Skip to main content

Modeling of Polymer Phase Equilibria Using Equations of State

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 238))

Abstract

The most promising approach for the calculation of polymer phase equilibria today is the use of equations of state that are based on perturbation theories. These theories consider an appropriate reference system to describe the repulsive interactions of the molecules, whereas van der Waals attractions or the formation of hydrogen bonds are considered as perturbations of that reference system. Moreover, the chain-like structure of polymer molecules is explicitly taken into account. This work presents the basic ideas of these kinds of models. It will be shown that they (in particular SAFT and PC-SAFT) are able to describe and even to predict the phase behavior of polymer systems as functions of pressure, temperature, polymer concentration, polymer molecular weight, and polydispersity as well as – in case of copolymers – copolymer composition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Helmholtz energy

a :

Parameter of the van der Waals equation

B αβ :

Fraction of bonds between segments α and β within a copolymer

b :

Parameter of the van der Waals equation

d :

Temperature-dependent segment diameter

g :

Radial distribution function

g(d +):

Value of the radial distribution function at contact

k:

Boltzmann constant

M :

Molecular weight

M 2p,j :

Molecular weight of pseudocomponent j

M n :

Number average of molecular weight

M w :

Weight average of molecular weight

M z :

z-Average of molecular weight

\( \overline {{M^k}} \) :

kth moment of the molecular weight distribution

m :

Segment number

\( \bar{m} \) :

Average segment number

N :

Number of molecules

N*:

Number of association sites per molecule or monomer unit

n i :

Mole number

k ij :

Binary interaction parameter

p :

Pressure

R :

Ideal gas constant

T :

Temperature

V :

Volume

v :

Molar volume

v 00 :

Segment volume (parameter of SAFT)

x i :

Mole fraction of component i (solvent or polymer)

x 2p,j :

Mole fraction of pseudocomponent j within polymer

W(M):

Continuous molecular weight distribution

w i :

Weight fraction of component i

w 2p,j :

Weight fraction of pseudocomponent j in polymer

z:

Compressibility factor

z α,z β :

Fraction of segments α or β in a copolymer

HDPE:

High-density polyethylene

L:

Liquid

LL:

Liquid–liquid

LDPE:

Low-density polyethylene

MA:

Methylacrylate

MWD:

Molecular weight distribution

PA:

Propylacrylate

PC-SAFT:

Perturbed Chain Statistical-Associating-Fluid Theory

PR:

Peng–Robinson

PHCT:

Perturbed Hard-Chain Theory

PHSC:

Perturbed Hard-Sphere-Chain Theory

PSCT:

Perturbed Soft-Chain Theory

SAFT:

Statistical-Associating-Fluid Theory

SAFT-VR:

SAFT with Variable Range

SRK:

Soave–Redlich–Kwong

α,β:

Segment type

ε :

Dispersion energy parameter

ε AA :

Association-energy parameter

η :

Reduced density

κ AA :

Association volume parameter

ρ :

Number density (molecules per volume)

σ:

Temperature-independent segment diameter

ϕ i :

Fugacity coefficient of component i in the mixture

ϕ 2p,j :

Fugacity coefficient of polymer pseudocomponent j in the mixture

assoc:

Contribution due to association

chain:

Contribution due to chain formation

disp:

Dispersion (van der Waals attraction)

disp:

Dispersion contribution according to the PC-SAFT model

hc:

Hard-chain contribution

hs:

Hard-sphere contribution

id:

Ideal gas

pert:

Perturbation

ref:

Reference

res:

Residual

I,II:

Phases I and II

References

  1. van der Waals JD (1873) Over de Continuiteit van den gas- en vloeistoftoestand. Sijthoff, Leiden

    Google Scholar 

  2. Soave G (1972) Equilibrium constants from a modified Redlich–Kwong equation of state. Chem Eng Sci 271:197–1203

    Google Scholar 

  3. Peng D-Y, Robinson DP (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  CAS  Google Scholar 

  4. Sanchez IC, Lacombe RH (1976) An elementary molecular theory of classical fluids: pure fluids. J Phys Chem 80:2352–2362

    Article  CAS  Google Scholar 

  5. Kleintjens LA, Koningsveld R (1980) Liquid–liquid phase separation in multicomponent polymer systems XIX. Mean-field lattice-gas treatment of the system n-alkane/linear polyethylene. Colloid Polymer Sci 258:711–718

