Soft and Wet Materials: From Hydrogels to Biotissues

  • Jian Ping GongEmail author
  • Yoshihito Osada
Part of the Advances in Polymer Science book series (POLYMER, volume 236)


This chapter describes recent progress in the study and development of hydrogels with tough mechanical strength, low frictional coefficient, and wear-resisting properties. Furthermore, examples of application of gels as cell scaffolds and substitutes of biological tissues, such as artificial articular cartilage, will be introduced.

Artificial cartilage Cell scaffold Double network Hydrogel Low friction Strength Toughness 



This research was financially supported by a Grant-in-Aid for the Specially Promoted Research (No. 18002002) from the Ministry of Education, Science, Sports and Culture of Japan. The author thanks T. Kurokawa, Y. Tanaka, Y. M. Chen, H. Na, H. Furukawa, and the graduate students in LSW for their contributions to double network gel research. The author also thanks K. Yasuda, C. Creton, W. L. Wu, and H. Brown, for useful discussions and contributions to this work.


  1. 1.
    Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New YorkGoogle Scholar
  2. 2.
    McCutchen CW (1978) Lubrication of joints, the joints and synovial fluid. Academic, New YorkGoogle Scholar
  3. 3.
    Derbyshire B, Fisher J, Dowson D, Hardaker C, Brummitt K (1994) Comparative study of the wear of UHMWPE with zirconia ceramic and stainless steel femoral heads in artificial hip joints. Med Eng Phys 16:229Google Scholar
  4. 4.
    Foley DP, Melkert R, Serruys PW (1994) Influence of coronary vessel size onrenarrowing process and late angiographic outcome after successful balloonangioplasty. Circulation 90:1239–1251Google Scholar
  5. 5.
    DeRossi D, Kajiwara K, Osada Y, Yamauchi A (1991) Polymer gels-fundamentals and biomedical applications. Plenum, NewYorkGoogle Scholar
  6. 6.
    Tanaka Y, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469Google Scholar
  7. 7.
    Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244Google Scholar
  8. 8.
    Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837Google Scholar
  9. 9.
    Zarzycki J (1988) Critical stress intensity factors of wet gels. J Noncryst Solids 100:359–363Google Scholar
  10. 10.
    Tanaka Y, Fukao K, Miyamoto Y (2000) Fracture energy of gels. Eur J Phys E 3:395–401Google Scholar
  11. 11.
    Bonn D, Kellay H, Prochnow M, Ben-Djemiaa K, Meunier J (1998) Delayed fracture of an inhomogeneous soft solid. Science 280:265–267Google Scholar
  12. 12.
    Lake GJ, Thomas AG (1967) The strength of highly elastic materials. Proc R Soc Lond 300:108–119Google Scholar
  13. 13.
    Furukawa H, Horie K, Nozaki R, Okada M (2003) Swelling-induced modulation of static and dynamic fluctuations in polymer gels observed by scanning microscope light scattering. Phys Rev E 68:031406.1–031406.14Google Scholar
  14. 14.
    Simha NK, Carlson CS, Lewis JL (2003) Evaluation of fracture toughness of cartilage by micropenetration. J Mater Sci Mater Med 14:631–639Google Scholar
  15. 15.
    Abe H, Hayashi K, Sato M (1996) Data book on mechanical properties of living cells, tissues, and organs. Springer, TokyoGoogle Scholar
  16. 16.
    Okumura Y, Ito K (2001) The polyrotaxane gels: a topological gel by figure-of eight cross-links. Adv Mater 13:485–487Google Scholar
  17. 17.
    Karino T, Okumura Y, Ito K, Shibayama M, (2004) SANS studies on spatial inhomogeneities of slide-ring gels. Macromolecules 37:6177–6182Google Scholar
  18. 18.
    Karino T, Okumura Y, Zhao C, Kataoka T, Ito K, Shibayama M. (2005) SANS studies on deformation mechanism of slide-ring gel. Macromolecules 38:6161–6167Google Scholar
  19. 19.
