Micromechanics of Soft Particle Glasses

  • Roger T. Bonnecaze
  • Michel CloitreEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 236)


Soft glasses encompass a broad class of materials at the boundaries between polymers, granular dispersions, and colloidal glasses. Although they display a huge diversity of compositions and architectures, soft glasses share a common structure as well as generic static and flow properties. In this chapter, we show that the dense amorphous microstructure of soft glasses, combined with the existence of repulsive elastohydrodynamic interactions mediated by the solvent, lie at the heart of their behavior. These two basic ingredients are incorporated into a micromechanical model and a dynamic molecular-like simulation. Our theory successfully predicts near-equilibrium quantities such as the pair distribution function and shear moduli, the slip properties that are observed when soft glasses are sheared along solid surfaces, as well as the bulk shear rheology. These results, which connect properties at the particle scale to macroscopic behavior, provide predictive tools for the design of materials with a desired rheological response.

Elastohydrodynamic interactions Glass transition Linear viscoelasticity Nonlinear rheology Polymer-colloid materials Shear-thinning Wall slip 



We would like to thank Dr. Jyoti Seth and Clementine Locatelli for their contribution to the work presented in this chapter. We are indebted to Lavanya Mohan for a critical reading of the chapter and for preparing Figs. 6 and 20. We are also grateful to Erik Zumalt for his help in preparing the graphics. RTB gratefully acknowledges financial support from National Science Foundation grant CBET 0854420.


  1. 1.
    Weeks E (1997) In: Maruyama S, Tokuyama M (eds) Statistical physics of complex fluids. Tohoku University Press, Sendai, JapanGoogle Scholar
  2. 2.
    Vlassopoulos D, Fytas G (2010) Adv Polym Sci doi 10.1007/12_2009_31Google Scholar
  3. 3.
    Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ (2005) Nat Mater 4:557Google Scholar
  4. 4.
    Zhou EH, Trepat X, Park CY, Lenormand G, Oliver MN, Mijailovich SM, Hardin C, Weitz DA, Butler JP, Fredberg JJ (2009) Proc Natl Acad Sci 106:10632Google Scholar
  5. 5.
    Ancey C (2007) J Non-Newton Fluid Mech 142:4Google Scholar
  6. 6.
    Pusey PN (2008) J Phys Condens Matter 20:494202Google Scholar
  7. 7.
    Sollich P, Lequeux F, Hebraud P, Cates ME (1997) Phys Rev Lett 78:2020Google Scholar
  8. 8.
    Sollich P (1998) Phys Rev E 58:738Google Scholar
  9. 9.
    Fuchs M, Cates ME (2002) Phys Rev Lett 89:248304Google Scholar
  10. 10.
    Fuchs M, Cates ME (2009) J Rheol 53:957Google Scholar
  11. 11.
    Kobelev V, Schweizer KS (2005) J Chem Phys 123:164903Google Scholar
  12. 12.
    Fuchs M (2010) Adv Polym Sci doi 10.1007/12_2009_30Google Scholar
  13. 13.
    Cloitre M, Borrega R, Monti F, Leibler L (2003) Phys Rev Lett 90:068303Google Scholar
  14. 14.
    Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Lindsay HM, Chaikin P (1982) J Chem Phys 776:3774Google Scholar
  16. 16.
    Alexander S, Chaikin PM, Grant P, Morales GJ, Pincus P (1983) J Chem Phys 80:5776Google Scholar
  17. 17.
    Okubo T (1995) J Chem Phys 102:7721Google Scholar
  18. 18.
    Bonn D, Tanaka H, Wegdam G, Kellay H, Meunier J (1998) Europhys Lett 45:52Google Scholar
  19. 19.
    Bonn D, Kellay H, Tanaka H, Wegdam G, Meunier J (1999) Langmuir 15:7534Google Scholar
  20. 20.
    Levitz P, Ecolier E, Mourchid A, Delville A, Lyonnard S (2000) Europhys Lett 49:672Google Scholar
  21. 21.
