Skip to main content

Hydrogels in Miniemulsions

  • Chapter
  • First Online:
Chemical Design of Responsive Microgels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 234))

Abstract

In the last decade, the synthesis of polymeric materials that respond to specific environment stimuli by changing their size has attracted widespread interest in both fundamental and applied areas of research. Hydrogels in dispersions are composed of randomly oriented, physically or chemically crosslinked hydrophilic or amphiphilic polymer chains. The synthesis of these gels at the nanoscale (nanogels or microgels) is especially of great importance for their application in drug delivery and controlled release systems, and in biomimetics, biosensing, tissue regeneration, heterogeneous catalysis, etc. The focus of this review is to present the versatility of the miniemulsion process for the formation of monodisperse nanogels from synthetic and natural polymers. Several applications of the obtained microgels are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36:231–279

    Article  CAS  Google Scholar 

  2. Landfester K, Willert M, Antonietti M (2000) Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33(7):2370–2376

    Article  CAS  Google Scholar 

  3. Dickson JL, Psathas PA, Salinas B, Ortiz-Estrada C, Luna-Barcenas G, Hwang HS, Lim KT, Johnston KP (2003) Formation and growth of water-in-CO2 miniemulsions. Langmuir 19(12):4895–4904

    Article  CAS  Google Scholar 

  4. Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K (2008) Synthesis and optimization of gelatin nanoparticles using the miniemulsion process. Biomacromolecules 9(9):2383–2389

    Article  CAS  Google Scholar 

  5. Courts A (1954) The N-terminal amino acid residues of gelatin. 2. Themal degradation. Biochem J 58(1):74–79

    Google Scholar 

  6. Schrieber R, Garies H (2007) Gelatine handbook: theory and industrial practice. Wiley-VCH, Weinheim

    Book  Google Scholar 

  7. Kaul G, Amiji M (2002) Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 19(7):1062–1068

    Article  Google Scholar 

  8. Kushibiki T, Matsuoka H, Tabata Y (2004) Synthesis and physical characterization of poly(ethylene glycol)-gelatin conjugates. Biomacromolecules 5(1):202–208

    Article  CAS  Google Scholar 

  9. Coester C, Kreuter J, Von Briesen H, Langer K (2000) Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm 196(2): 147–149

    Article  CAS  Google Scholar 

  10. Weber C, Reiss S, Langer K (2000) Preparation of surface modified protein nanopartiles by introdction of sulfhydryl groups. Int J Pharm 211(1–2):67–78

    Article  CAS  Google Scholar 

  11. Chen T, Embree HD, Wu LQ, Payne GF (2002) In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 64(6):292–302

    Article  CAS  Google Scholar 

  12. Ma J, Cao H, Li Y, Li Y (2002) Synthesis and characterization of poly(DL-lactide)-grafted gelatin chains as bioabsorbable amphiphilic polymers. J Biomater Sci Polymer Ed 13(1): 67–80

    Article  CAS  Google Scholar 

  13. Truong-Le VL, Walsh SM, Schweibert E, Mao HQ, Guggino WB, August JT, Leong KW (1999) Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys 361(1):47–56

    Article  CAS  Google Scholar 

  14. Busch S, Schwarz U, Kniep R (2003) Chemical and structural investigations of biomimetically grown fluorapatite-gelatin composite aggregates. Adv Funct Mater 13:189–198

    Article  CAS  Google Scholar 

  15. Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles – a new colloidal drug delivery system. Pharm Acta Helv 53(1):17–23

    CAS  Google Scholar 

  16. Balthasar S, Michaelis K, Dinauer N, Briesen HV, Kreuter J, Langer K (2005) Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 26(15):2723–2732

    Article  CAS  Google Scholar 

  17. Coester CJ, Langer K, Von Briesen H, Kreuter J (2000) Gelatin nanoparticles by two step desolvation – a new preparation method, surface modifications and cell uptake. J Microencapsul 17(2):187–193

