Skip to main content

Organic–Inorganic Hybrid Magnetic Latex

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 233))

Abstract

The preparation of magnetic hybrid latex, consisting of inorganic magnetic iron oxide nanoparticles and organic polymer, in dispersed media is reviewed. The aim of this chapter is to highlight the recent advances of research into the synthesis of hybrid magnetic latex preparation in dispersed media. Although the term “organic–inorganic hybrid composite/latex” covers a wide range of materials, this review will principally focus on the preparation methods, emphasizing emulsion polymerization in the presence of inorganic iron oxide magnetic particles. However, some relevant hybrid polymer latexes of other metal oxides and their synthetic methods will be highlighted. Furthermore, some applications and properties of magnetic latex, polymerization parameters and the shortcomings of preparation methods will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

μ-TAS:

Micro total analysis system

AA:

Acrylic acid

AAEM:

Acetoacetoxyethyl methacrylate

ACPA:

4,4-Azobis(4-cyanopentanoic acid)

ACVA:

4,4-Azobis(4-cyanovaleric acid)

AEM:

2-Aminoethylmethacrylate

AIBA:

2,2-Azobis(2-isobutyramidine)

AIBN:

Azobis(isobutyronitrile)

AM:

Acrylamide

APS:

Ammonium persulphate

ATRP:

Atom transfer radical polymerization

CA:

Cetylalcohol

DVB:

Divinylbenzene

EA:

Ethylacrylate

EDA:

Ethylene diamine

EGDM:

Ethylene glycol dimethacrylate

GLYMO:

[3-(Glycidyloxy)propyl] trimethoxysilane

GMA:

Glycidyl methacrylate

IgepalCO-520:

Poly(oxyethylene nonylphenylether)

KPS:

Potassium persulphate

LBL:

Layer-by-layer

MAA:

Methacrylic acid

MBA:

N,N-methylene bis acrylamide

MMA:

Methyl methacrylate

MPDMS:

Methacryloxypropyl dimethoxysilane

MPSA:

3-Mercapto-1-propane sulfonic acid

MPTMS:

[3-(Methacryloxy)propyl]trimethoxysilane

MRI:

Magnetic resonance imaging

NIPAM:

N-Isopropyl acrylamide

NVP:

N-Vinyl pirolidone

Oligo-dT:

Oligodeoxythymidylic acid

P(DMAEMA-EGMA):

Poly(2-dimethyl aminoethyl methacrylate–ethylene glycol dimethacrylate)

PAA:

Poly(acrylic acid)

PAMPS:

Poly(2-acrylamido-2-methyl-1-propanesulphonic acid)

PCL:

Poly(ε-caprolactone)

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PEI:

Poly(ethylene imine)

PEOAM:

Poly(ethylene oxide acrylamide)

PEOVB:

Poly(ethylenoxide) vinylbenzene

PGMA:

Poly(glycidyl methacrylate)

PHEMA:

Poly(2-hydroxyethyl methacrylate)

PLGA:

Poly(d,l-lactide-co-glycolide)

PLLA:

Poly(l-lactide)

PMA:

Poly(methacrylic acid)

PMAMVE:

Poly(maleic anhydride-alt-methyl vinyl ether)

PMI:

N-(2,6-Diisopropylphenyl)-perylene-3, 4-dicarbonacidimide

PMMA:

Poly(methyl methacrylate)

PPO:

Poly(propylene oxide)

PVA:

Poly(vinyl alcohol)

SDS:

Sodium dodecyl sulphate

SEM:

Scanning electron microscopy

St:

Styrene

TEM:

Transmission electron microscopy

TEOS:

Tetraethyl orthosilicate

TGA:

Thermogravimetric analysis

Triton X-405:

Poly(oxyethylene) isooctylphenylether

V-59:

2,2-Azobis(2-methylbutyronotrile)

VA-057:

2,2-Azobis[N-(2-carboxyethyl)-2–2-methylpropionamidine]

VSM:

Vibrating sample magnetometry

References

  1. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R Cheresh DA (2002) Science 296:2404–2407