    Haraguchi K, Takehisa T. (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 10:1120–1124Google Scholar
  20. 20.
    Haraguchi K, Takehisa T, Simon F (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrlamide) and clay. Macromolecules 35:10162–10171Google Scholar
  21. 21.
    Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N, N -dimethylacrylamide) and clay. Macromolecules 36:5732–5741Google Scholar
  22. 22.
    Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer-clay nanocompoiste gels with high clay content. Macromolecules 39:1898–1905Google Scholar
  23. 23.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158Google Scholar
  24. 24.
    Na YH, Kurokawa T, Katsuyama Y, Tsukeshiba H, Gong JP, Osada Y, Okabe S, Karino T, Shibayama M (2004) Structural characteristics of double network gels with extremely high mechanical strength. Macromolecules 37:5370–5374Google Scholar
  25. 25.
    Tanaka Y, Kuwabara R, Na YH, Kurokawa T, Gong JP, Osada Y (2005) Determination of fracture energy of double network hydrogels. J Phys Chem B 109:11559–11562Google Scholar
  26. 26.
    Tsukeshiba H, Huang M, Na YH, Kurokawa T, Kuwabara R, Tanaka Y, Furukawa H, Osada Y, Gong JP (2005) Effect of polymer entanglement on the toughening of double network hydrogels. J Phys Chem B 109:16304–16309Google Scholar
  27. 27.
    Na YH, Tanaka Y, Kawauchi Y, Furukawa H, Sumiyoshi T, Gong JP, Osada Y (2006) Necking phenomenon of double-network gel. Macromolecules 39:4641–4645Google Scholar
  28. 28.
    Huang M, Furukawa H, Tanaka Y, Nakajima T, Osada Y, Gong JP (2007) Importance of entanglement between first and second components in high-strength double network gels. Macromolecules 40:6658–6664Google Scholar
  29. 29.
    Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and Mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927Google Scholar
  30. 30.
    Tominaga T, Tirumala VR, Lin EK, Gong JP, Furukawa H, Osada Y Wu WL (2007) The molecular origin of enhanced toughness in double-network hydrogels: A neutron scattering study. Polymer 48:7449–7454Google Scholar
  31. 31.
    Tominaga T, Tirumala VR, Lee S, Lin EK Gong JP, Wu WL (2008) Thermodynamic interactions in double-network hydrogels. J Phys Chem B 112:3903–3909Google Scholar
  32. 32.
    Brown HR (2007) A model of the fracture of double network gels. Macromolecules 40:3815–3818Google Scholar
  33. 33.
    Tanaka Y (2007) A local damage model for anomalous high toughness of double-network gels. Europhys Lett 78:56005Google Scholar
  34. 34.
    Tirumala VR Tominaga T Lee S, Butler PD, Lin EK, Gong JP, Wu WL (2008) A molecular model for toughening in double-network hydrogels. J Phys Chem B 112:8024–8031Google Scholar
  35. 35.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 10:1869–1879Google Scholar
  36. 36.
    Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128Google Scholar
  37. 37.
    Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum: preparation of freeze dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345Google Scholar
  38. 38.
    Presson BNJ (1998) Sliding friction: physical principles and applications, 2nd edn., NanoScience and Technology Series. Springer, BerlinGoogle Scholar
  39. 39.
    McCutchen CW (1962) The frictional properties of animal joints. Wear 5:1–17Google Scholar
  40. 40.
    McCutchen CW (1978) Lubrication of joints, the joints and synovial fluid. Academic, New YorkGoogle Scholar
  41. 41.
    Dowson D, Unsworth A, Wright V (1970) Analysis of “Booted lubrication” in human joints. J Mech Eng Sci 12:364–369Google Scholar
  42. 42.
    Ateshian GA, Wang HQ, Lai WM (1998) The role of intestitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J Tribol 120:241–251Google Scholar
  43. 43.