    Article  CAS  Google Scholar 

  18. Azarmi S, Huang Y, Chen H, McQuarrie S, Abrams D, Roa W, Finlay WH, Miller GG, Löbenberg R (2006) Optimization of a two-step desolvation method for preparing gelatin nanoprticles and cell uptake studies in 143B osteosarcoma cancer cells. J Pharm Pharmaceut Sci 9(1):124–132

    CAS  Google Scholar 

  19. Farrugia CA, Groves MJ (1999) Gelatin behaviour in dilute aqueous solution: designing a nanoparticulate formulation. J Pharm Pharmacol 51(6):643–649

    Article  CAS  Google Scholar 

  20. Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53:183–193

    Article  CAS  Google Scholar 

  21. Leo E, Vandelli MA, Cameroni R, Forni F (1997) Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int J Pharm 155(1):75–82

    Article  CAS  Google Scholar 

  22. Oppenheim RC, Stewart NF (1979) The manufacture and tumor cell uptake of nanoparticles labelled with fluorescein isothiocyanate. Drug Dev Ind Pharm 5(6):563–572

    Article  CAS  Google Scholar 

  23. Li JK, Wang N, Wu XS (1998) Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul 15(2):163–172

    Article  CAS  Google Scholar 

  24. Cascone MG, Lazzeri L, Carmignani C, Zhu ZH (2002) Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 13(5): 523–526

    Article  CAS  Google Scholar 

  25. Gupta AK, Gupta M, Yarwood SJ, Curtis ASG (2004) Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release 95(2):197–207

    Article  CAS  Google Scholar 

  26. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed Engl 48(25):4488–4507

    Article  CAS  Google Scholar 

  27. Ethirajan A, Ziener U, Chuvilin A, Kaiser U, Cölfen H, Landfester K (2008) Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized via miniemulsion process. Adv Funct Mater 18(15):2221–2227

    Article  CAS  Google Scholar 

  28. Tanaka T (1978) Collapse of gels and critical endpoint. Phys Rev Lett 40(12):820–823

    Article  CAS  Google Scholar 

  29. Khokhlov AR, Starodubtsev SG, Vasilevskaya VV (1993) Conformational transitions in polymer gels: theory and experiment. In: Dusek K (ed) Responsive gels: volume transitions I, vol 109. Springer, Heidelberg, pp 123–171

    Google Scholar 

  30. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. In: Dusek K (ed) Responsive gels: volume transitions I, vol 109. Springer, Heidelberg, pp 1–62

    Google Scholar 

  31. Galaev IY (1999) ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17(8):335–340

    Article  CAS  Google Scholar 

  32. Zrinyi M, Szabo D, Genoveva F, Feher J (2002) Electrical and magnetic field-sensitive smart polymer gels. In: Osada Y, Khokhlov AR (eds) Polymer gels and networks. Marcel Dekker, New York, pp 309–356

    Google Scholar 

  33. Churochkina NA, Starodubtsev SG, Khokhlov AR (1998) Swelling and collapse of the gel composites based on neutral and slightly charged poly(acrylamide) gels containing Na-montmorillonite. Polym Gels Networks 6(3–4):205–215

    Article  CAS  Google Scholar 

  34. Starodubtsev SG, Churochkina NA, Khokhlov AR (2000) Hydrogel composites of neutral and slightly charged poly(acrylamide) gels with incorporated bentonite. Interaction with salt and ionic surfactants. Langmuir 16(4):1529–1534

    Google Scholar 

  35. Liu L, Li PS, Asher SA (1999) Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature 397(6715):141–144

    Article  CAS  Google Scholar 

  36. Komarova GA, Starodubtsev SG, Khokhlov AR (2005) Synthesis and properties of polyelectrolyte gels with embedded voids. Macromol Chem Phys 206(17):1752–1756

    Article  CAS  Google Scholar 

  37. Komarova GA, Starodubtsev SG, Lozinsky VI, Kalinina EI, Landfester K, Khokhlov AR (2008) Intelligent gels and cryogels with entrapped emulsions. Langmuir 24:4467–4469

    Article  CAS  Google Scholar 

  38. Starodubtsev SG, Khokhlov AR (2004) Synthesis of polyelectrolyte gels with embedded voids having charged walls. Macromolecules 37(6):2004–2006

