I (2005) Electrodeposition of composite hydroxyapatite-chitosan films. Mater Chem Phys 94(2–3):245

    CAS  Google Scholar 

  119. Pang X, Casagrande T, Zhitomirsky I (2009) Electrophoretic deposition of hydroxyapatite-CaSiO3-chitosan composite coatings. J Colloid Interface Sci 330(2):323

    CAS  Google Scholar 

  120. Wang J, van Apeldoorn A, de Groot K (2006) Electrolytic deposition of calcium phosphate/chitosan coating on titanium alloy: growth kinetics and influence of current density, acetic acid, and chitosan. J Biomed Mater Res A 76(3):503–511

    Google Scholar 

  121. Said R et al (2010) Effects of bias voltage on diamond like carbon coatings deposited using titanium isopropoxide (TIPOT) and acetylene/argon mixtures onto various substrate materials. J Nanosci Nanotechnol 10(4):2552–2557

    CAS  Google Scholar 

  122. Eliaz N et al (2009) The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells. Acta Biomater 5(8):3178–3191

    CAS  Google Scholar 

  123. Song Y et al (2010) Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater 6(5):1736–1742

    CAS  Google Scholar 

  124. Wang J et al (2009) Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater 5(5):1798–1807

    CAS  Google Scholar 

  125. Lopez-Heredia MA, Weiss P, Layrolle P (2007) An electrodeposition method of calcium phosphate coatings on titanium alloy. J Mater Sci Mater Med 18(2):381–390

    CAS  Google Scholar 

  126. Borrajo JP et al (2007) In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition. J Mater Sci Mater Med 18(12):2371–2376

    CAS  Google Scholar 

  127. Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1(7):1553–1560

    CAS  Google Scholar 

  128. Jing H, Yu Z, Li L (2008) Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials. J Biomed Mater Res A 87(1):33–37

    Google Scholar 

  129. Cunha L et al (2010) Ti-Si-C thin films produced by magnetron sputtering: correlation between physical properties, mechanical properties and tribological behavior. J Nanosci Nanotechnol 10(4):2926–2932

    CAS  Google Scholar 

  130. Lin C et al (2008) Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications. J Mater Sci Mater Med 19(7):2569–2574

    CAS  Google Scholar 

  131. Wilks SJ et al (2009) Poly(3, 4-ethylenedioxythiophene) as a micro-neural interface material for electrostimulation. Front Neuroeng 2:7

    CAS  Google Scholar 

  132. Yao C, Webster TJ (2006) Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. J Nanosci Nanotechnol 6(9–10):2682–2692

    CAS  Google Scholar 

  133. Wu L-Q et al (2002) Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir 18(22):8620–8625

    CAS  Google Scholar 

  134. Zhitomirsky D et al (2009) Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol 209(4):1853

    CAS  Google Scholar 

  135. Fernandes R et al (2003) Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 19:4058–4062

    CAS  Google Scholar 

  136. Kang X et al (2007) A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 369(1):71–79

    CAS  Google Scholar 

  137. Zeng X et al (2009) Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens Bioelectron 24(9):2898–2903

    CAS  Google Scholar 

  138. Zhou Q et al (2007) Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J Phys Chem B 111(38):11276–11284

    CAS  Google Scholar 

  139. Grandfield K, Zhitomirsky I (2008) Electrophoretic deposition of composite hydroxyapatite-silica-chitosan coatings. Mater Charact 59(1):61

    CAS  Google Scholar 

  140. Wang J, de Boer J, de Groot K (2004) Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J Dent Res 83(4):296–301

    CAS  Google Scholar 

  141. Sharma S et al (2009) Bone healing performance of electrophoretic deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med 3(7):501–511

    CAS  Google Scholar 

  142. Wang J et al (2010) Early bone appositin and 1 yr performance of electrodeposited calcium phosphate coatings: an experimental study in rabbit femora. Clin Oral Impl Res 21:951–960

    Google Scholar 

  143. Muzzarelli C, Muzzarelli RA (2002) Natural and artificial chitosan-inorganic composites. J Inorg Biochem 92(2):89–94

    CAS  Google Scholar 

  144. Xu HH et al (2002) Processing and properties of strong and non-rigid calcium phosphate cement. J Dent Res 81(3):219–224