    Hodge WA, Fijian RS, Carlson KL, Burgess RG, Harris WH, Mann RW (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 83:2879–2883Google Scholar
  44. 44.
    Grodzinsky AJ (1983) Electromechanical and physicochemical properties of connective tissue. Crit Rev Biomed Eng 9:133–199Google Scholar
  45. 45.
    Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117:179–192Google Scholar
  46. 46.
    Wojtys EM, Chan DB (2005) Meniscus structure and function. Instr Course Lect 54:323–330Google Scholar
  47. 47.
    Gong JP, Higa M, Iwasaki Y, Katsuyama Y, Osada Y (1997) Friction of gels. J Phys Chem B 101:5487–5489Google Scholar
  48. 48.
    Gong JP, Osada Y (1998) Gel friction. A model based on surface repulsion and adsorption. J Chem Phys 109:8062–8068Google Scholar
  49. 49.
    Gong JP, Iwasaki Y, Osada Y, Kurihara K, Hamai Y (1999) Friction of gels. 3. Friction on solid surfaces. J Phys Chem B 103:6001–6006Google Scholar
  50. 50.
    Gong JP, Kagata G, Osada Y (1999) Friction of gels. 4. Friction on charged gels. J Phys Chem B 103:6007–6014Google Scholar
  51. 51.
    Gong JP, Iwasaki Y, Osada Y (2000) Friction of gels. 5. negative load dependence of polysaccharide gels. J Phys Chem B 104:3423–3428Google Scholar
  52. 52.
    Gong JP, Kurokawa T, Narita T, Kagata K, Osada Y, Nishimura G, Kinjo M (2001) Synthesis of hydrogels with extremely low surface friction. J Am Chem Soc 123:5582–5583Google Scholar
  53. 53.
    Kagata G, Gong JP, Osada Y (2002) Friction of gels. 6. effects of sliding velocity and viscoelastic responses of the network. J Phys Chem B 106:4596–4601Google Scholar
  54. 54.
    Kurokawa T, Gong JP, Osada Y (2002) Substrate effect on topographical, elastic, and frictional properties of hydrogels. Macromolecules 35:8161–9166Google Scholar
  55. 55.
    Baumberger T, Caroli C, Ronsin O (2002) Self-healing slip pulses along a gel/glass interface. Phys Rev Lett 88:75509Google Scholar
  56. 56.
    Nitta Y, Haga H, Kawabata K (2002) Time dependent static friction force of agar gel-on-glass plate immersed in water. J Phys IV France 12:319–320Google Scholar
  57. 57.
    Kagata G, Gong JP, Osada Y (2003) Friction of gels. 7. Observation of static friction between like-charged gels. J Phys Chem B 107:10221–10225Google Scholar
  58. 58.
    Baumberger T, Caroli C, Ronsin O (2003) Self-healing slip pulses and the friction of gelatin gels. Eur Phys J E 11:85–93Google Scholar
  59. 59.
    Ohsedo Y, Takashina R, Gong JP, Osada Y (2004) Surface friction of hydrogels with well-defined polyelectrolyte brushes. Langmuir 20:6549–6555Google Scholar
  60. 60.
    Tada T, Kaneko D, Gong JP, Kaneko T, Osada Y (2004) Surface friction of poly(dimethyl siloxane) gel and its transition phenomenon. Tribol Lett 17:505–511Google Scholar
  61. 61.
    Kaneko D, Tada T, Kurokawa T, Gong JP, Osada Y (2004) Mechanically strong hydrogels with an ultra low friction coefficient. Adv Mater 17:535–538Google Scholar
  62. 62.
    Kurokawa T, Tominaga T, Katsuyama Y, Kuwabara R, Furukawa H, Osada Y, Gong JP (2005) Elastic-hydrodynamic transition of gel friction. Langmuir 21:8643–8648Google Scholar
  63. 63.
    Jiang Z, Tominaga T, Kamata K, Osada Y Gong JP (2006) Surface friction of gellan gels. Colloids Surf A Physicochem Eng Asp 284–285:56–60Google Scholar
  64. 64.