    Article  CAS  Google Scholar 

  6. Beret S, Prausnitz JM (1975) Perturbed Hard-Chain Theory: an equation of state for fluids containing small or large molecules. AIChE J 21:1123–1132

    Article  CAS  Google Scholar 

  7. Cotterman RL, Schwarz BJ, Prausnitz JM (1986) Molecular thermodynamics for fluids at low and high densities. Part 1. Pure fluids containing small or large molecules. AIChE J 32:1787–1798

    Article  CAS  Google Scholar 

  8. Morris WO, Vimalchand P, Donohue MD (1987) The Perturbed-Soft-Chain Theory: an equation of state based on the Lennard–Jones potential. Fluid Phase Equilib 32:103–115

    Article  CAS  Google Scholar 

  9. Barker JA, Henderson D (1967) Perturbation theory and equation of state for fluid II. A successful theory of liquids. J Chem Phys 47:4714–4721

    Article  CAS  Google Scholar 

  10. Weeks JD, Chandler D, Anderson HC (1971) Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys 54:5237–5247

    Article  CAS  Google Scholar 

  11. Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635–636

    Article  CAS  Google Scholar 

  12. Chapman WG, Gubbins KE, Jackson G, Radosz M (1989) SAFT: Equation-of-State Model for associating fluids. Fluid Phase Equilib 52:31–38

    Article  CAS  Google Scholar 

  13. Chapman WG, Gubbins KE, Jackson G, Radosz M (1990) New reference equation of state for associating liquids. Ind Eng Chem Res 29:1709–1721

    Article  CAS  Google Scholar 

  14. Huang SH, Radosz M (1990) Equation of state for small, large, polydisperse, and associating molecules. Ind Eng Chem Res 29:2284–2294

    Article  CAS  Google Scholar 

  15. Huang SH, Radosz M (1991) Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. Ind Eng Chem Res 30:1994–2005

    Article  CAS  Google Scholar 

  16. Chen SS, Kreglewski A (1977) Applications of the augmented van der Waals theory of fluids I. Pure fluids. Ber Bunsen-Ges Phys Chem 81:1048–1052

    CAS  Google Scholar 

  17. Wertheim MS (1987) Thermodynamic perturbation theory of polymerization. J Chem Phys 87:7323–7331

    Article  CAS  Google Scholar 

  18. Song Y, Lambert SM, Prausnitz JM (1994) Equation of state for mixtures of hard sphere chains including copolymers. Macromolecules 27:441–448

    Article  CAS  Google Scholar 

  19. Song Y, Lambert SM, Prausnitz JM (1994) A perturbed hard-sphere-chain equation of state for normal fluids and polymers. Ind Eng Chem Res 33:1047–1057

    Article  CAS  Google Scholar 

  20. Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN (1997) Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J Chem Phys 106:4168–4186

    Article  CAS  Google Scholar 

  21. Chang J, Sandler SI (1994) A completely analytic perturbation theory for the square-well fluid of variable well width. Mol Phys 81:745–765

    Article  CAS  Google Scholar 

  22. Hino T, Prausnitz JM (1997) A perturbed hard-sphere-chain equation of state for normal fluids and polymers using the square-well potential of variable width. Fluid Phase Equilib 138:105–130

    Article  CAS  Google Scholar 

  23. Blas FJ, Vega LF (1997) Thermodynamic behaviour of homonuclear Lennard–Jones chains with association sites from simulation and theory. Mol Phys 92:135–150

    CAS  Google Scholar 

  24. Gross J, Sadowski G (2001) Perturbed-Chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40:1244–1260

    Article  CAS  Google Scholar 

  25. Gross J, Sadowski G (2002) Modeling polymer systems using the Perturbed-Chain SAFT equation of state. Ind Eng Chem Res 41:1084–1093

    Article  CAS  Google Scholar 

  26. Tumakaka F, Gross J, Sadowski G (2002) Modeling of polymer phase equilibria using Perturbed-Chain SAFT. Fluid Phase Equilib 194–197:541–551

    Article  Google Scholar 

  27. Boublik T (1970) Hard-sphere equation of state. J Chem Phys 53:471–472

    Article  CAS  Google Scholar 

  28. Mansoori GA, Carnahan NF, Starling KE, Leland TW Jr (1971) Equilibrium thermodynamic properties of hard spheres. J Chem Phys 54:1523–1525