    Bonn D, Coussot P, Huynh HT, Bertrand F, Debrégeas G (2002) Europhys Lett 59:786Google Scholar
  22. 22.
    Bonn D, Tanase S, Abou B, Tanaka H, Meunier J (2002) Phys Rev Lett 89:015701Google Scholar
  23. 23.
    Napper DH (1983) Polymeric stabilisation of colloidal dispersions. Academic, LondonGoogle Scholar
  24. 24.
    Castaing JC, Allain C, Auroy P, Auvray L, Pouchelon A (1996) Europhys Lett 36:153Google Scholar
  25. 25.
    Van Helden AK, Vrij A (1980) J Colloid Interface Sci 76:418Google Scholar
  26. 26.
    Mewis J, Frith WJ, Strivens TA, Russel WB (1989) AICHE J 35:415Google Scholar
  27. 27.
    Neel O, Ducouret G, Lafuma FJ (2000) J Colloid Interface Sci 229:244Google Scholar
  28. 28.
    Nicholson JW (2006) The chemistry of polymers. RSC, LondonGoogle Scholar
  29. 29.
    Bucknall CB, Paul DR (2000) Polymer blends: Formulation and Performance. Wiley, New YorkGoogle Scholar
  30. 30.
    Bagheri R, Marouf BT, Pearson RA (2009) Polymer Rev 49:201Google Scholar
  31. 31.
    Wyss H, Fernandez de Las Nieves A, Mattson J, Weitz DA (eds) (2010) Microgel based-materials. Wiley-VCH, New YorkGoogle Scholar
  32. 32.
    Das M, Zhang H, Kumacheva E (2006) Annu Rev Mater Res 36:117Google Scholar
  33. 33.
    Morris GE, Vincent B, Snowden MJ (1997) J Colloid Interface Sci 190:198Google Scholar
  34. 34.
    Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E (2003) Adv Funct Mater 13:471Google Scholar
  35. 35.
    Saunders BR, Vincent B (1999) Adv Colloid Interface Sci 80:1Google Scholar
  36. 36.
    Cloitre M (2005) Macromol Symp 229:99Google Scholar
  37. 37.
    Pelton R (2000) Adv Colloid Interface Sci 278:972Google Scholar
  38. 38.
    Wolfe MS, Scopazzi C (1989) J Colloid Interface Sci 122:265Google Scholar
  39. 39.
    Raquois C, Tassin JF, Rezaiguia S, Gindre AV (1995) Prog Org Coat 26:239Google Scholar
  40. 40.
    Paulin SE, Ackerson BJ, Wolfe MS (1996) J Colloid Interface Sci 178:251Google Scholar
  41. 41.
    Meyer S, Richtering W (2005) Macromolecules 38:1517Google Scholar
  42. 42.
    Pich A, Tesssier A, Boyko V, Lu Y, Adler H-JP (2006) Macromolecules 39:7701Google Scholar
  43. 43.
    Ketz RJ, Prud’homme RK, Graessley WW (1998) Rheol Acta 27:531Google Scholar
  44. 44.
    Bromberg L, Temchenko M, Hatton TA (2002) Langmuir 18:4944Google Scholar
  45. 45.
    Eichenbaum GM, Kisetr PF, Shah D, Meuer WP, Needham D, Simon DA (2000) Macromolecules 33:4087Google Scholar
  46. 46.
    Saunders BR, Crowther HM, Vincent B (1997) Macromolecules 30:482Google Scholar
  47. 47.
    Cloitre M, Borrega R, Monti F, Leibler L (2003) C R Physique 4:221Google Scholar
  48. 48.
    Fernandez-Nieves A, Fernandez-Barbero A, Vincent B, de las Nieves FJ (2003) J Chem Phys 119:10383Google Scholar
  49. 49.
    Frith WJ, Stokes JR (2004) J Rheol 48:1195Google Scholar
  50. 50.
    Caggioni M, Spicer PT, Blair DL, Lindberg SE, Weitz DA (2007) J Rheol 51:851Google Scholar
  51. 51.
    Dingenouts N, Norhausen Ch, Ballauff M (1998) Macromolecules 31:8912Google Scholar
  52. 52.
    Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Langmuir 20:7283Google Scholar
  53. 53.
    Rodriguez BE, Wolfe MS, Fryd M (1994) Macromolecules 27:6642Google Scholar
  54. 54.
    Berndt I, Richtering W (2003) Macromolecules 36:8780Google Scholar
  55. 55.
    Meng Z, Cho J-K, Breedveld V, Lyon A (2009) J Phys Chem B 113:4590Google Scholar
  56. 56.
    Fernandez-Nieves A, Fernandez-Barbero A, de las Nieves FJ (2001) J Chem Phys 115:7644Google Scholar
  57. 57.
    Routh AF, Ferandez-Nieves A, Bradley M, Vincent BJ (2006) Phys Chem B 110:12721Google Scholar
  58. 58.
    Kiefer J, Naser M, Kamel A, Carnali (1993) J Colloid Polym Sci 271:253Google Scholar
  59. 59.
    Saunders BR, Vincent B (1997) Prog Colloid Polym Sci 105:11Google Scholar
  60. 60.
    Fernandez-Nieves A, Fernandez-Barbero A, Vincent B, de las Nieves FJ (2003) J Chem Phys 119:10383Google Scholar
  61. 61.
    Borrega R, Cloitre M, Betremieux I, Ernst B, Leibler L (1999) Europhys Lett 47:729Google Scholar
  62. 62.
    Roovers J, Zhou L-L, Toporowski PM, van der Zwan M, Iatrou H, Hadjichristidis N (1993) Macromolecules 26:4324Google Scholar
  63. 63.
    Likos CN (2001) Phys Rep 348:267Google Scholar
  64. 64.
    Likos CN (2006) Soft Matter 2:478Google Scholar
  65. 65.
    Alexandridis P, Lindman B (2000) Amphiphilic block copolymers: self-assembly and applications. Elsevier, AmsterdamGoogle Scholar
  66. 66.
    Hamley IW (2005) Block copolymers in solution: fundamentals and applications. Wiley, ChichesterGoogle Scholar
  67. 67.
    Hadjichristidis N, Pispas S, Floudas G (1998) Block copolymers: synthetic strategies, physical properties, and applications. Wiley Interscience, New YorkGoogle Scholar
  68. 68.
    Stellbrink J, Rother G, Laurati M, Lund R, Willner L, Richter D (2004) J Phys Condens Matter 16:S3821Google Scholar
  69. 69.
    Laurati M, Stellbrink J, Rother G, Lund R, Willner L, Richter D (2005) Phys Rev Lett 94:195504Google Scholar
  70. 70.
    Merlet-Lacroix N (2008) Auto-assemblage de copolymères à blocs acryliques en solvent apolaire: un exemple de verre colloïdal attractif. Ph.D. thesis, University Paris VIGoogle Scholar
  71. 71.
    Lacroix-Merlet N, Di Cola E, Cloitre M (2010) Soft Matter 6:984Google Scholar
  72. 72.
    Becher P (1983) Encyclopedia of emulsion technology. Marcel Dekker, New YorkGoogle Scholar
  73. 73.
    Mabille C, Schmitt V, Gorria Ph, Leal Calderon F, Faye V, Deminière B, Bibette J (2000) Langmuir 16:422Google Scholar
  74. 74.
    Rhutesh K, Shah, RK, Cheung Shum H, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu L-Y, Kim J-W, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Mater Today 11:18Google Scholar
  75. 75.
    Ekwall P (1975) In: Brown GM (ed) Advances in liquid crystals. Academic, New York, p 1Google Scholar
  76. 76.
    Porte G (1992) J Phys Condens Matter 4:8649Google Scholar
  77. 77.
    Ramos L, Molino F (2000) Europhys Lett. 51:320Google Scholar
  78. 78.
    Diat O, Roux D, Nallet F (1983) J Phys II France 3:1427Google Scholar
  79. 79.
    Princen HM (1986) J Colloid Interface Sci 112:427Google Scholar
  80. 80.
    De Gennes PG, Prost J (1994) Physics of liquid crystals. Oxford University Press, OxfordGoogle Scholar
  81. 81.
