Skip to main content

Synthesis of Microgels by Radiation Methods

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 234))

Abstract

The key features of applying radiation techniques to synthesize microgels is the additive-free initiation and an easy process control. Therefore, radiation methods are very suitable for applications in biosciences. Microgels with desired dimensions can be obtained simply by varying the experimental parameters such as concentration, radiation dose, or radiation temperature. By intramolecular cross-linking of single polymer chains even nanogels with diameters smaller than 0.1 μm can be synthesized. Examples of microgels based on different polymers are summarized in this article. The structure of various polymeric architectures such as micelles or interpolymer complexes can be fixed by irradiation to form microgels with specific properties. Their huge application potential as well as selective examples are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CMC:

Critical micelle concentration

CP:

Cloud point

DLS:

Dynamic light scattering

FESEM:

Field emission scanning electron microscopy

Gy:

Gray (1 Gy = 1 J kg− 1)

HPC:

Hydroxypropyl cellulose

MWD:

Most-probable molecular weight distribution

PAA:

Poly(acrylic acid)

PAAm:

Polyacrylamide

PEO:

Poly(ethylene oxide)

PI:

Polyisoprene

PPO:

Poly(propylene oxide)

PPy:

Polypyrrole

PVME:

Poly(vinyl methyl ether)

PVP:

Poly(vinyl pyrrolidone)

Py:

Pyrrole

SEM:

Scanning electron microscopy

SLS:

Static light scattering

D :

Dose

D g :

Gelation dose

D V :

Virtual dose

g :

Gel fraction

g′ :

Viscosity branching parameter

G s :

Radiation yield of chain scission

G x :

Radiation yield of cross-linking

M n :

Number-averaged molecular weight

M w :

Weight-averaged molecular weight

p 0 :

Degradation density

q 0 :

Cross-linking density

R g :

Radius of gyration

R h :

Hydrodynamic radius

s :

Sol content

T c :

Phase transition temperature

u 2, 0 :

Weight-averaged degree of polymerization before irradiation

References

  1. Abd El-Rehim HA (2005) Swelling of radiation crosslinked acrylamide-based microgels and their potential applications. Radiat Phys Chem 74(2):111–117

    Article  CAS  Google Scholar 

  2. Ajji Z, Mirjalili G, Alkhatab A, Dada H (2008) Use of electron beam for the production of hydrogel dressings. Radiat Phys Chem 77(2):200–202

    Article  CAS  Google Scholar 

  3. Arndt KF, Schmidt T, Menge H (2001) Poly(vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322

    Article  CAS  Google Scholar 

  4. Arndt KF, Schmidt T, Reichelt R (2001) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation. Polymer 42(16):6785–6791

    Article  CAS  Google Scholar 

  5. Arndt KF, Richter A, Mönch I (2009) Synthesis of stimuli-sensitive hydrogels in the μm and sub-μm range by radiation techniques and their application. In: Barbucci R (ed) Hydrogels: biological properties and applications. Springer, Berlin, Heidelberg, pp. 121–140

    Google Scholar 

  6. Borgward U, Schnabel W, Henglein A (1969) Determination of rate constants of combination of polyethylene oxide radicals in aqueous solution by pulse radiolysis. Makromol Chem 127:176–184

    Article  Google Scholar 

  7. Brasch U, Burchard W (1996) Preparation and solution properties of microhydrogels from poly(vinyl alcohol). Macromol Chem Phys 197(1):223–235

    Article  CAS  Google Scholar 

  8. Burkert S, Schmidt T, Gohs U, Dorschner H, Arndt KF (2007) Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation. Radiat Phys Chem 76(8–9):1324–1328

    Article  CAS  Google Scholar 

  9. Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience, New York

    Google Scholar 

  10. Charlesby A (1960) Atomic radiation and polymers: radiation effects in materials. Pergamon Press, Oxford

    Google Scholar 

  11. Charlesby A, Alexander P (1955) Reticulation of polymers in aqueous solution by γ-rays. J Chim Phys Phys-Chim Biol 52:699–709

    CAS  Google Scholar 

  12. Charlesby A, Pinner SH (1959) Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc R Soc Lond A 249(1258):367–386

    Article  CAS  Google Scholar 

  13. Chen J, Yang LM, Liu YF, Ding GW, Pei Y, Li J, Hua GF, Huang J (2005) Preparation and characterization of magnetic targeted drug controlled-release hydrogel microspheres. Macromol Symp 225:71–80

    Article  CAS  Google Scholar 

  14. Chen FM, Zhao YM, Sun HH, Jin T, Wang QT, Zhou W, Wu ZF, Jin Y (2007) Novel glycidyl methacrylated dextran (dex-gma)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Release 118(1):65–77

