Skip to main content

Hydrolases in Polymer Chemistry: Part III: Synthesis and Limited Surface Hydrolysis of Polyesters and Other Polymers

  • Chapter
  • First Online:
Enzymatic Polymerisation

Part of the book series: Advances in Polymer Science ((POLYMER,volume 237))

Abstract

Limited enzymatic surface hydrolysis of polyamides, polyethyleneterphthalates (PET) and polyacrylonitriles has been demonstrated to be a powerful and yet mild strategy for directly improving polymer surface properties (e.g., hydrophilicity) or activating materials for further processing. Recently, mechanistic details on enzymatic surface hydrolysis have become available, especially for the functionalisation of PET, which has been investigated in most detail. Generally, enzymes show a strong preference for amorphous regions of polymers. Consequently, during hydrolysis, the degree of crystallinity increases according to FTIR and DSC analysis. MALDI-TOF analysis has shown that PET hydrolases (i.e. cutinases and lipases) cleave the polymer endo-wise, in contrast to alkaline hydrolysis. As a result, an increase in the amount of carboxyl and hydroxyl groups has been found upon enzymatic hydrolysis, according to X-ray photoelectron spectroscopy and various derivatisation and titration methods recently adapted for this purpose. These mechanistic data, combined with advances in structural and molecular biology, help to explain the considerably different activities of closely related enzymes (e.g. cutinases) on polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brueckner T, Eberl A, Heumann S et al (2008) Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics. J Polym Sci 46:6435–6443

    CAS  Google Scholar 

  • Eberl A, Heumann S, Brueckner T et al (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143:207–212

    Article  CAS  Google Scholar 

  • Zeronian SH, Collins MJ (1989) Surface modification of polyester by alkaline treatments. Textil Progr 20:1–34

    Article  Google Scholar 

  • Hsieh YL, Miller A, Thompson J (1996) Wetting, pore structure and liquid retention of hydrolyzed polyester fabrics. Textil Res J 66:1–10

    Article  CAS  Google Scholar 

  • Fischer-Colbrie G, Matama T, Heumann S et al (2007) Surface hydrolysis of polyacrylonitrile with a nitrilase of a new strain of Micrococcus luteus. J Biotechnol 128:849–857

    Article  Google Scholar 

  • Asatekin A, Kang S, Elimelech M et al (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 298:136–146

    Article  CAS  Google Scholar 

  • Kim HA, Choi JH, Takizawa S (2007) Comparison of initial filtration resistance by pretreatment processes in the nanofiltration for drinking water treatment. Separ Purif Technol 56:354–362

    Article  CAS  Google Scholar 

  • Qiao X, Zhang Z, Ping Z (2007) Hydrophilic modification of ultrafiltration membranes and their application in Salvia miltiorrhiza decoction. Separ Purif Technol 56:265–269

    Article  CAS  Google Scholar 

  • Li JX, Wang J, Shen LR et al (2007) The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. Surf Coat Technol 201:8155–8159

    Article  CAS  Google Scholar 

  • Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol 26:32–38

    Article  CAS  Google Scholar 

  • Almansa E, Heumann S, Eberl A et al (2008) Enzymatic surface hydrolysis of PET enhances bonding in PVC coating. Biocatal Biotrans 26:365–370

    Article  CAS  Google Scholar 

  • Laskarakis A, Logothetidis S, Kassavetis S et al (2007) Surface modification of poly(ethylene terephthalate) polymeric films for flexible electronics applications. Thin solid films 516: 1443–1448

    Article  Google Scholar 

  • Vertommen MAME, Nierstrasz VA, Veer Mvd et al (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386

    Article  CAS  Google Scholar 

  • Donelli M, Taddei P, Smet P F et al (2009) Enzymatic surface modification and functionalization of PET. A water contact angle, FTIR, and fluorescence spectroscopy study. Biotechnol Bioeng 103:845–856