    Article  CAS  Google Scholar 

  39. Komarova GA, Starodubtsev SG, Khokhlov AR (2007) Reactivity of mercapto groups in cationic micelle solutions and gel-embedded emulsions. Dokl Phys Chem 416:253–255

    Article  CAS  Google Scholar 

  40. Lozinsky VI (2002) Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Uspekhi Khimii 71(6):559–585

    Google Scholar 

  41. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29(3):183–275

    Article  CAS  Google Scholar 

  42. Kainthan RK, Brooks DE (2007) In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28(32):4779–4787

    Article  CAS  Google Scholar 

  43. Kainthan RK, Hester SR, Levin E, Devine DV, Brooks DE (2007) In vitro biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28(31):4581–4590

    Article  CAS  Google Scholar 

  44. Lo SC, Burn PL (2007) Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chem Rev 107(4):1097–1116

    Article  CAS  Google Scholar 

  45. Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  CAS  Google Scholar 

  46. Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45(8):1198–1215

    Article  CAS  Google Scholar 

  47. Siegers C, Biesalski M, Haag R (2004) Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem Eur J 10(11):2831–2838

    Article  CAS  Google Scholar 

  48. Haag R (2001) Dendrimers and hyperbranched polymers as high-loading supports for organic synthesis. Chem Eur J 7(2):327–335

    Article  CAS  Google Scholar 

  49. Vandenberg EJ (1985) Polymerization of glycidol and its derivatives – a new rearrangment polymerization. J Polym Sci Polym Chem Ed 23(4):915–949

    Article  CAS  Google Scholar 

  50. Sunder A, Hanselmann R, Frey H, Mülhaupt R (2006) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32(13):4240–4246

    Article  Google Scholar 

  51. Kainthan RK, Muliawan EB, Hatzikiriakos SG, Brooks DE (2006) Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules 39(22):7708–7717

    Article  CAS  Google Scholar 

  52. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  Google Scholar 

  53. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021

    Article  CAS  Google Scholar 

  54. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36(8):1249–1262

    Article  CAS  Google Scholar 

  55. Huisgen R (1968) Cycloadditions-definition, classification and characterization. Angew Chem Int Ed Engl 7(5):321–406

    Article  CAS  Google Scholar 

  56. Fournier D, Hoogenboom R, Schubert US (2007) Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev 36(8):1369–1380

    Article  CAS  Google Scholar 

  57. Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129(18):5939–5945

    Article  CAS  Google Scholar 

  58. De Geest BG, Van Camp W, Du Prez FE, De Smedt SC, Demeester J, Hennink WE (2008) Biodegradable microcapsules designed via “click” chemistry. Chem Commun 2:190–192

    Article  CAS  Google Scholar 

  59. Srinivasulu P, Raghunath Rao P, Sundaram EV (1991) Synthesis and characterization of ethyl methacrylate-acrylamide copolymers. J Appl Polym Sci 43(8):1521–1525

    Article  CAS  Google Scholar 

  60. Sanayei RA, O’Driscoll KF, Klumperman B (1994) Pulsed laser copolymerization of styrene and maleic anhydride. Macromolecules 27(20):5577–5582

    Article  CAS  Google Scholar 

  61. Puig JE, Corona-Galvan S, Maldonado A, Schulz PC, Rodriguez BE, Kaler EW (1990) Microemulsion copolymerization of styrene and acrylic acid. J Colloid Interface Sci 137(1): 308–310

    Article  CAS  Google Scholar 

  62. Hernández-Barajas J, Hunkeler DJ (1997) Inverse-emulsion copolymerization of acrylamide and quaternary ammonium cationic monomers with block copolymeric surfactants: copolymer composition control using batch and semi-batch techniques. Polymer 38(2):449–458

    Article  Google Scholar 

  63. Glukhikh V, Graillat C, Pichot C (1987) Inverse emulsion polymerization of acrylamide. II. Synthesis and characterization of copolymers with methacrylic acid. J Polym Sci Polym Chem Ed 25(4):1127–1161