    Article  CAS  Google Scholar 

  29. Kouskoumvekaki I, von Solms N, Michelsen ML, Kontogeorgis G (2004) Application of the Perturbed Chain SAFT equation of state to complex polymer systems using simplified mixing rules. Fluid Phase Equilib 215:71–78

    Article  CAS  Google Scholar 

  30. Jog PK, Chapman WG (1999) Application of Wertheim’s thermodynamic perturbation theory to dipolar hard sphere chains. Mol Phys 97:307–319

    Article  CAS  Google Scholar 

  31. Karakatsani EK, Spyriouni T, Economou IG (2005) Extended statistical associating fluid theory (SAFT) equations of state for dipolar fluids. AIChE J 51:2328–2342

    Article  CAS  Google Scholar 

  32. Gross J, Vrabec J (2006) An equation of state contribution for polar components: dipolar molecules. AIChE J 52:1194–1201

    Article  CAS  Google Scholar 

  33. Karakatsani EK, Economou IG (2006) Perturbed-chain statistical associating fluid theory extended to dipolar and quadrupolar molecular fluids. J Phys Chem B 110:9252–9261

    Article  CAS  Google Scholar 

  34. Gross J (2005) An equation of state contribution for polar components: quadrupolar molecules. AIChE J 51:2556–2568

    Article  CAS  Google Scholar 

  35. Vrabec J, Gross J (2008) A molecular based approach to dipolar und quadrupolar fluids: vapor-liquid equilibria simulation and an equation of state contribution for dipole-quadrupole interactions. J Phys Chem B 112:51–60

    Article  CAS  Google Scholar 

  36. Cameretti L, Sadowski G, Mollerup J (2005) Modelling of aqueous electrolyte solutions with PC-SAFT. Ind Eng Chem Res 44:3355–3362

    Article  CAS  Google Scholar 

  37. Held C, Cameretti L, Sadowski G (2008) Modeling aqueous electrolyte solutions. Part 1: fully dissociated electrolytes. Fluid Phase Equilib 270:87–96

    Article  CAS  Google Scholar 

  38. Behzad B, Patel BH, Galindo A, Ghotbi C (2005) Modeling electrolyte solutions with the SAFT-VR equation using Yukawa potentials and the mean-spherical approximation. Fluid Phase Equilib 236:241–255

    Article  CAS  Google Scholar 

  39. Tihic A, Kontogeorgis GM, von Solms N, Michelsen ML (2006) Application of the simplified perturbed-chain SAFT equation of state using an extended parameter table. Fluid Phase Equilib 248:29–43

    Article  CAS  Google Scholar 

  40. Danner RP, High MS (1993) Handbook of polymer solution thermodynamics. DIPPR, AIChE/Wiley, New York

    Google Scholar 

  41. Sadowski G, Mokrushina L, Arlt W (1997) Finite and infinite dilution activity coefficients in polycarbonate systems. Fluid Phase Equilib 139:391–403

    Article  CAS  Google Scholar 

  42. Becker F, Buback M, Latz H, Sadowski G, Tumakaka F (2004) Cloud-point curves of ethylene–(meth)acrylate copolymers in fluid ethene up to high pressures and temperatures – experimental study and PC-SAFT modeling. Fluid Phase Equilib 215:263–282

    Article  CAS  Google Scholar 

  43. Kleiner M, Tumakaka F, Sadowski G, Latz H, Buback M (2006) Phase equilibria in polydisperse and associating copolymer solutions: poly(ethene-co-(meth)acrylic acid)–monomer mixtures. Fluid Phase Equilib 241:113–123

    Article  CAS  Google Scholar 

  44. Krueger K-M, Pfohl O, Dohrn R, Sadowski G (2006) Phase equilibria and diffusion coefficients in the poly(dimethylsiloxane) + n-pentane system. Fluid Phase Equilib 241:138–146

    Article  CAS  Google Scholar 

  45. Goernert M, Sadowski G (2008) Phase-equilibrium measurement and modeling of the PMMA/MMA/carbon dioxide ternary system. J Supercrit Fluids 46:218–225

    Article  CAS  Google Scholar 

  46. Wohlfarth C (1994) Vapour-liquid equilibrium data of binary polymer solutions; physical sciences data 44. Elsevier, Amsterdam

    Google Scholar 

  47. Martin TM, Lateef AA, Roberts CB (1999) Measurements and modeling of cloud point behavior for polypropylene/n-pentane and polypropylene/n-pentane/carbon dioxide mixtures at high pressures. Fluid Phase Equilib 154:241–259