    Article  CAS  Google Scholar 

  15. Czechowska-Biskup R, Rokita B, Ulanski P, Rosiak JM (2005) Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat-binding capacity. Nucl Instrum Methods Phys Res B 236:383–390

    Article  CAS  Google Scholar 

  16. Czechowska-Biskup R, Ulanski P, Olejnik AK, Nowicka G, Panczenko-Kresowska B, Rosiak JM (2007) Diet supplement based on radiation-modified chitosan and radiation-synthesized polyvinylpyrrolidone microgels: influence on the liver weight in rats fed a fat- and cholesterol-rich diet. J Appl Polym Sci 105(1):169–176

    Article  CAS  Google Scholar 

  17. Furusawa K, Terao K, Nagasawa N, Yoshii F, Kubota K, Dobashi T (2004) Nanometer-sized gelatin particles prepared by means of gamma-ray irradiation. Colloid Polym Sci 283(2): 229–233

    Article  CAS  Google Scholar 

  18. Gerlach G, Arndt KF (eds) (2009) Hydrogel sensors and actuators: engineering and technology. Springer, Berlin

    Google Scholar 

  19. Gottlieb R, Kaiser C, Gohs U, Arndt KF (2007) Temperature sensitive hydrogels based on hydroxypropylcellulose by high energy irradiation. Macromol Symp 254:361–369

    CAS  Google Scholar 

  20. Hegewald J, Schmidt T, Eichhorn KJ, Kretschmer K, Kuckling D, Arndt KF (2006) Electron beam irradiation of poly(vinyl methyl ether) films. 2. temperature-dependent swelling behavior. Langmuir 22(11):5152–5159

    Google Scholar 

  21. Henglein A (1966) Pulse radiolytic investigations of reactions of hydrated electrons and free radicals. Allgem Prakt Chem 17:295–301

    CAS  Google Scholar 

  22. Henke A, Kadlubowski S, Ulanski P, Rosiak JM, Arndt KF (2005) Radiation-induced cross-linking of polyvinylpyrrolidone–poly(acrylic acid) complexes. Nucl Instrum Methods Phys Res B 236:391–398

    Article  CAS  Google Scholar 

  23. Hoffman AS (1981) A review of the use of radiation plus chemical and biochemical processing treatments to prepare novel biomaterials. Radiat Phys Chem 18(1–2):323–342

    CAS  Google Scholar 

  24. Hu Y, Chen JF, Chen WM, Ning JQ (2004) Preparation of hollow CdSe nanospheres. Mater Lett 58(22–23):2911–2913

    Article  CAS  Google Scholar 

  25. Huang H, Remsen EE, Kowalewski T, Wooley KL (1999) Nanocages derived from shell cross-linked micelle templates. J Am Chem Soc 121(15):3805–3806

    Article  CAS  Google Scholar 

  26. Janik I, Kasprzak E, Al-Zier A, Rosiak JM (2003) Radiation crosslinking and scission parameters for poly(vinyl methyl ether) in aqueous solution. Nucl Instrum Methods Phys Res B 208:374–379

    Article  CAS  Google Scholar 

  27. Kadlubowski S, Grobelny J, Olejniczak W, Cichomski M, Ulanski P (2003) Pulses of fast electrons as a tool to synthesize poly(acrylic acid) nanogels. intramolecular cross-linking of linear polymer chains in additive-free aqueous solution. Macromolecules 36(7):2484–2492

    Google Scholar 

  28. Narita T, Terao K, Dobashi T, Nagasawa N, Yoshii F (2004) Preparation and characterization of core–shell nanoparticles hardened by gamma-ray. Colloid Surf B 38(3–4):187–190

    Article  CAS  Google Scholar 

  29. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed Engl 44(47):7686–7708

    Article  CAS  Google Scholar 

  30. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477

    Article  CAS  Google Scholar 

  31. Perera MCS, Hill DJT (1999) Radiation chemical yields: G values. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley Interscience, New York, p 481

    Google Scholar 

  32. Pich A, Lu Y, Adler HJP, Schmidt T, Arndt KF (2002) Dispersion polymerization of pyrrole in the presence of poly(vinyl methyl ether) microgels. Polymer 43(21):5723–5729

    Article  CAS  Google Scholar 

  33. Pucic I, Ranogajec F (2003) Phase separation during radiation crosslinking of unsaturated polyester resin. Radiat Phys Chem 67(3–4):415–419

    Article  CAS  Google Scholar 

  34. Querner C, Schmidt T, Arndt KF (2004) Characterization of structural changes of poly(vinyl methyl ether) gamma-irradiated in diluted aqueous solutions. Langmuir 20(7):2883–2889

    Article  CAS  Google Scholar 

  35. Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8(1):561–581

    Article  CAS  Google Scholar 

  36. Rosiak JM (1998) Gel/sol analysis of irradiated polymers. Radiat Phys Chem 51(1):13–17

    Article  CAS  Google Scholar 

  37. Rosiak JM (2007) Nano- and microgels of poly(vinyl methyl ether) obtained by radiation techniques. Eurasian Chem Tech J 9:1–31