    CAS  Google Scholar 

  2. Grainger DW, Okano T (2003) Adv Drug Deliv Rev 55:311–313

    CAS  Google Scholar 

  3. Elaissari A (ed) (2008) Colloidal nanoparticles in biotechnology. Wiley, New Jersey

    Google Scholar 

  4. Stone HA, Stroock AD, Ajdari A (2004) Annu Rev Fluid Mech 36:81–411

    Google Scholar 

  5. Tuichiev Sh, Rashidov V, Esfidary A (2003) Electromagn Mater:213–216. doi:10.1142/9789812704344 0042

    Google Scholar 

  6. Schwertmann T, Cornell RM (1991) Iron oxides in the laboratory: preparation and characterization. Wiley, Weinheim

    Google Scholar 

  7. Van Herk AM (1997) In: Asua JM (ed) Polymeric dispersions: principle and application, vol 335. Kluwer, Netherlands, pp. 435–450

    Google Scholar 

  8. Wilson JL, Poddar P, Frey NA, Srikant H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) J Appl Phys 95:1439–1443

    CAS  Google Scholar 

  9. Yan F, Xue G, Chen J, Lu Y (2001) Synth Met 123:17–20

    CAS  Google Scholar 

  10. Lapotin AV, Kazantseva NE, Kazantsev YN, D’yakonova OA, Vilcàkovà J, Saha P (2008) J Commun Technol Electron 53:487–496

    Google Scholar 

  11. Sohn BH, Cohen RE (1997) Chem Mater 9:264–269

    CAS  Google Scholar 

  12. Helseth LE (2007) Appl Phys Lett 90:093501

    Google Scholar 

  13. Deetz DJ (1998) US patent 5843329

    Google Scholar 

  14. Duran JDG, Arias JL, Gallardo V, Delgado AV (2008) J Pharm Sci 97:2948–2983

    CAS  Google Scholar 

  15. Feyen M, Heim E, Ludwig F, Schmidt AM (2008) Chem Mater 20:2942–2948

    CAS  Google Scholar 

  16. Polasek P, Mult S (2002) Water SA 28:69

    CAS  Google Scholar 

  17. Cumbal L, Greenleaf J, Leun D, Sengupta AK (2003) React Funct Polym 54:167–180

    CAS  Google Scholar 

  18. Pauser S, Reszka R, Wagner S, Wolf KJ, Buhr HI, Berger G (1997) Anticancer Drug Des 12:125–135

    CAS  Google Scholar 

  19. Torchilin VP (2000) Eur J Pharm Sci 11:81–91

    Google Scholar 

  20. Brazel CS (2009) Pharmaceut Res 26:644–656

    CAS  Google Scholar 

  21. Kim DH, Elena R, Rajh T, Bader SD, Novosad V (2009) Nanotechnology 2:294–297

    CAS  Google Scholar 

  22. Tanimoto A (2001) In: Arshady R (ed) Radiolabeled and magnetic particlulates in medicine & biology. MML series, vol 3. Citrus Books, London, p 525

    Google Scholar 

  23. Zielhuis SW, Nijsen JF, Seppenwoolde JH, Zonnenberg BA, Bakker CJ, Hennik WE, Rijik VPP, Van Schip AD (2005) Curr Med Chem Anticancer Agents 5:303–313

    CAS  Google Scholar 

  24. Dobson J (2006) Drug Dev Res 67:55–60

    CAS  Google Scholar 

  25. McBain SC, Yiu HP, Dobson J (2008) Int J Nanomedicine 3:169–180

    CAS  Google Scholar 

  26. Benjamin BY, Zachary GF, Derek SH, Gregory F, Kenneth AB, Michael C, Robert L, Gary F (2005) J Magn Magn Mater 293:647–654

    Google Scholar 

  27. Arruebo M, Fernàndez-Pacheco R, Ibarra R, Santamaria J (2007) Nanotoday 2:22–32

    Google Scholar 

  28. Mailander V, Landfester K (2009) Biomacromolecules 10:2379–2400

    Google Scholar 

  29. Gang L, Fang H, Xuemei W, Feng G, Gen Z, Tao W, Hui J, Chunhui W, Dadong G, Xiaomao L, Baoan C, Zhongze G (2008) Langmuir 24:2151–2156