    Article  CAS  Google Scholar 

  64. Vasková V, Hlousková Z, Barton J, Juranicová V (1992) Polymerization in inverse microemulsions, 4 locus of initiation by ammonium peroxodisulfate and 2,2-azoisobutyronitrile. Macromol Chem 193(3):627–637

    Article  Google Scholar 

  65. Vasková V, Juranicová V, Barton J (1990) Polymerization in inverse microemulsions, 1. Homopolymerizations of water- and oil-soluble monomers in inverse microemulsions. Macromol Chem 191(3):717–723

    Google Scholar 

  66. Vasková V, Juranicová V, Barton J (1991) Polymerization in inverse microemulsions, 3. Copolymerization of water- and oil-soluble monomers initiated by radical initiators. Macromol Chem 192(6):1339–1347

    Google Scholar 

  67. Barton J (1992) Copolymerization of polar and nonpolar monomers in direst and inverse emulsion systems. Makromol Chem Macromol Symp 53:289–306

    Article  CAS  Google Scholar 

  68. Corpart JM, Candau F (1993) Formulation and polymerization of microemulsions containing a mixture of cationic and anionic monomers. Colloid Polym Sci 271(11):1055–1067

    Article  CAS  Google Scholar 

  69. Corpart JM, Candau F (1993) Aqueous solution properties of ampholytic copolymers prepared in microemulsions. Macromolecules 26(6):1333–1343

    Article  CAS  Google Scholar 

  70. Musyanovych A, Rossmanith R, Tontsch C, Landfester K (2007) Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl- and amino-functionalized polystyrene particles prepared by miniemulsion polymerization. Langmuir 23(10):5367–5376

    Article  CAS  Google Scholar 

  71. Holzapfel V, Musyanovych A, Landfester K, Lorenz MR, Mailänder V (2005) Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol Chem Phys 206(24):2440–2449

    Article  CAS  Google Scholar 

  72. Musyanovych A, Adler H-JP (2005) Grafting of amino functional monomer onto initiator-modified polystyrene particles. Langmuir 21(6):2209–2217

    Article  CAS  Google Scholar 

  73. Duracher D, Sauzedde F, Elaissari A, Perrin A, Pichot C (1998) Cationic amino-containing N-isopropylacrylamide–styrene copolymer latex particles: 1-particle size and morphology vs. Polymerization process. Colloid Polym Sci 276(3):219–231

    Article  CAS  Google Scholar 

  74. Welzel T, Meyer-Zaika W, Epple M (2004) Continuous preparation of functionalised calcium phosphate nanoparticles with adjustable crystallinity. Chem Commun 10:1204–1205

    Article  CAS  Google Scholar 

  75. Fowler CE, Li M, Mann S, Margolis HC (2005) Influence of surfactant assembly on the formation of calcium phosphate materials – A model for dental enamel formation. J Mater Chem 15(32):3317–3325

    Article  CAS  Google Scholar 

  76. Sarda S, Heughebaert M, Lebugle A (1999) Influence of the type of surfactant on the formation of calcium phosphate in organized molecular systems. Chem Mater 11(10):2722–2727

    Article  CAS  Google Scholar 

  77. Schachschal S, Pich A, Adler H-JP (2008) Aqueous microgels for the growth of hydroxyapatite nanocrystals. Langmuir 24(9):5129–5134

    Article  CAS  Google Scholar 

  78. Schnepp ZAC, Gonzalez-McQuire R, Mann S (2006) Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv Mater 18(14):1869–1872

    Article  CAS  Google Scholar 

  79. Antonietti M, Breulmann M, Goltner CG, Cölfen H, Wong KKW, Walsh D, Mann S (1998) Inorganic/organic mesostructures with complex architectures: precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers. Chem Eur J 4(12):2493–2500

    Article  CAS  Google Scholar 

  80. Kakizawa Y, Miyata K, Furukawa S, Kataoka K (2004) Size-controlled formation of a calcium phosphate-based organic-inorganic hybrid vector for gene delivery using poly(ethylene glycol)-block-poly(aspartic acid). Adv Mater 16(8):699–702