    Google Scholar 

  38. Rosiak JM, Rucinska-Reybas A, Pekala W (1989) Method of manufacturing of hydrogel dressings. US Patent 4 871 490

    Google Scholar 

  39. Sabharwal S, Mohan H, Bhardwaj YK, Majali AB (1999) Radiation induced crosslinking of poly(vinyl methylether) in aqueous solutions. Radiat Phys Chem 54(6):643–653

    Article  CAS  Google Scholar 

  40. Schmidt T, Querner C, Arndt KF (2003) Characterization methods for radiation crosslinked poly(vinyl methyl ether) hydrogels. Nucl Instrum Methods Phys Res B 208:331–335

    Article  CAS  Google Scholar 

  41. Schmidt T, Janik I, Kadlubowski S, Ulanski P, Rosiak JM, Reichelt R, Arndt KF (2005) Pulsed electron beam irradiation of dilute aqueous poly(vinyl methyl ether) solutions. Polymer 46(23):9908–9918

    Article  CAS  Google Scholar 

  42. Schmidt T, Mönch JI, Arndt KF (2006) Temperature-sensitive hydrogel pattern by electron-beam lithography. Macromol Mater Eng 291(7):755–761

    Article  CAS  Google Scholar 

  43. Schmitz KS, Wang BL, Kokufuta E (2001) Mechanism of microgel formation via cross-linking of polymers in their dilute solutions: mathematical explanation with computer simulations. Macromolecules 34(23):8370–8377

    Article  CAS  Google Scholar 

  44. Schnabel W, Borgward U (1969) Crosslinking of poly(ethylene oxide) in solution by 60Co-gamma-rays. Makromol Chem 123(1):73–79

    Article  CAS  Google Scholar 

  45. Schwarz HA (1981) Free-radicals generated by radiolysis of aqueous-solutions. J Chem Educ 58(2):101–105

    Article  CAS  Google Scholar 

  46. Theiss D, Schmidt T, Arndt KF (2004) Temperature-sensitive poly(vinyl methyl ether) hydrogel beads. Macromol Symp 210:465–474

    Article  CAS  Google Scholar 

  47. Ulanski P, Rosiak JM (1999) The use of radiation technique in the synthesis of polymeric nanogels. Nucl Instrum Methods Phys Res B 151(1–4):356–360

    Article  CAS  Google Scholar 

  48. Ulanski P, Bothe E, Hildenbrand K, Rosiak JM, von Sonntag C (1996) Hydroxyl-radical-induced reactions of poly(acrylic acid): a pulse radiolysis, EPR and product study. 2. oxygenated aqueous solutions. J Chem Soc Perkin Trans 2 (1):23–28

    Google Scholar 

  49. Ulanski P, Janik I, Rosiak JM (1998) Radiation formation of polymeric nanogels. Radiat Phys Chem 52:289–294

    Article  CAS  Google Scholar 

  50. Ulanski P, Kadlubowski S, Rosiak JM (2002) Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis. Radiat Phys Chem 63(3–6):533–537

    Article  CAS  Google Scholar 

  51. Ulanski P, Pawlowska W, Kadlubowski S, Henke A, Gottlieb R, Arndt KF, Bromberg L, Hatton TA, Rosiak JM (2006) Synthesis of hydrogels by radiation-induced cross-linking of Pluronic®; F127 in N20-saturated aqueous solution. Polym Adv Technol 17(9–10):804–813

    Article  CAS  Google Scholar 

  52. Valdes-Diaz G, Rodriguez-Calvo S, Perez-Gramatges A, Rapado-Paneque A, Fernandez-Lima FA, Ponciano CR, da Silveira EF (2007) Effects of gamma radiation on phase behaviour and critical micelle concentration of Triton X-100 aqueous solutions. J Colloid Interface Sci 311(1):253–261

    Article  CAS  Google Scholar 

  53. Wang BL, Mukataka S, Kodama M, Kokufuta E (1997) Viscometric and light scattering studies on microgel formation by gamma-ray irradiation to aqueous oxygen-free solutions of poly(vinyl alcohol). Langmuir 13(23):6108–6114

    Article  CAS  Google Scholar 

  54. Wang BL, Kodama M, Mukataka S, Kokufuta E (1998) On the intermolecular crosslinking of PVA chains in an aqueous solution by gamma-ray irradiation. Polym Gels Netw 6(1):71–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Krahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Krahl, F., Arndt, KF. (2010). Synthesis of Microgels by Radiation Methods. In: Pich, A., Richtering, W. (eds) Chemical Design of Responsive Microgels. Advances in Polymer Science, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_76

Download citation

Publish with us

Policies and ethics