    Google Scholar 

  30. Koppolu BP, Rahimi M, Nattama SP, Wadajkar A, Nguyen K (2009) Nanomedicine: NBM 20:1–7

    Google Scholar 

  31. Gupta AK, Wells S (2004) IEEE Trans NanoBioscience 3:66–73

    Google Scholar 

  32. Kubo T, Sugita T, Shimose S, Nitta Y, Murakami T (2000) Int J Oncol 17:309–316

    CAS  Google Scholar 

  33. Shinkai M, Suzuki M, Ijima S, Kobayashi T (1995) Biotechnol Appl Biochem 21:125–137

    CAS  Google Scholar 

  34. Chan DCF, Kirpotin DB, Bunn PAJr (1997) In: Hafeli U, Schutt W, Teller J, Zborowski M (eds) Scientific and clinical application of magnetic carriers. Plenum, New York, pp. 607–617

    Google Scholar 

  35. Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt H-G (1998) IEEE Trans Magn 34:3745–54

    CAS  Google Scholar 

  36. Motoyama J, Hakata T, Kato R, Yamashita N, Morino T, Kobayashi T, Honda H (2008) BioMagn Res Technol 6:4

    Google Scholar 

  37. Thiesen B, Jordan A (2008) Int J Hyperthermia 24:467–74

    CAS  Google Scholar 

  38. Gupta AK, Gupta M (2005) Biomaterials 26:3995–4021

    CAS  Google Scholar 

  39. Chegnon MS, Groman EV, Josepshon L, Whithead RA (1995) Adv Magn Inc EP 0:125

    Google Scholar 

  40. Chen H, Ebner AD, Bockenfeld D, Ritter JA, Kaminski MD, Liu X, Remfer D, Rosengart AJ (2007) Phys Med Biol 52:6053–6072

    CAS  Google Scholar 

  41. Elaissari A (ed) (2004) Colloidal biomolecules, biomaterials, and biomedical applications. Surfactant series, vol 116. Marcel Dekker, New York, p 1

    Google Scholar 

  42. Meza M (1997) In: Hafeli U, Schutt W, Teller J, Zborowski M (eds) Scientific and clinical application of magnetic carriers. Plenum, New York, pp. 303–309

    Google Scholar 

  43. Haik Y, Cordovez M, Chen C-J, Chatterjee J (2002) Eur Cell Mater 3:41–44

    Google Scholar 

  44. Tokoro H, Nakabayashi T, Fujii S, Zhao, H, Hafeli U (2009) J Magn Magn Mater 321:1676–1678

    CAS  Google Scholar 

  45. Ugelstad J, Berge A, Ellingsen T, Auno O, Kilaas L, Nilsen TN, Schmid R, Stenstad P, Funderud S, Kvalheim G, Nustad K, Lea T, Vartdal F, Danielsen H (1998) Macromol Symp 17:177–211

    Google Scholar 

  46. Obata K, Segawa O, Yakabe M, Ishida Y, Kuroita T, Ikeda K, Kawakami B, Kawamura Y, Yohda M, Matsunaga T, Tajima H (2001) J Biosci Bioeng 91:500–503

    CAS  Google Scholar 

  47. Elaissari A, Rodrigue M, Meunier F, Herve F (2001) J Magn Magn Mater 225:127–133

    CAS  Google Scholar 

  48. Yoza B, Arakaki A, Matsunaga T (2003) J Biotechnol 101:219–228

    CAS  Google Scholar 

  49. Intorasoot S, Srirung R, Intorasoot A, Ngamratanapaiboon S (2009) Anal Biochem 386:291–292

    CAS  Google Scholar 

  50. Taylor JI, Hurst CD, Davies MJ, Sachsinger N, Bruce IJ (2000) J Chromatogra A 890:159–166

    CAS  Google Scholar 

  51. Safarik I, Safarikova M (2004) BioMagn Res Technol 2:7

    Google Scholar 

  52. Kondo A, Kamura H, Higashitani K (1994) Appl Microbiol Biotechnol 41:99–105

    CAS  Google Scholar 

  53. Huang X, Meng X, Tang F, Li L, Chen D, Liu H, Zhang Y, Ren J (2008) Nanotechnology 19:445101

    Google Scholar 

  54. Varlan AR, Suls J, Jacobs P, Sansen W (1995) Biosens Bioelectron 10:15–19

    Google Scholar 

  55. Koneracká M, Kopčanský P, Timko M, Ramchand CN, Saiyed ZM, Trevan M, de Sequeira A (2006) In: Guisan JM (ed) Immobilization of enzymes and cells. Methods in biotechnology, vol 22. Humana, Totowa, NJ, pp. 217–228

