Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application

  • Katarzyna Matras-PostolekEmail author
  • Dariusz Bogdal
Part of the Advances in Polymer Science book series (POLYMER, volume 230)


This review concentrates on semiconductors and carbon nanotubes as the inorganic component of organic–inorganic nanomaterials. One of the cornerstones of the current push towards future improvements in electronics and in optics technology is the decrease in size of the various components used for device manufacture. This paper discusses the character of nanocomposites for optics and electronics, their preparation, and the properties of semiconductor nanoparticles such as ZnS, ZnO, ZnS:Mn, TiO2, CdSe, and CdS. Research in this area has shown the great potential advantages of novel materials composed of semiconductor nanocrystals and a polymer matrix. A short characterization of the nature of carbon-based materials (i.e., fullerenes and nanotubes) is given to provide a brief review of these materials. Then, the characterization of non-conjugated (PMMA, PS, and PVDF) and conjugated (PT, PVK, PPV, and PANI) polymer matrices and nanocomposites is described. Finally, the most advanced applications of the nanocomposites are presented.

Conjugated polymer Fullerene Nanocomposites Nanocrystals Nanotube Non-conjugated Polymer semiconductor 



Acrylic acid


Anodic aluminum oxide


Alternating current electroluminescence




Polyoxyethylene(4..5)laurylether acetic acid




Air mass


Bulk heterojunctions


Conduction band


Carbon nanotube


Poly(9,9 -dihexylfluorene-2,7-divinylene-m-phenylenevinylene-stat-p-phenylenevinylene)


[60] Fullerene or buckminsterfullerene


Chemical vapor deposition


Sodium dodecylbenzene sulfonate


Direct current electroluminescence






Dodecylphosphonic acid


Dye-sensitized solar cell


Electron beam evaporation


Energy of an electron in the conduction band


Fermi level


Energy band gap


Energy of an electron at the top of the valence band




External quantum efficiency


Electrorheological properties


Electron fill factor volt


Face-centered cubic


Field effect transistors


Fill factor


Fourier transform infrared spectroscopy


Highest occupied molecular orbital




Current in the maximum power point


Short circuit current


Indium tin oxide


International Union of Pure and Applied Chemistry




Laser-assisted vapor deposition


Langmuir–Blodgett technique


Light-emitting diode


Lowest unoccupied molecular orbital


Methacrylic acid


Didecylamine-solubilized carbon nanotubes


Poly[2-methoxy-5(2-ethyl-hexyloxyl)-p-phenylene vinylene]


Molecular beam epitaxy


Methyl methacrylate


Metal–organic chemical vapor deposition


3-Mercaptopropionic acid




Multiwall carbon nanotube


Purified multiwall carbon nanotube


Refractive index of the matrix


Refractive index of the particles


Sodium bis(2-ethylhexyl)sulfosuccinate




Organic light-emitting diode


Poly(acrylic acid)




[6,6]-Phenyl-C61-butyric acid methyl ester


Photonic crystal


Power conversion efficiency


Photocatalytic oxidation




Polyoxyethylene(1)laurylether phosphoric acid






Incident solar radiation




Pulsed laser deposition


Poly(methyl methacrylate)




Incident power


Poly(p-phenylene vinylene)






Polystyrene sulfonic acid








Poly(urethane-methacrylate macromer)




Poly(vinyl alcohol)


Poly(vinyl butyral)


Poly(vinylidene fluoride)