    Article  CAS  Google Scholar 

  • Eberl A, Heumann S, Kotek R. et al (2008) Enzymatic hydrolysis of PTT polymers and oligomers. J Biotechnol 135:45–51

    Article  CAS  Google Scholar 

  • Fischer-Colbrie G, Herrmann M, Heumann S et al (2006) Surface modification of polyacrylonitrile with nitrile hydratase and amidase from Agrobacterium tumefaciens. Biocatal Biotrans 24:419–425

    Article  CAS  Google Scholar 

  • Wang N, Xu Y, Lu D (2004) Enzymatic surface modification of acrylic fiber. AATCC Rev 4:28–30

    CAS  Google Scholar 

  • Ronkvist AM, Xie WC, Lu WH et al (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  CAS  Google Scholar 

  • Parvinzadeh M, Assefipour R, Kiumarsi A (2009) Biohydrolysis of nylon 6,6 fiber with different proteolytic enzymes. Polym Degrad Stab 94:1197–1205

    Article  CAS  Google Scholar 

  • Heumann S, Eberl A, Fischer-Colbrie G et al (2009) A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide. Biotechnol Bioeng 102:1003–1011

    Article  CAS  Google Scholar 

  • Miettinen-Oinonen A, Puolakka A, Buchert J (2007) Method for modifying polyamide. Patent EP1761670 Finland

    Google Scholar 

  • Silva C, Araujo R, Casal M et al (2007) Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme Microb Technol 40:1678–1685

    Article  CAS  Google Scholar 

  • Silva C, Carneiro F, O’Neill A et al (2005) Cutinase – a new tool for biomodification of synthetic fibers. J Polym Sci 43:2448–2450

    CAS  Google Scholar 

  • Araujo R, Silva C, O’Neill A et al (2007) Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J Biotechnol 128:849–857

    Article  CAS  Google Scholar 

  • Silva C, Matama T, Guebitz G M et al (2005) Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. J Polym Sci A Polym Chem 43:2749–2753

    Article  CAS  Google Scholar 

  • Crouzet J, Faucher D, Favre-Bovine G, Jourdat C, Petre D, Pierrard J, Thibault J, Guitton C Enzymes and micro organisms with amidase activity which hydrolyze polyamides. US Patent 6180388

    Google Scholar 

  • Negoro S, Ohki T, Shibata N et al (2007) Nylon-oligomer degrading enzyme/substrate complex: catalytic mechanism of 6-aminohexanoate-dimer hydrolase. J Mol Biol 370:142–156

    Article  CAS  Google Scholar 

  • De Geyter N, Morent R, Leys C et al (2007) Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf Coat Technol 201:7066–7075

    Article  Google Scholar 

  • McCord MG, Hwang YJ, Hauser PJ et al (2002) Modifying nylon and polypropylene fabrics with atmospheric pressure plasmas. Textil Res J 72:491–498

    Article  CAS  Google Scholar 

  • Tusek L, Nitschke M, Werber C et al (2001) Surface characterization of NH3 plasma treated polyamide foils. Colloid Surf. A: Physicochem. Eng. Aspect 195:81–95

    Article  CAS  Google Scholar 

  • Parvinzadeh M (2009) A new approach to improve dyeability of nylon 6 fibre using a subtilisin enzyme. Coloration Technol 125:228–233

    Article  CAS  Google Scholar 

  • Parvinzadeh M, Kiumarsi A (2010) Lipase enzyme to improve dyeability of polyamide substrate. J Biotechnol 136:299

    Article  Google Scholar 

  • Almansa E, Heumann S, Eberl A et al (2008) Surface hydrolysis of polyamide with a new polyamidase from Beauveria brongniartii. Biocatal Biotrans 26:371–377

    Article  CAS  Google Scholar 

  • Yoshioka H, Nagasawa T, Yamada H (1991) Purification and characterization of aryl acylamidase from Nocardia globerula. Eur J Biochem 199:17–24