    Google Scholar 

  56. Pichot C (2004) Colloid Interface Sci 9:213–221

    CAS  Google Scholar 

  57. Haukanes BI, Kvam C (1993) Bio/Technology 11:60–63

    CAS  Google Scholar 

  58. Satoh K, Iwata A, Murata M, Hikata M, Hayakawa T, Yamaguchi T (2003) J Virol Methods 114:11–19

    CAS  Google Scholar 

  59. Veyret R, Elaissari A, Marianneau P, Alpha Sall A, Delair T (2005) Anal Biochem 346:59–68

    CAS  Google Scholar 

  60. Esteve F, Amiral J, Padula C, Solinas I WO 9504279. Societe Diagnostica-Stago

    Google Scholar 

  61. Ugelstad J, Olsvik O, Schmid R, Berge A, Funderud S, Nustad K (1993) In: Ngo TT(ed) Molecular interactions in bioseparation. Plenum, New York, pp. 229–244

    Google Scholar 

  62. Mijailovich SM, Kojic M, Zivikovic M, Fabry B, Fredberg JJ (2002) J Appl Physiol 93:1429–1436

    Google Scholar 

  63. Renault NJ, Martelet C, Chevolot Y, Cloarec JP (2008) In: Elaisari A (ed) Colloidal nano particles in biotechnology. Willy, New Jersey, p 169