    Article  CAS  Google Scholar 

  48. Hasch BM (1994) Hydrogen bonding and polarity in ethylene copolymer-solvent mixtures: experiment and modeling. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD

    Google Scholar 

  49. Dietzsch H (1999) Hochdruck-Copolymerisation von Ethen und (Meth)Acrylsäureestern: Entmischungsverhalten der Systeme Ethen/Cosolvens/Poly(Ethen-co-Acrylsäureester) – Kinetik der Ethen-Methylmethacrylat-Copolymerisation. Ph.D. Thesis, Georg August-Universität zu Göttingen, Germany

    Google Scholar 

  50. Song Y, Hino T, Lambert SM, Prausnitz JM (1996) Liquid-liquid equilibria for polymer solutions and blends, including copolymers. Fluid Phase Equilib 117:69–76

    Article  CAS  Google Scholar 

  51. Banaszak M, Chen CK, Radosz M (1996) Copolymer SAFT equation of state. Thermodynamic perturbation theory extended to heterobonded chains. Macromolecules 29:6481–6486

    Article  CAS  Google Scholar 

  52. Shukla KP, Chapman WG (1997) SAFT equation of state for fluid mixtures of hard chain copolymers. Mol Phys 91:1075–1081

    CAS  Google Scholar 

  53. Gross J, Spuhl O, Tumakaka F, Sadowski G (2003) Modeling copolymer systems using the Perturbed-Chain SAFT equation of state. Ind Eng Chem Res 42:1266–1274

    Article  CAS  Google Scholar 

  54. Chen S-J, Banaszak M, Radosz M (1995) Phase behavior of poly(ethylene-1-butene) in subcritical and supercritical propane: ethyl branches reduce segment energy and enhance miscibility. Macromolecules 28:1812–1817

    Article  CAS  Google Scholar 

  55. de Loos TW, Poot W, Diepen GAM (1983) Fluid phase equilibriums in the system polyethylene + ethylene. 1. Systems of linear polyethylene + ethylene at high pressure. Macromolecules 16:111–117

    Article  Google Scholar 

  56. Kehlen H, Rätzsch MT (1980) Continuous thermodynamics of multicomponent mixtures. In: Proceedings of the 6th international conference on thermodynamics, Merseburg, Germany, pp 41–51

    Google Scholar 

  57. Gualtieri JA, Kincaid JM, Morrison G (1982) Phase equilibria in polydisperse fluids. J Chem Phys 77:521–535

    Article  CAS  Google Scholar 

  58. Rätzsch MT, Kehlen H (1983) Continuous thermodynamics of complex mixtures. Fluid Phase Equilib 14:225–234

    Article  Google Scholar 

  59. Cotterman RL, Prausnitz JM (1985) Flash calculations for continuous or semicontinuous mixtures using an equation of state. Ind Eng Chem Proc Des Dev 24:434–443

    Article  CAS  Google Scholar 

  60. Enders S (2010) Theory of random copolymer fractionation in columns. Adv Polym Sci. doi: 10.1007/12_2010_92

    Google Scholar 

  61. Buback M, Latz H (2003) Cloud-point pressure curves of ethene/poly(ethylene-co-meth acrylic acid) mixtures. Macromol Chem Phys 204:638–645

    Article  CAS  Google Scholar 

  62. Beyer C, Oellrich LR (2002) Cosolvent studies bath the system ethylene/poly(ethylene-co-acrylic acid): Effects of solvent, density, polarity, hydrogen bonding, and copolymer composition. Helvetica Chimica Acta 85:659–670

    Article  CAS  Google Scholar 

  63. Bungert B, Sadowski G, Arlt W (1997) Supercritical antisolvent fractionation: measurements in the systems monodisperse and bidisperse polystyrene-cyclohexane-carbon dioxide. Fluid Phase Equilib 139:349–359

    Article  CAS  Google Scholar 

  64. Behme S, Sadowski G, Arlt W (1999) Modeling of the separation of polydisperse polymer systems by compressed gases. Fluid Phase Equilib 158–160:869–877

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Sadowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sadowski, G. (2010). Modeling of Polymer Phase Equilibria Using Equations of State. In: Wolf, B., Enders, S. (eds) Polymer Thermodynamics. Advances in Polymer Science, vol 238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_94

Download citation

Publish with us

Policies and ethics