    Article  CAS  Google Scholar 

  81. Shchukin DG, Sukhorukov GB, Möhwald H (2003) Smart inorganic/organic nanocomposite hollow microcapsules. Angew Chem Int Ed Engl 42(37):4472–4475

    Article  CAS  Google Scholar 

  82. Sugawara A, Yamane S, Akiyoshi K (2006) Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromol Rapid Commun 27(6):441–446

    Article  CAS  Google Scholar 

  83. Walsh D, Hopwood JD, Mann S (1994) Crystal tectonics: construction of reticulated calcium phosphate frameworks in bicontinuous reverse microemulsions. Science 264(5165): 1576–1578

    Article  CAS  Google Scholar 

  84. Lim GK, Wang J, Ng SC, Gan LM (1999) Formation of nanocrystalline hydroxyapatite in nonionic surfactant emulsions. Langmuir 15(22):7472–7477

    Article  CAS  Google Scholar 

  85. Perkin KK, Turner JL, Wooley KL, Mann S (2005) Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. Nano Lett 5(7):1457–1461

    Article  CAS  Google Scholar 

  86. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  Google Scholar 

  87. Kretlow JD, Mikos AG (2007) Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng 13(5):927–938

    Article  CAS  Google Scholar 

  88. Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58(3–5): 77–116

    Article  CAS  Google Scholar 

  89. Bradt JH, Mertig M, Teresiak A, Pompe W (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11(10):2694–2701

    Article  CAS  Google Scholar 

  90. Bigi A, Panzavolta S, Rubini K (2004) Setting mechanism of a biomimetic bone cement. Chem Mater 16(19):3740–3745

    Article  CAS  Google Scholar 

  91. Rosseeva EV, Buder J, Simon P, Schwarz U, Frank-Kamenetskaya OV, Kniep R (2008) Synthesis, characterization, and morphogenesis of carbonated fluorapatite-gelatine nanocomposites: a complex biomimetic approach toward the mineralization of hard tissues. Chem Mater 20(19):6003–6013

    Article  CAS  Google Scholar 

  92. Qiu XY, Han YD, Zhuang XL, Chen XS, Li YS, Jing XB (2007) Preparation of nano-hydroxyapatite/poly(L-lactide) biocomposite microspheres. J Nanopart Res 9(5):901–908

    Article  CAS  Google Scholar 

  93. Ducheyne P, Beight J, Cuckler J, Evans B, Radin S (1990) Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth. Biomaterials 11(8):531–540

    Article  CAS  Google Scholar 

  94. Campbell AA, Fryxell GE, Linehan JC, Graff GL (1996) Surface-induced mineralization: a new method for producing calcium phosphate coatings. J Biomed Mater Res 32(1):111–118

    Article  CAS  Google Scholar 

  95. Cook SD, Thomas KA, Kay JF, Jarcho M (1988) Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Relat Res 232:225–243

    CAS  Google Scholar 

  96. Mendonca G, Mendonca DBS, Aragao FJL, Cooper LF (2008) Advancing dental implant surface technology – from micron- to nanotopography. Biomaterials 29(28):3822–3835

    Article  CAS  Google Scholar 

  97. Tamai H, Yasuda H (1999) Preparation of polymer particles coated with hydroxyapatite. J Colloid Interface Sci 212(2):585–588

    Article  CAS  Google Scholar 

  98. Schachschal S, Pich A, Adler H-JP (2007) Growth of hydroxyapatite nanocrystals on polymer particle surface. Colloid Polym Sci 285(10):1175–1180

    Article  CAS  Google Scholar 

  99. Zhang RW, Zhang D, Mao H, Song WL, Gao G, Liu FQ (2006) Preparation and characterization of Ag/ago nanoshells on carboxylated polystyrene latex particles. J Mater Res 21(2):349–354

    Article  Google Scholar 

  100. Liu DP, Majewski P, O’Neill BK, Ngothai Y, Colby CB (2006) The optimal SAM surface functional group for producing a biomimetic HA coating on Ti. J Biomed Mater Res A 77A(4):763–772