    Google Scholar 

  64. Bacry JC, Perzynski R, Salin D (1987) Recherche 170:232

    Google Scholar 

  65. Papell S (1965) U S patent 3,215,572

    Google Scholar 

  66. Rosensweig RE (1997) Ferrohydrodynamics. Dover, New York

    Google Scholar 

  67. Khalafalla SE, Reimers GW (1973) US Patent 3,764,540

    Google Scholar 

  68. Khalafalla SE, Reimers GW (1980) IEEE Trans Magn 16:178

    Google Scholar 

  69. Montagne F, Mondain-Monval O, Pichot C, Mozzanega H, Elaisssari A (2002) J Magn Magn Mater 250:302–312

    CAS  Google Scholar 

  70. Shinkai M, Honda H, Kobayashi T (1991) Biocatal Biotransformation 5:61–69

    CAS  Google Scholar 

  71. Massart RC (1980) R Acad Ser C 291:1

    CAS  Google Scholar 

  72. Massart R, Cabuil VJ (1987) Chem Phys 84:967

    CAS  Google Scholar 

  73. Viota JL, Duran JDG, Gonzalez-Caballero F, Delgado AV (2007) J Magn Magn Mater 314:80–86

    CAS  Google Scholar 

  74. Ràcuciu M, Creangà DE, Bàdescu V, Sulitanu N (2007) J Magn Magn Mater 316:e772–e775

    Google Scholar 

  75. Chunbao Xu, Teja AS (2008) J Supercrit Fluids 44:85–91

    Google Scholar 

  76. Laurent S, Forge D, Port M, Roch A, Robic C, Elst EV, Muller RN (2008) Chem Rev 108:2064–2110

    CAS  Google Scholar 

  77. Jana NR, Chen Y, Peng X (2004) Chem Mater 16:3931–3935

    CAS  Google Scholar 

  78. Wan J, Cai W, Feng J, Meng X, Liu E (2007) Chem Commun 47:5004

    Google Scholar 

  79. Viau G, Fievet-Vincent F, Fiévet F (1996) J Mater Chem 6:1047–1053

    CAS  Google Scholar 

  80. Gonzalez-Carreno T, Morales MP, Gracia M, Serna CJ (1993) Mater Lett 18:151–155

    CAS  Google Scholar 

  81. Veintemillas-Vendaguer S, Bomati-Miguel O, Morales MP, Di Nunzio PE, Martelli S (2003) Matter Lett 57:1184–1189

    Google Scholar 

  82. Feltin N, Pileni MP (1997) Langmuir 13:3927–3933

    CAS  Google Scholar 

  83. Pileni MP (2001) Adv Funct Mater 11:323–333

    CAS  Google Scholar 

  84. Hamoudeh M, Al Faraj A, Canet-Soulas E, Besueille F, Leonard D, Fessi H (2007) Int J Pharm 338:248–257

    CAS  Google Scholar 

  85. Hamoudeh M, Fessi H (1996) J Colloid Interface Sci 300:584–590

    Google Scholar 

  86. Tanyolac D, Ozdural AR (2000) React Funct Polym 43:279–286

    CAS  Google Scholar 

  87. Lee SL, Jeong JR, Shin SC, Kim JC, Chang YH, Lee KH, Kim JD (2005) Colloids Surf A Physicochem Eng Asp 255:19–25

    CAS  Google Scholar 

  88. Chatterjee J, Haik Y, Chen CJ (2001) Colloid Polym Sci 279:1073–1081

    CAS  Google Scholar 

  89. Chatterjee J, Haik Y, Chen CJ (2004) Biomagn Res Tech 2:4

    Google Scholar 

  90. Lee J, Isobe T, Senna M (1996) J Colloid Interface Sci 177:490–494

    CAS  Google Scholar 

  91. Brinker CJ (1994) In: Bergna HE (ed) The colloid chemistry of silica advances in chemistry series, vol 234. American Chemical Society, Washington, DC, p 359

    Google Scholar 

  92. Ma Z, Guan Y, Liu H (2006) J Magn Magn Mater 301:469–477

    CAS  Google Scholar 

  93. Sauzedde S, Elaissari A, Pichot C (1999) Colloid Polym Sci 277:846–855

    CAS  Google Scholar 

  94. Kim HS, Sohn BH, Lee W, Lee JK, Choi SJ, Kwon SJ (2002) Thin Solid Films 419:173–177

    CAS  Google Scholar 

  95. Caruso F, Lichtenfeld H, Donath E, Möhwald H (1999) Macromolecules 32:2317

    CAS  Google Scholar 

  96. Caruso F, Susha AS, Giresig M, Möhwald H (1999) Adv Mater 11: 950–953

    CAS  Google Scholar 

  97. Veyret R, Delair T, Elaissari A (2005) J Magn Magn Mater 293:171–176

    CAS  Google Scholar 

  98. Ugelstad J, Ellingsen T, Berge A, Helgee B (1986) European Patent 0 106,873

    Google Scholar 

  99. Ugelstad J, Mork PC, Schmid R, Ellingsen T, Berge A (1993) Polym Int 30:157–168

    CAS  Google Scholar 

  100. Ugelstad J, Killas L, Aune O, Bjorgum J, Herje R, Schmid R, Stenstad P, Berge A, Uhlén M, Hornes E, Olsovik O (1993) In: Uhlén M, Hornes E, Olsvik O (eds), Advances in biomagnetic separation. Eaton, Stockholm, p 1

    Google Scholar 

  101. Ma Z, Guan Y, Liu H (2005) J Polym Sci A Polym Chem 43:3433–3439

    CAS  Google Scholar 

  102. Moeser GD, Roach KA, Green WH, Laibinis PE, Hatton TA (2002) Ind Eng Chem Res 41:4739–4749

    CAS  Google Scholar 

  103. Kawaguchi H, Fujimoto K, Nakazawa Y, Sagakawa M, Ariyoshi Y, Shidara M, Okazaki H, Ebisawa Y (1996) Colloids Surf A Physicochem Eng Asp 109:147–154