    Article  CAS  Google Scholar 

  • Labahn J, Neumann S, Buldt G et al (2002) An alternative mechanism for amidase signature enzymes. J Mol Biol 322:1053–1064

    Article  CAS  Google Scholar 

  • Valina ALB, Mazumder-Shivakumar D, Bruice T C (2004) Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate. Biochemistry 43:15657–15672

    Article  CAS  Google Scholar 

  • Kakudo S, Negoro S, Urabe I et al (2000) Nylon oligomer degradation gene, nylC, on plasmid pOAD2 from a Flavobacterium strain encodes endo-type 6-aminohexanoate oligomer. Appl Environ Microbiol 59:3978–3980

    Google Scholar 

  • Negoro S (2000) Biodegradation of nylon oligomers. Appl Microbiol Biotechnol 54:461–466

    Article  CAS  Google Scholar 

  • Fett WF, Wijey C, Moreau RA et al (1998) Production of cutinase by Thermomonospora fusca ATCC 27730. J Appl Microbiol 86:561–568

    Article  Google Scholar 

  • Carvalho CML, Aires-Barros MR, Cabral JMS (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1:160–173

    Article  Google Scholar 

  • Kolattukudy PE (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Annu Rev Plant Physiol Plant Mol Biol 32:539–567

    Article  CAS  Google Scholar 

  • Kolattukudy PE, Rogers LM, Li DX et al (1995) Surface signaling in pathogenesis. Proc Natl Acad Sci USA 92:4080–4087

    Article  CAS  Google Scholar 

  • Lin TS, Kolattukudy PE (1978) Induction of a biopolyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f. sp. pisi. J Bacteriol 133:942–951

    CAS  Google Scholar 

  • Mueller RJ (2006) Biological degradation of synthetic polyesters – enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128

    Article  CAS  Google Scholar 

  • Liebminger S, Eberl A, Sousa F et al (2007) Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocatal Biotrans 25: 171–177

    Article  CAS  Google Scholar 

  • Alisch-Mark M, Herrmann A, Zimmermann W (2006) Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi. Biotechnol Lett 28:681–685

    Article  CAS  Google Scholar 

  • Nimchua T, Punnapayak H, Zimmermann W (2007) Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi. Biotechnol J 2:361–364

    Google Scholar 

  • Gouveia I, Queiroz J, Antunes L (2009) Improving surface energy and hydrophilization of poly(ethylene terephthalate) by enzymatic treatments. In: Freire Bastos T, Gamboa H (eds) Biodevices 2009. INSTICC Press, Setúbal

    Google Scholar 

  • Wang X, Lu D, Jonsson LJ et al (2008) Preparation of a PET-hydrolyzing lipase from Aspergillus oryzae by the addition of bis(2-hydroxyethyl) terephthalate to the culture medium and enzymatic modification of PET fabrics. Eng Life Sci 8:268–276

    Article  CAS  Google Scholar 

  • Uchida H, Kurakata Y, Sawamura H et al (2003) Purification and properties of an esterase from Aspergillus nomius HS-1 degrading ethylene glycol dibenzoate. FEMS Microbiol Lett 223:123–127

    Article  CAS  Google Scholar 

  • Liu YB, Wu GF, Gu LH (2008) Enzymatic treatment of PET fabrics for improved hydrophilicity. AATCC Rev 8:44–48

    Google Scholar 

  • Korpecka J (2009) Cutinase activity of PET-hydrolases. In: Proceedings of INTB 2009, Ghent, Belgium, September 2009

    Google Scholar 

  • Liu ZQ, Gosser Y, Baker PJ et al (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131:15711–15716

    Article  CAS  Google Scholar 

  • Alisch M, Feuerhack A, Mueller H et al (2004) Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates. Biocatal Biotrans 22:347–351

    Article  CAS  Google Scholar 

  • Andersen BK, Borch K, Abo M et al (1999) Method of treating polyester fabrics. US Patent 5,997,584, pp 1–20