    Du M, Maki Y, Tominaga T, Furukawa H, Gong JP, Osada Y, Zheng Q (2007) Friction of soft gel in dilute polymer solution. Macromolecules 40:4313–4321Google Scholar
  65. 65.
    Tominaga T, Biederman H, Furukawa H, Osada Y, Gong JP (2008) Effect of substrate adhesion and hydrophobicity on hydrogel friction. Soft Matter 4:1033–1040Google Scholar
  66. 66.
    Tominaga T, Kurokawa T, Furukawa H, Osada Y, Gong JP (2008) Friction of a soft hydrogel on rough solid substrates. Soft Matter 4:1645–1652Google Scholar
  67. 67.
    Gong JP (2006) Friction and lubrication of hydrogels – its richness and complexity. Soft Matter 7:544–552Google Scholar
  68. 68.
    Schallamach A (1963) A theory of dynamic rubber friction. Wear 6:375–382Google Scholar
  69. 69.
    Chernyak YB, Leonov AI (1986) On the theory of the adhesive friction of elastomers. Wear 108:105–138Google Scholar
  70. 70.
    Savkoor AR (1965) On the friction of rubber. Wear 8:222–237Google Scholar
  71. 71.
    Ludema KC, Tabor D (1966) The friction and visco-elastic properties of polymeric solids. Wear 9:329–348Google Scholar
  72. 72.
    Vorvolakos K, Chaudhury MK (2003) The effects of molecular weight and temperature on the kinetic friction of silicone rubbers. Langmuir 19:6778–6787Google Scholar
  73. 73.
    Brown HR (1994) Chain pullout and mobility effects in friction and lubrication. Science 263:1411–1413Google Scholar
  74. 74.
    Brown HR (1994) Chain mobility and pull-out effects in lubrication and friction. Faraday Discuss 98:47–54Google Scholar
  75. 75.
    Persson BNJ (2001) Elastoplastic contact between randomly rough surfaces. Phys Rev Lett 87:116101Google Scholar
  76. 76.
    Persson BNJ (2001) Theory of rubber friction and contact mechanics. J Chem Phys 115:3840–3861Google Scholar
  77. 77.
    Persson BNJ, Volokitin A (2002) Theory of rubber friction: nonstationary sliding. Phys Rev B 65:134106Google Scholar
  78. 78.
    Martin A, Clain J, Buguin A, Brochard-Wyart F (2002) Wetting transitions at soft, sliding interfaces. Phys Rev E 65:31605Google Scholar
  79. 79.
    de Gennes PG Brochard-Wyart F, Quere D (2003) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New YorkGoogle Scholar
  80. 80.
    de Gennes PG (1979) Scaling concept in polymer physics Cornell University Press, Ithaca, New YorkGoogle Scholar
  81. 81.
    Kii A, Xu J, Gong JP, Osada Y, Zhang XM (2001) Heterogeneous polymerization of hydrogels on hydrophobic substrate. J Phys Chem B 105:4565–4571Google Scholar
  82. 82.
    Peng M, Kurokawa T, Gong JP, Osada Y, Zheng Q (2002) Effect of surface roughness of hydrophobic substrate on heterogeneous polymerization of hydrogels. J Phys Chem B 106:3073–3081Google Scholar
  83. 83.
    Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ (1994) Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370:634–636Google Scholar
  84. 84.
    Grest GS (1999) Normal and shear forces between polymer brushes. In: Granick S (ed) Polymers in confined environments. Advances in Polymer Science, vol 138. Springer, Berlin, pp 149–183Google Scholar
  85. 85.
    Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J (2003) Lubrication by charged polymers. Nature 425:163–165Google Scholar
  86. 86.
    Wojtys EM, Chan DB (2005) Meniscus structure and function. Instr Course Lect 54:323–330Google Scholar
  87. 87.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53Google Scholar
  88. 88.