    CAS  Google Scholar 

  104. Sahiner N (2006) Colloid Polym Sci 285:283–292

    CAS  Google Scholar 

  105. Wormuth K (2001) J Colloid Interface Sci 241:366–377

    CAS  Google Scholar 

  106. Thuenemann AF, Schuett D, Kaufner L, Pison U, Möhwald H (2006) Langmuir 22:2351–2357

    CAS  Google Scholar 

  107. Strable E, Bulre WM, Moskowitz B, Vivekannandan K, Allen M, Douglas T (2001) Chem Matter 13:2201–2209

    CAS  Google Scholar 

  108. Thomas JR (1996) J Appl Phys 377:2914–2915

    Google Scholar 

  109. Charmot D (1989) Prog Colloid Polym Sci 79:94–100

    CAS  Google Scholar 

  110. Takahashi K, Tamaura Y, Kodera Y, Mihama T, Saito Y, Inada Y (1987) Biochem Biopys Res Comm 142:291–296

    CAS  Google Scholar 

  111. Vivaldo-Lima E, Wood Philip E, Hamielec AE, Penlidis A (1997) Ind Eng Chem Res 36:939–965

    CAS  Google Scholar 

  112. Yuan HG, Kalfas G, Ray WH (1991) Rev Macromol Chem Phys C 21:215–299

    Google Scholar 

  113. Daniel JC, Schuppiser JL, Tricot M (1981) US patent 4,358,388

    Google Scholar 

  114. Lee Y, Rho J, Jung B (2003) J Appl Polym Sci 89:2058–2067

    CAS  Google Scholar 

  115. Maria LCD, Leite MCAM, Costa MAS, Ribeiro JMS, Senna LF, Silva MR (2003) Eur Polym J 39:843–846

    Google Scholar 

  116. Iman M, Celebi SS, Ozdzural R (1992) Reac Polym 17:325–330

    CAS  Google Scholar 

  117. Zhiya M, Guan Y, Liu X, Liu H (2005) Polym Adv Technol 16:554–558

    Google Scholar 

  118. Müller-Schulte D, Schmitz- Rode T (2006) J Magn Magn Mater 302:267–271

    Google Scholar 

  119. Wang X, Ding X, Zheng Z, Hu X, Cheng X, Peng Y (2006) Macromol Rapid Commun 27:1180–1184

    CAS  Google Scholar 

  120. Lu S, Cheng G, Pang X (2003) J Appl Polym Sci 89:3790–3796

    CAS  Google Scholar 

  121. Richard J, Sophe V (1999) US patent 5,976,426

    Google Scholar 

  122. Li X, Sun Z (1995) J Appl Polym Sci 58:1991–1997

    CAS  Google Scholar 

  123. Horák D, Babic M, Macková H, Beneš J M (2007) J Sep Sci 30:1751–1772

    Google Scholar 

  124. Tao Z, Yang W, Zhou H, Wang C, Fu S (2000) Colloid Polym Sci 278:509–517

    CAS  Google Scholar 

  125. Horák D (2001) J Polym Sci A Polym Chem 39:3707–3715

    Google Scholar 

  126. Horák D, Semenyuk N, Lednicky F (2003) J Polym Sci A Polym Chem 41:1848–1863

    Google Scholar 

  127. Ding X, Sun, Z, Wan G, Jiang Y (1998) React Funct Polym 38: 11–18

    CAS  Google Scholar 

  128. Liu X-Y, Ding X-B, Zheng Z-H, Peng Y-X, Long X-P, Wang X-C, Chan ASC, Yip CW (2003) J Appl Polym Sci 90:1879–1884

    CAS  Google Scholar 

  129. Ding X-B, Li W, Zheng Z-H, Zhang W-H, Deng J-G, Peng Y-X, Chan ASC, Li P (2001) J Appl Polym Sci 79:1847–1851

    CAS  Google Scholar 

  130. Ahmad H, Rahman MA, Miah MAJ, Tauer K (2008) Macromol Res 16:637–643

    CAS  Google Scholar 

  131. Zhang J, Yu D, Chen W, Xie Y, Wan W, Liang H, Min C (2009) J Magn Magn Mater 321:572–577

    CAS  Google Scholar 

  132. Park BJ, Park CW, Yang SW, Kim HM, Choi HJ (2009) J Phys Conf Ser 149:012078

    Google Scholar 

  133. Zhang HP, Bai S, Xu L, Sun Y (2009) J Chromatogr B 877:127–133

    CAS  Google Scholar 

  134. Van Herk AM, Janssen RQF, Janssen EAWG, German AL (1993) In: Proceedings of the XIX international conference in organic coatings science and technology. Athens, Greece, pp. 219–224