    CAS  Google Scholar 

  145. Yamaguchi I et al (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55(1):20–27

    CAS  Google Scholar 

  146. Wang J, de Boer J, de Groot K (2008) Proliferation and differentiation of MC3T3-E1 cells on calcium phosphate/chitosan coatings. J Dent Res 87(7):650–654

    CAS  Google Scholar 

  147. Pang X, Zhitomirsky I (2007) Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater Charact 58(4):339

    CAS  Google Scholar 

  148. Singh R, Dahotre NB (2007) Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 18(5):725–751

    CAS  Google Scholar 

  149. Pang X, Zhitomirsky I (2008) Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surf Coat Technol 202(16):3815

    CAS  Google Scholar 

  150. Tavakol M et al (2009) Sulfasalazine release from alginate-N, O-carboxymethyl chitosan gel beads coated by chitosan. Carbohydr Polym 77:326–330

    CAS  Google Scholar 

  151. Malaekeh-Nikouei M, Tabassi SAS, Jaafari MR (2008) Preparation, characterization, and mucoadhesive properties of chitosan-coated microspheres encapsulated with cyclosporine A. Drug Dev Ind Pharm 34:492–498

    CAS  Google Scholar 

  152. Cui X et al (2008) Effects of chitosan-coated pressed calcium sulfate pellet combined with recombinant human bone morphogenetic protein 2 on restoration of segmental bone defect. J Craniofac Surg 19(2):459–465

    Google Scholar 

  153. Reves BT et al (2009) Lyophilization to improve drug delivery for chitosan-calcium phosphate bone scaffold construct: a preliminary investigation. J Biomed Mater Res B Appl Biomater 90(1):1–10

    Google Scholar 

  154. Peng P et al (2008) Concurrent elution of calcium phosphate and macromolecules from alginate/chitosan hydrogel coatings. Biointerphases 3(4):105–116

    CAS  Google Scholar 

  155. Thierry B et al (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4:1564–1571

    CAS  Google Scholar 

  156. Jun S-H et al (2010) A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol–gel process. Acta Biomater 6:302–307

    CAS  Google Scholar 

  157. Patz TM et al (2007) Matrix assisted pulsed laser evaporation of biomaterial thin films. Mater Sci Eng C 27:514–522

    CAS  Google Scholar 

  158. Couto DS, Alves NM, Mano JF (2009) Nanostructured multilayer coatings combining chitosan with bioactive glass nanoparticles. J Nanosci Nanotech 9:1741–1748

    CAS  Google Scholar 

  159. Dong P et al (2009) Biocompatibility of chitosan/heparin multilayer coatings on NiTi. Mater Sci Forum 610–613:1179–1182

    Google Scholar 

  160. Meng S et al (2009) The effect of a layer-by-layer chitosan–heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials 30:2276–2283

    CAS  Google Scholar 

  161. Chua P-H et al (2008) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29:1412–1421

    CAS  Google Scholar 

  162. Li QL et al (2007) Ultar-thin film of chitosan and sulfated chitosan on titanium oxide by layer-by-layer self assembly method. Key Engr Mater 330–332:645–648

    Google Scholar 

  163. Cai K et al (2005) Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Biomaterials 26:5960–5971

    CAS  Google Scholar 

  164. Richert L et al (2004) Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir 20:448–458

    CAS  Google Scholar 

  165. Ruan Q et al (2009) Investigation of layer-by-layer assembled heparin and chitosan multilayer films via electrochemical spectroscopy. J Colloid Interface Sci 333:725–733

    CAS  Google Scholar 

  166. Fu J et al (2006) Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A 79A:665–674

    CAS  Google Scholar 

  167. Muzzeralli RAA et al (2001) Chitosan-oxychitin coatings for prosthetic materials. Carbohydr Polym 45:35–41

    Google Scholar 

Download references

Acknowledgement

Authors would like to acknowledge the Biomaterials Applications of Memphis (BAM) Research Laboratories at the University of Memphis-University of Tennessee Health Science Center for assistance in preparing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel D. Bumgardner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leedy, M.R., Martin, H.J., Norowski, P.A., Jennings, J.A., Haggard, W.O., Bumgardner, J.D. (2011). Use of Chitosan as a Bioactive Implant Coating for Bone-Implant Applications. In: Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials II. Advances in Polymer Science, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_115

Download citation

Publish with us

Policies and ethics