    Van der Linden E, Dröge JHM (1993) Physica A 193:439Google Scholar
  82. 82.
    Panizza P, Roux D, Vuillaume V, Lu C-YD, Cates ME (1996) Langmuir 12:248Google Scholar
  83. 83.
    Rubinstein M, Colby R (2003) Polymer physics. Oxford University Press, OxfordGoogle Scholar
  84. 84.
    Obukhov SP, Rubinstein M, Colby RH (1994) Macromolecules 27:3191Google Scholar
  85. 85.
    Rubinstein M, Colby R, Dobrynin AV, Joanny J-F (1996) Macromolecules 29:398Google Scholar
  86. 86.
    Skouri R, Schosseler F, Munch JP, Candau SJ (1995) Macromolecules 28:197Google Scholar
  87. 87.
    Senff H, Richtering W (1999) J Chem Phys 111:1705–1711Google Scholar
  88. 88.
    Kim JU, Matsen MW (2008) Macromolecules 41:4435Google Scholar
  89. 89.
    Rodriguez BE, Wolfe MS, Fryd M (1994) Macromolecules 27:6642Google Scholar
  90. 90.
    Eichenbaum GM, Kiser PF, Dobrynin AV, Simon SA, Needham D (1999) Macromolecules 32:4867Google Scholar
  91. 91.
    Pusey PN, van Megen W (1986) Nature 320:340Google Scholar
  92. 92.
    Pusey PN (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition. North Holland, AmsterdamGoogle Scholar
  93. 93.
    Sciortino F, Tartaglia P (2005) Adv Phys 54:471Google Scholar
  94. 94.
    Frenkel J (1946) Kinetic theory of liquids. Clarendon, OxfordGoogle Scholar
  95. 95.
    Cates ME (2003) Ann Henri Poincare 4:S647Google Scholar
  96. 96.
    Gang H, Krall AH, Cummins Z, Weitz DA (1999) Phys Rev E 59:715Google Scholar
  97. 97.
    Bartsch E, Frenz, V, Baschnagel J, Schartl W, Sillescu H (1997) J Chem Phys 106:3743Google Scholar
  98. 98.
    Crassous JJ, Régissier R, Ballauff M, Willenbacher N (2005) J Rheol 49:851Google Scholar
  99. 99.
    Crassous JJ, Siebenbürger M, Ballauff M, Drechsler M, Henrich O, Fuchs M (2006) J Chem Phys 125:204906Google Scholar
  100. 100.
    Purnomo EH, van den Ende D, Mellema J, Mugele F (2006) Europhys Lett 76:74Google Scholar
  101. 101.
    Crassous JJ, Siebenbürger M, Ballauff M, Drechsler M, Hajnal D, Henrich O, Fuchs M (2008) J Chem Phys 128:204902Google Scholar
  102. 102.
    Meeker SP, Bonnecaze RT, Cloitre M (2004) J Rheol 48:1295Google Scholar
  103. 103.
    Ramos L, Cipelletti L (2001) Phys Rev Lett 87:245503Google Scholar
  104. 104.
    Sciortino F (2002) Nat Mater 1:146Google Scholar
  105. 105.
    Asakura A, Oosawa F (1958) J Polym Sci 33:183Google Scholar
  106. 106.
    Poon WCK (2002) J Phys Condens Matter 14:R859Google Scholar
  107. 107.
    Eckert T, Barsh E (2002) Phys Rev Lett 89:125701Google Scholar
  108. 108.
    Eckert T, Barsh E (2004) J Phys Condens Matter 16:2004Google Scholar
  109. 109.
    Pham KN, Puertas AM, Bergenholtz J, Egelhaff SU, Moussaïd A, Pusey PN, Schofield AB, Cates ME, Fuchs M, Poon WCK (2002) Science 296:104Google Scholar
  110. 110.
    Pham KN, Egelhaff SU, Pusey PN, Poon WCK (2004) Phys Rev E 69:2004Google Scholar
  111. 111.
    Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf U, Schurtenberger P (2004) Nature 432:492Google Scholar
  112. 112.