    Google Scholar 

  135. Montagne F, Mondain-Monval O, Pichot C, Elaissari A (2006) J Polym Sci A Polym Chem 44:2642–2656

    CAS  Google Scholar 

  136. Khng HP, Cunliffe D, Davies S, Turner AN, Vulfson EN (1998) Biotechnol Bioeng 60:419–424

    CAS  Google Scholar 

  137. Horak D, Chekina N (2006) J Appl Polym Sci 102:4348–4357

    CAS  Google Scholar 

  138. Mes’Shikova AY, Shabsel’s BM, Skurkis YO, Inkin KS, Chekina NA, Ivanchev SS (2007) Russ J Gen Chem 77:354–362

    Google Scholar 

  139. Braconnot S, Hoang C, Fessi H, Elaissari A (2008) Mater Sci Eng C 29:624–630

    Google Scholar 

  140. Lee CF, Chou YH, Chiu WY (2007) J Polym Sci A Polym Chem 45:3062–3072

    CAS  Google Scholar 

  141. Zhang F, Wang CC (2009) Langmuir 25:8255-8262 doi:10.1021/1a9004467

    CAS  Google Scholar 

  142. Shang H, Chang WS, Kan S, Majetich SA, Lee GU (2006) Langmuir 22:2516–2522

    CAS  Google Scholar 

  143. Shamim N, Hong L, Hidajat K, Uddin MS (2007) Colloids Surf B Biointerfaces 55:51–58

    CAS  Google Scholar 

  144. Van Herk AM (1997) In: Asua JM (ed) Polymeric dispersion: principles and applications. NATO ASI series, applied science, vol 335. Kluwer, Dordrecht, pp. 435–450

    Google Scholar 

  145. Boguslavsky Y, Margel S (2008) J Colloids Interface Sci 317:101–114

    CAS  Google Scholar 

  146. Omer-Mizrahi M, Margel S (2009) J Colloids Interface Sci 329:228–234

    CAS  Google Scholar 

  147. Zhao J, Han Z, Song Q, Wang Y, Sun D (2008) Front Chem China 3:81–87

    Google Scholar 

  148. Yang S, Liu H, Zhang Z (2008) Langmuir 24:10395–10401

    CAS  Google Scholar 

  149. Mouaziz H, Braconnot S, Ginot F, Elaissari A (2009) Colloids Polym Sci 287:287–297

    CAS  Google Scholar 

  150. Vanderhoff JW, Branford EB, Tarkowski HL, Schaffer JB (1962) Adv Chem Ser 34:32

    Google Scholar 

  151. Menager C, Sandre O, Mangili J, Cabuil V (2004) Polymer 45:2475–2481

    CAS  Google Scholar 

  152. Chen Y, Qian Z, Zhang Z (2008) Colloids Surf A Physicochem Eng Asp 312:209–213

    CAS  Google Scholar 

  153. Gu S, Shiratori T, Konno M (2003) Colloids Polym Sci 281:1076–1081

    CAS  Google Scholar 

  154. Gu S, Onishi J, Kobayashi Y, Nagao D, Konno M (2005) J Colloids Interface Sci 289:419–426

    CAS  Google Scholar 

  155. Nagao D, Yakoyama M, Yamauchi N, Matsumoto H, Kobayashi Y, Konno M (2008) Langmuir 24:9804–9808

    CAS  Google Scholar 

  156. Guo N, Wu D, Pan X, Lu M (2009) J Appl Polym Sci 112:2383–2390

    CAS  Google Scholar 

  157. Kondo A, Kamura H, Higashitani K (1994) Appl Microbiol Biotechnol 41:99–105

    CAS  Google Scholar 

  158. Kondo A, Fukuda H (1999) Colloids Surf A Physicochem Eng Asp 153:435–438

    CAS  Google Scholar 

  159. Lee CF, Lin CC, Chien CA, Chiu WY (2008) Eur Polym J 44:2768–276

    CAS  Google Scholar 

  160. Xu Z, Xia A, Wang C, Yang W, Fu S (2007) Mater Chem Phys 103:494–499

    CAS  Google Scholar 

  161. Pich A, Bhattacharya S, Ghosh H, Adler JP (2005) Polymer 46:4596–4603

    CAS  Google Scholar 

  162. Suzuki D, Kawaguchi H (2006) Colloids Polym Sci 284:1443–1451

    CAS  Google Scholar 

  163. Sacanna S, Philipse A P (2006) Langmuir 22:10209–10216

    CAS  Google Scholar 

  164. Liu H, Guo J, Jin L, Yang W, Wang C (2008) J Phys Chem B 112:3315–3321

    CAS  Google Scholar 

  165. Larpent C (2003) In: Elaissari A (ed) Colloid polymers: synthesis and characterization. Marcel Dekker, New York, pp. 145–187