    Google Scholar 

  • Heumann S, Eberl A, Pobeheim H et al (2006) New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. J Biochem Biophys Methods 69:89–99

    Article  CAS  Google Scholar 

  • Lee CW, Do Chung J (2009) Synthesis and biodegradation behavior of poly(ethylene terephthalate) oligomers. Polymer (Korea) 33:198–202

    CAS  Google Scholar 

  • Yoon MY, Kellis J, Poulouse AJ (2002) Enzymatic modification of polyester. AATCC Rev 2:33–36

    CAS  Google Scholar 

  • Michels A, Pütz A, Maurer KH, Eggert T, Jäger K-E Use of esterases for separating plastics. WO/2007/017181 Germany

    Google Scholar 

  • Kellis J, Poulose AJ, Yoon MY Enzymatic modification of the surface of a polyester fiber or article. US Patent 6,254,645 B1, US 6,254,645 B1

    Google Scholar 

  • Grochulski P, Li Y, Schrag JD et al (1993) Insights into interacial activation from an open structure of Candida rugosa Lipase. J Biol Chem 286:12843–12847

    Google Scholar 

  • Fojan P, Jonson PH, Petersen MTN et al (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041

    Article  CAS  Google Scholar 

  • Pleiss J, Fischer M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67–80

    Article  CAS  Google Scholar 

  • Kim HR, Song WS (2006) Lipase treatment of polyester fabrics. Fibers Polym 7:339–343

    Article  CAS  Google Scholar 

  • Fischer-Colbrie G, Heumann S, Liebminger S et al (2004) New enzymes with potential for PET surface modification. Biocatal Biotrans 22:341–346

    Article  CAS  Google Scholar 

  • Herzog K, Müller RJ, Deckwer WD (2006) Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym Degrad Stab 91:2486–2498

    Article  CAS  Google Scholar 

  • Müller RJ, Schrader H, Profe J et al (2005) Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405

    Google Scholar 

  • Feng YS, Chen PC, Wen FS et al (2008) Nitrile hydratase from Mesorhizobium sp F28 and its potential for nitrile biotransformation. Process Biochem 43:1391–1397

    Article  CAS  Google Scholar 

  • Wang CC, Lee CM, Wu AS (2009) Acrylic acid removal from synthetic wastewater and industrial wastewater using Ralstonia solanacearum and Acidovorax avenae isolated from a wastewater treatment system manufactured with polyacrylonitrile fiber. Water Sci Technol 60:3011–3016

    Article  CAS  Google Scholar 

  • Tauber MM, Cavaco-Paulo A, Gübitz GM (2001) Enzymatic treatment of acrylic fibers and granulates. AATCC Rev 1:17–19

    CAS  Google Scholar 

  • Tauber MM, Cavaco-Paulo A, Robra K-H et al (2000) Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyse acrylic fibers and granulates. Appl Environ Microbiol 66:1634–1638

    Article  CAS  Google Scholar 

  • Matama T, Carneiro F, Caparrós C et al (2007) Using a nitrilase for the surface modification of acrylic fibres. Biotechnol J 2:353–360

    Article  CAS  Google Scholar 

  • Battistel E, Morra M, Marinetti M (2001) Enzymatic surface modification of acrylonitrile fibers. Appl Surface Sci 177:32–41

    Article  CAS  Google Scholar 

  • Matama T, Vaz F, Gubitz GM et al (2006) The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnol J 1:842–849

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was financed by the SFG, the FFG, the city of Graz and the province of Styria within the MacroFun project and supported by the European COST868 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg M. Guebitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guebitz, G.M. (2010). Hydrolases in Polymer Chemistry: Part III: Synthesis and Limited Surface Hydrolysis of Polyesters and Other Polymers. In: Palmans, A., Heise, A. (eds) Enzymatic Polymerisation. Advances in Polymer Science, vol 237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_89

Download citation

Publish with us

Policies and ethics