    Chen S-H, Chen W-R, Mallamace F (2003) Science 300:619Google Scholar
  113. 113.
    Bhatia S, Mourchid A (2002) Langmuir 18:2002Google Scholar
  114. 114.
    Grandjean J, Mourchid A (2004) Europhys Lett 65:712Google Scholar
  115. 115.
    Grandjean J, Mourchid A (2005) Phys Rev E 72:041503Google Scholar
  116. 116.
    Narayanan T, Sztucki M, Belina G, Pignon F (2006) Phys Rev Lett 96:258301Google Scholar
  117. 117.
    Mayer C, Zaccarelli E, Stiakakis E, Likos CN, Sciortino F, Munam A,Gauthier M, Hadjichristidis N, Iatrou H, Tartaglia P, Löwen H, Vlassopoulos D (2008) Nat Mater 7:780Google Scholar
  118. 118.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeGoogle Scholar
  119. 119.
    Liu KK, Williams DR, Briscoe BJ (1998) J Phys D 31:294Google Scholar
  120. 120.
    Lacasse M-D, Grest GS, Levine D (1996) Phys Rev E 54:5436Google Scholar
  121. 121.
    Seth R, Cloitre M, Bonnecaze RT (2006) J Rheol 50:353Google Scholar
  122. 122.
    Dagastine DR, Manica R, Carnie SL, Chan DYC, Stevens GW, Grieser F (2006) Science 313:210Google Scholar
  123. 123.
    Likos CN, Löwen H, Watzlawek M, Abbas B, Jucknischke O, Allgaier J, Richter D (1998) Phys Rev Lett 80:4450Google Scholar
  124. 124.
    Mason TG, Bibette J, Weitz DA (1995) Phys Rev Lett 75:2051Google Scholar
  125. 125.
    Mason TG, Bibette J, Weitz DA (1996) J Colloid Interface Sci 179:439Google Scholar
  126. 126.
    Mason TG, Lacasse M-D, Grest GS, Levine D, Bibette J, Weitz DA (1997) Phys Rev E 56:3150Google Scholar
  127. 127.
    Lacasse M-D, Grest GS, Levine D, Mason TG, Weitz DA (1996) Phys Rev Lett 76:3448Google Scholar
  128. 128.
    Lacasse M-D, Grest GS, Levine D (1996) Phys Rev E 54:5436Google Scholar
  129. 129.
    Buzza DMA, Cates ME (1994) Langmuir 10:4503Google Scholar
  130. 130.
    Adams S, Frith WJ, Stokes JR (2004) J Rheol 48:1195Google Scholar
  131. 131.
    Leng J, Nallet F, Roux D (2001) Eur Phys J E 4:337Google Scholar
  132. 132.
    Fujii S, Richtering W (2006) Eur Phys J E 19:139Google Scholar
  133. 133.
    Mason TG, Bibette J, Weitz DA (1995) Phys Rev Lett 75:2051Google Scholar
  134. 134.
    Mason TG, Bibette J, Weitz DA (1996) J Colloid Interface Sci 179:439Google Scholar
  135. 135.
    Meeker SP, Bonnecaze RT, Cloitre M (2004) Phys Rev Lett 92:198302Google Scholar
  136. 136.
    Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  137. 137.
    Landau LD, Lifshitz EM (1986) Theory of elasticity. Pergamon, New YorkGoogle Scholar
  138. 138.
    Lubachevsky BD, Stillinger FH (1990) J Stat Phys 60:561Google Scholar
  139. 139.
    Donev A, Torquato S, Stillinger, FH (2005) Phys Rev E 71:011105Google Scholar
  140. 140.
    Chandler D, Weeks JD, Andersen HC (1983) Science 220:787Google Scholar
  141. 141.
    Zwanzig R, Mountain RD (1965) J Chem Phys 43:4464Google Scholar
  142. 142.
    Lorenz B, Orgzall I, Heuer H-OJ (1993) Phys A 26:4711Google Scholar
  143. 143.
    Mecke KR, Seyfried A (2002) Europhys Lett 58:28Google Scholar
  144. 144.