    Google Scholar 

  166. Liu ZL, Yang XB, Yao KL, Du GH, Liu ZS (2006) J Magn Magn Mater 302:529–535

    CAS  Google Scholar 

  167. O’Connor CJ, Lee Y-S, Tang J, John VT, Kommareddi NS, Tata M, McPherson GL, Akkara JA, Kaplan DL (1994) IEEE Trans Magn 30:4954–4956

    Google Scholar 

  168. Deng Y, Wang L, Yang W, Fu S, Elaissari A (2003) J Magn Magn Mater 257:69–78

    CAS  Google Scholar 

  169. Landfester K (2003) In: Elaissari A (ed) Colloid polymers: synthesis and characterization. Marcel Dekker, New York, pp. 225–243

    Google Scholar 

  170. Mori Y, Kawaguchi H (2007) Colloids Surf B Biointerfaces 56:246–254

    CAS  Google Scholar 

  171. Ramírez LP, Landfester K (2003) Macromol Chem Phys 204:2–31

    Google Scholar 

  172. Holzapfel V, Lorenz M, Weiss CK, Schrezenmeier H, Landfester K, Mailänder V (2006) J Phys Condens Matter 18:2581–2594

    Google Scholar 

  173. Zheng W, Gao F, Gu H (2005) J Magn Magn Mater 288:403–410

    CAS  Google Scholar 

  174. Zheng W, Gao F, Gu H (2005) J Magn Magn Mater 293:199–205

    CAS  Google Scholar 

  175. Csetneki I, Kabai Faix M, Szilagyi A, Kovacs AL, Németh Z, Zrinyi M (2004) J Polym Sci A Polym Chem 42:4802–4808

    CAS  Google Scholar 

  176. Zhang Q, Xie G, Zhang H, Zhang J, He M (2007) J Appl Polym Sci 105:3525–3530

    CAS  Google Scholar 

  177. Lu S, Forcada J (2006) J Polym Sci A Polym Chem 44:4187–4203

    CAS  Google Scholar 

  178. Hong RY, Feng B, Cai X, Liu G, Ding J, Zheng Y, Wei DG (2009) J Appl Polym Sci 112:89–98

    CAS  Google Scholar 

  179. Liu X, Guan Y, Ma Z, Liu H (2004) Langmuir 20:10278–10282

    CAS  Google Scholar 

  180. Csetneki I, Filippcsei G, Zrinyi M (2006) Macromolecules 39:1939–1942

    CAS  Google Scholar 

  181. Wormuth K (2001) J Colloids Interface Sci 241:366–377

    CAS  Google Scholar 

  182. Qiu G, Wang Q, Wang C, Lau W, Guo Y (2007) Ultrason Sonochem 14:55–61

    CAS  Google Scholar 

  183. Teo BM, Chen F, Hatton T, Grieser F, Ashokkumar M (2009) Langmuir 25:2593–2595

    CAS  Google Scholar 

  184. Lu S, Ramos J, Forcada J (2007) Langmuir 23:12893–12900

    CAS  Google Scholar 

  185. Reza F-M, Naser S-S (2007) J Magn Magn Mater 311:55–58

    Google Scholar 

  186. Charleux B, D’Agosto F, Delaittre G, (2010) Preparation of hybrid latex particles and core–shell particles through the use of controlled radical polymerization techniques in aqueous media. In: Advances in Polymer Science. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

This work has been achieved within the frame of ADNA (Advanced Diagnostics for New Therapeutic Approaches), a program dedicated to personalized medicine, coordinated by Institut Mérieux and supported by research and innovation aid from the French public agency, OSEO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Elaissari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Rahman, M.M., Elaissari, A. (2010). Organic–Inorganic Hybrid Magnetic Latex. In: van Herk, A., Landfester, K. (eds) Hybrid Latex Particles. Advances in Polymer Science, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_59

Download citation

Publish with us

Policies and ethics