    Article  CAS  Google Scholar 

  101. Ethirajan A, Ziener U, Landfester K (2009) Surface-functionalized polymeric nanoparticles as templates for biomimetic mineralization of hydroxyapatite. Chem Mater 21(11): 2218–2225

    Article  CAS  Google Scholar 

  102. Weidenheimer JF, Callahan FM (1956) Soft gelatine encapsulation. US2770553A1

    Google Scholar 

  103. Soottitantawat A, Bigeard F, Yoshii H, Furuta T, Ohkawara M, Linko P (2005) Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovat Food Sci Emerg Tech 6(1):107–114

    Article  CAS  Google Scholar 

  104. Brückner M, Bade M, Kunz B (2007) Investigations into the stabilization of a volatile aroma compound using a combined emulsification and spray drying process. Eur Food Res Tech 226:137–146

    Article  CAS  Google Scholar 

  105. Liu C-S, Desai KGH, Meng X-H, Cheng X-G (2007) Sweet potato starch microparticles as controlled drug release carriers: preaparation and in vitro drug release. Drying Technol 25:689–693

    Article  CAS  Google Scholar 

  106. Hong K, Park S (2000) Polyurea microcapsules with different structures: preparation and properties. J Appl Polym Sci 78(4):894–898

    Article  CAS  Google Scholar 

  107. Landfester K, Musyanovych A, Mailänder V (2010) From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. J Polym Sci Polym Chem Ed 48(3):493–515

    Article  CAS  Google Scholar 

  108. Tiarks F, Landfester K, Antonietti M (2001) Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17(3):908–918

    Article  CAS  Google Scholar 

  109. Paiphansiri U, Tangboriboonrat P, Landfester K (2006) Polymeric nanocapsules containing an antiseptic agent obtained by controlled nanoprecipitation onto water-in-oil miniemulsion droplets. Macromol Biosci 6(1):33–40

    Article  CAS  Google Scholar 

  110. Crespy D, Stark M, Hoffmann-Richter C, Ziener U, Landfester K (2007) Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules 40(9):3122–3135

    Article  CAS  Google Scholar 

  111. Jagielski N, Sharma S, Hombach V, Mailänder V, Rasche V, Landfester K (2007) Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials. Macromol Chem Phys 208:2229–2241

    Article  CAS  Google Scholar 

  112. Rosenbauer E-M, Landfester K, Musyanovych A (2009) Surface-active monomer as a stabilizer for polyurea nanocapsules synthesized via interfacial polyaddition in inverse miniemulsion. Langmuir 25(20):12084–12091

    Article  CAS  Google Scholar 

  113. Musyanovych A, Landfester K (2008) Synthesis of poly(butylcyanoacrylate) nanocapsules by interfacial polymerization in miniemulsions for the delivery of DNA molecules. Prog Colloid Polym Sci 134:120–127

    CAS  Google Scholar 

  114. Baier G, Musyanovych A, Dass M, Theisinger S, Landfester K (2010) Crosslinked starch capsules prepared in inverse miniemulsion as “nanoreactors” for dsDNA and polymerase chain reaction. Biomacromolecules 11:960–968

    Article  CAS  Google Scholar 

  115. Vaihinger D, Landfester K, Kräuter I, Brunner H, Tovar GEM (2002) Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation. Macromol Chem Phys 203(13):1965–1973

    Article  CAS  Google Scholar 

  116. Sisson A, Papp I, Landfester K, Haag R (2009) Functional nanoparticles from dendritic precursors: hierarchical assembly in miniemulsion. Macromolecules 42:556–559

    Article  CAS  Google Scholar 

  117. Willert M, Landfester K (2002) Amphiphilic copolymers from miniemulsified systems. Macromol. Chem. Phys. 203:825–836

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Landfester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Landfester, K., Musyanovych, A. (2010). Hydrogels in Miniemulsions. In: Pich, A., Richtering, W. (eds) Chemical Design of Responsive Microgels. Advances in Polymer Science, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_68

Download citation

Publish with us

Policies and ethics