    Phan SE, Russel WB, Zhu J, Chaikin PM (1998) J Chem Phys 108:9789Google Scholar
  145. 145.
    Nisato G, Skouri R, Schosseler F, Munch J-P, Candau SJ (1995) Faraday Discuss 101:133Google Scholar
  146. 146.
    Nisato G, Schosseler F, Candau SJ (1996) Polym Gels Netw 4:481Google Scholar
  147. 147.
    Barnes HA (1995) J Nonnewton Fluid Mech 56:221Google Scholar
  148. 148.
    Aral BK, Kalyon DM (1994) J Rheol 38:957Google Scholar
  149. 149.
    Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) J Rheol 47:847Google Scholar
  150. 150.
    Buscall R, McGowan JI, Mortonjones AJ (1993) J Rheol 37:621Google Scholar
  151. 151.
    Russell WB, Grant MC (2000) Colloids Surf A 161:271Google Scholar
  152. 152.
    Persello J, Magnin A, Chang J, Piau J-M, Cabane B (1994) J Rheol 38:1845Google Scholar
  153. 153.
    Pignon F, Magnin A, Piau J-M (1996) J Rheol 40:587Google Scholar
  154. 154.
    Kalyon DM, Yaras P, Aral B, Yilmazer U (1993) J Rheol 37:35–53Google Scholar
  155. 155.
    Kalyon DM (2005) J Rheol 49:621Google Scholar
  156. 156.
    Plucinski J, Gupta RK Chakrabarti S (1998) Rheol Acta 37:256–269Google Scholar
  157. 157.
    Pal R (2000) Colloids Surf A 162:55Google Scholar
  158. 158.
    Princen HM (1985) J Colloid Interface Sci 105:150Google Scholar
  159. 159.
    Denkov ND, Subramanian V, Gurovich D, Lips A (2005) Colloids Surf A 263:129–145Google Scholar
  160. 160.
    Seth J, Cloitre M, Bonnecaze RT (2008) J Rheol 52:1241Google Scholar
  161. 161.
    Gong JP, Osada Y (2010) Adv Polym Sci doi 10.1007/12_2010_91Google Scholar
  162. 162.
    Franco JM, Gallegos C, Barnes HA (1998) J Food Eng 36:89Google Scholar
  163. 163.
    Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) J Rheol 47:1211Google Scholar
  164. 164.
    Meeten GH (2004) Rheol Acta 43:6–16Google Scholar
  165. 165.
    Leighton D, Acrivos A (1987) J Fluid Mech 181:415Google Scholar
  166. 166.
    Louge A (1996) C R Acad Sci Paris IIb:785Google Scholar
  167. 167.
    Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004) J Rheol 48:1085Google Scholar
  168. 168.
    Salmon J-B, Bécu L, Manneville S, Colin A (2003) Eur Phys J E 10:209Google Scholar
  169. 169.
    Manneville S, Bécu L, Colin A (2004) Eur Phys J 28:361Google Scholar
  170. 170.
    Tapadia P, Wang S-Q (2006) Phys Rev Lett 96:016001Google Scholar
  171. 171.
    Degré G, Joseph P, Tabeling P, Lerouge S, Cloitre M, Ajdari A (2006) Appl Phys Lett 89:024104Google Scholar
  172. 172.
    Derks D, Wisman H, van Blaaderen, A, Imhof A (2004) J Phys Condens Matter 16:S3917Google Scholar
  173. 173.
    Cohen I, Davidovitch, B, Schofield AB, Brenner MP, Weitz DA (2006) Phys Rev Lett 97:215502Google Scholar
  174. 174.
    Isa L, Besseling, R, Poon WCK (2007) Phys Rev Lett 98:198305Google Scholar
  175. 175.
    Isa L, Besseling R, Schofield AB, Poon WCK (2010) Adv Polym Sci doi 10. 1007/12_2009_38Google Scholar
  176. 176.
    Khan SA, Schnepper CA, Armstrong RC (1988) J Rheol 1:69Google Scholar
  177. 177.
    Nickerson CS, Kornfield JA (2005) J Rheol 49:865Google Scholar
  178. 178.