    Chang YY, Chen SJ, Liang HC, Sung HW, Lin CC, Huang RN (2004) The effect of galectin 1 on 3T3 cell proliferation on chitosan membranes. Biomater 25:3603–3611Google Scholar
  89. 89.
    Chung TW, Lu YF, Wang SS, Lin YS, Chu SH (2002) Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans. Biomater 23:4803–4809Google Scholar
  90. 90.
    Park YD, Tirelli N, Hubbell JA (2003) Photopolymerized hyaluronic acid -based hydrogels and interpenetration networks. Biomater 24:893–900Google Scholar
  91. 91.
    Stile RA, Healy KE (2001) Thermo-responsive peptide-modified hydrogels for tissue regeneration. BioMacromolecules 2:185–194Google Scholar
  92. 92.
    West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244Google Scholar
  93. 93.
    Schmedlen RH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332Google Scholar
  94. 94.
    Fittkau MH, Zilla P, Bezuidenhout D, Lutolf MP, Human P, Hubbell JA, Davies N (2005) The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials 26:167–174Google Scholar
  95. 95.
    Chen YM, Shiraishi N, Satokawa H, Kakugo A, Narita T, Gong JP, Osada Y, Yamamoto K, Ando J (2005) Cultivation of endothelial cells on adhesive protein free synthetic polymer gels. Biomaterials 26:4588–4596Google Scholar
  96. 96.
    Chen YM, Shen KC, Gong JP, Osada Y (2007) Selective cell spreading, proliferation, and orientation on micropatterned gel surfaces. J Nanosci Nanotechnol 7:773Google Scholar
  97. 97.
    Chen YM, Tanaka M, Gong JP, Yasuda K, Yamamoto S, Shimomura M, Osada Y (2007) Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials 28:1752–1760Google Scholar
  98. 98.
    Chen YM, Gong JP, Tanaka M, Yasuda K, Yamamoto S, Shimomura M, Osada Y (2008) Tuning of cell proliferation on tough gels by critical charge effect. J Biomed Mater Res A 88:74–83, doi:10.1002/jbm.a.31869Google Scholar
  99. 99.
    Nakayama Y, Anderson JM, Matsuda T (2000) Laboratory-scale mass production of a multi-micropatterned grafted surface with different polymer regions. J Biomed Mater Res 53:584–591Google Scholar
  100. 100.
    Lee JH, Lee JW, Khang G, Lee HB (1997) Interaction of cells on chargeable functional group gradient surfaces. Biomaterials 18:351–358Google Scholar
  101. 101.
    Lee SD, Husiue GH, Chang PCT, Kao CY (1996) Plasma-induced grafted polymerization acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17:1599–1608Google Scholar
  102. 102.
    Lee JH, Lee JW, Khang G, Lee HB (1997) Interaction of cells on chargeable functional group gradient surfaces. Biomaterials 18:351–358Google Scholar
  103. 103.
    Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J (2004) The effect of hydrogel charge density on cell attachment. Biomaterials 25:3023–3028Google Scholar
  104. 104.
    Magnani A, Priamo A, Pasqui D, Barbucci R (2003) Cell behaviour on chemically microstructured surfaces. Mater Sci Eng C 23:315–328Google Scholar
  105. 105.
    Kishida A, Iwata H, Tamada Y, Ikada Y (1991) Cell behavior on polymer surfaces grafted with non-ionic and ionic monomers. Biomaterials 12:786–792Google Scholar
  106. 106.
    Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y (2005) Biomechanical properties of high toughness double network hydrogels. Biomaterials 26:4469–4475Google Scholar
  107. 107.
    Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM, Gong JP, Osada Y (2007) Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A 81A:373–380Google Scholar
  108. 108.
    Yasuda K, Tanabe Y, Azuma C, Taniguro H, Onodera S, Suzuki A, Chen YM, Gong JP, Osada Y (2008) Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J Mater Sci Mater Med 19:1379–1387Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Faculty of Advanced Life ScienceHokkaido UniversitySapporoJapan
  2. 2.RikenSaitamaJapan

Personalised recommendations