    Stokes JR, Telford JH (2004) J Non-Newton Fluid Mech 124:137Google Scholar
  179. 179.
    de Vicente J, Stokes JR, Spikes HA (2006) Food Hydrocolloids 20:483Google Scholar
  180. 180.
    Davies GA, Stokes JR (2008) J Non-Newton Fluid Mech 148:2008Google Scholar
  181. 181.
    Ballesta P, Besseling R, Isa L, Petekidis G, Poon WCK (2008) Phys Rev Lett 101:258301Google Scholar
  182. 182.
    Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Nature 454:84Google Scholar
  183. 183.
    Marze S, Langevin D, Saint-James A (2008) J Rheol 52:1081Google Scholar
  184. 184.
    Israelachvili J (1991) Intermolecular and surfaces forces. Academic, San DiegoGoogle Scholar
  185. 185.
    Barnes J (1999) J Non-Newton Fluid Mech 81:133Google Scholar
  186. 186.
    Bécu L, Manneville S, Colin A (2006) Phys Rev Lett 96:138302Google Scholar
  187. 187.
    Seth JR (2008) On the rheology of dense pastes of soft particles. Ph.D. thesis, The University of TexasGoogle Scholar
  188. 188.
    Erwin BM, Cloitre M, Gauthier M, Vlassopoulos D (2010) Soft Matter doi:10.1039/ b926526kGoogle Scholar
  189. 189.
    Picard G, Ajdari A, Lequeux F, Bocquet L (2005) Phys Rev E 71:010501Google Scholar
  190. 190.
    Yamamoto R, Onuki A (1997) Europhys Lett 40:61Google Scholar
  191. 191.
    Varnik F, Bouquet L, Barrat L, Berthier L (2003) Phys Rev Lett 90:095702Google Scholar
  192. 192.
    Plimpton SJ (1995) J Comp Phys 117:1–19Google Scholar
  193. 193.
    Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, CambridgeGoogle Scholar
  194. 194.
    Denkov ND, Tcholakova S, Golemanov K, Ananthapadmanabhan KP, Lips A (2008) Phys Rev Lett 100:138301Google Scholar
  195. 195.
    Barrat J-L, Dalibard J, Feigelman M, Kurchan J (eds) (2003) Slow relaxations and nonequilibrium dynamics in condensed matter. Springer, BerlinGoogle Scholar
  196. 196.
    Manneville S (2008) Rheol Acta 47:301Google Scholar
  197. 197.
    Cipelletti L, Ramos L (2005) J Phys Condens Matter 17:R253Google Scholar
  198. 198.
    Abou B, Bonn D, Meunier J (2001) Phys Rev E 64:021510Google Scholar
  199. 199.
    Bellour M, Knaebel, A, Harden JL, Lequeux F, Munch JP (2003) Phys Rev E 97:031405Google Scholar
  200. 200.
    Cipelletti L, Manley S, Ball RC, Weitz DA (2000) Phys Rev Lett 84:2275Google Scholar
  201. 201.
    Chung B, Ramakrishnan S, Bandyopadhyay R, Liang D, Zukoski CF, Harden JL, Leheny RL (2006) Phys Rev Lett 96:228301Google Scholar
  202. 202.
    Cloitre M, Borrega R, Leibler L (2000) Phys Rev Lett 85:4819Google Scholar
  203. 203.
    Purnomo EH, van den Ende D, Mellema J, Mugele F (2008) Phys Rev Lett 101:238301Google Scholar
  204. 204.
    Derec C, Ducouret G, Ajdari A, Lequeux F (2003) Phys Rev E 67:061403Google Scholar
  205. 205.
    Ramos L, Cipelletti L (2005) Phys Rev Lett. 94:158301Google Scholar
  206. 206.
    Fielding S, Sollich P, Cates ME (2000) J Rheol 44:323Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Texas Materials InstituteThe University of Texas at AustinAustinUSA
  2. 2.Matière Molle et Chimie (UMR 7167, ESPCI-CNRS)ESPCI-ParisTechParisFrance

Personalised recommendations