Quantum dot


Quantum yield


Self-assembled monolayer






Single-wall carbon nanotube


Size quantization


Tetradecylphosphonic acid


Thin-film electroluminescence




Tri-n-octylphosphine oxide


N,N -Diphenyl-N,N -bis(3-methylphenyl)-1,1 -biphenyl-4-4 - diamine


Tetradecyltrimethylammonium bromide

Tween 20

Poly(oxyethylene) (20) sorbitan monolaurate


Wurtzite structure


Urethane-methacrylate macromer




Volume of single particles


Valence band


Open circuit voltage


Voltage in the maximum power point


Zinc blende


Work functions of electrodes


Dielectric constant


Relative dielectric constant


Wavelength of light


Dispersive contribution


Polar contribution


Hydrogen bonding contribution


Overall efficiency of a solar cell


Density dimensions of quantities of particles


  1. 1.
    Work WJ, Horie K, Hess M, Stepto RFT (2004) Pure Appl Chem 76:1985Google Scholar
  2. 2.
    Sanchez C, Romero P (2004) Functional hybrid materials. Wiley, WeinheimGoogle Scholar
  3. 3.
    Judenstein P, Sanchez C (1996) J Mater Chem 6:511Google Scholar
  4. 4.
    Gross S, Camozzo D, Noto VD, Armelao L, Tondello E (2007) Eur Polym J 43:673Google Scholar
  5. 5.
    Weiner S, Wagner HD (1998) Rev Mater Sci 28:271Google Scholar
  6. 6.
    Fong H, Sarikaya M, White SN, Snead ML (2000) Mater Sci Eng C 7:119Google Scholar
  7. 7.
    Zaremba CM, Morse DE, Mann S, Hansma PK, Stucky GD (1998) Chem Mater 10:3813Google Scholar
  8. 8.
    Gacitua WE, Ballerini AA, Zhang J (2005) Maderas Cienc Tecnol 7:159Google Scholar
  9. 9.
    Tanka T, Montanari GC, Mulhaup R (2004) IEEE Trans Dielectr Electr Insul 11:763Google Scholar
  10. 10.
    Jang J (2006) Adv Polym Sci 199:189Google Scholar
  11. 11.
    Ajayan PM, Schadler LS, Braun PV (2003), Nanocomposite science and technology. Wiley, WeinheimGoogle Scholar
  12. 12.
    de Tacconi NR, Wenren H, Rajeshwar K (1997) J Electrochem Soc 144:3159Google Scholar
  13. 13.
    Lee BH, Kwon KW, Shim M (2007) J Mater Chem 17:1284Google Scholar
  14. 14.
    Ghosh PK, Mitra MK, Chattopadhyay KK (2005) Nanotechnology 16:107Google Scholar
  15. 15.
    Tanaka M, Qi J, Masumoto Y (2000) J Cryst Growth 214:410Google Scholar
  16. 16.
    Althues H, Palkovits R, Rumplecker A, Simon P, Sigle W, Bredol M, Kynast U, Kaskel S (2006) Chem Mater 18:1068Google Scholar
  17. 17.
    Adachi D, Hasui S, Toyama T, Okamoto H (2000) Appl Phys Lett 77:1301Google Scholar
  18. 18.
    Komarneni S (2005) Chemical processing of ceramics, 2nd edn. CRC, New YorkGoogle Scholar
  19. 19.
    Godovsky DY (2000) Adv Polym Sci 153:163Google Scholar
  20. 20.
    Sugunan A, Dutta J (2004) J Phys Sci I 4:5Google Scholar
  21. 21.
    Kerker M (1969) The scattering of light. Academic, New YorkGoogle Scholar
  22. 22.
    Lu C, Cui Z, Li Z, Yang B, Shen J (2003) J Mater Chem 13:526Google Scholar
  23. 23.
    Sze SM (1985) Semiconductor devices. Wiley, New YorkGoogle Scholar
  24. 24.
    Kalinowski J (1997) In: Miyata S (ed) Organic electroluminescent materials and devices. CRC, Boca RatonGoogle Scholar
  25. 25.
    Vij DR (2004) Handbook of luminescence materials, Institute of Physics (Great Britain). CRC, Boca RatonGoogle Scholar
  26. 26.
    Abou El-Ela FM (2000) Egypt J Sol 23:27Google Scholar
  27. 27.
    Fahlman M, Salaneck WR (2002) Surf Sci 500:904Google Scholar
  28. 28.
    Holder E, Tessler N, Rogach AL (2008) J Mater Chem 18:1064Google Scholar
  29. 29.
    Oey CC, Djurisic AB, Kwong CY, Cheung CH, Chan WK, Nunzi JM, Chui PC (2005) Thin Solid Films 492:253Google Scholar
  30. 30.
    Liu HW, Laskar IR, Huang CP, Cheng JA, Cheng SS, Luo LY, Wang HR, Chen TM (2005) Thin Solid Films 489:296Google Scholar
  31. 31.
    Hikmet RAM, Talapin DV, Weller H (2003) J Appl Phys 93:3509Google Scholar
  32. 32.
    Yang H, Hollowy PH (2003) J Phys Chem B 107:9705Google Scholar
  33. 33.
    Park JH, Park SI, Kim TH, Park OO (2007) Thin Solid Films 515:3085Google Scholar
  34. 34.
    Lee KW, Lee SP, Choi H, Mo KH, Jang JW (2007) J Appl Phys 91:023110Google Scholar
  35. 35.
    Manzoor K, Vadera SR, Kumar N (2004) Appl Phys Lett 84:284Google Scholar
  36. 36.
    Lee CY, Haung YT, Su WF, Lin CF (2006) Appl Phys Lett 89:231116Google Scholar
  37. 37.
    Yang Y, Huang J, Yang B, Liu S, Shen J (1997) Synth Met 91:347Google Scholar
  38. 38.
    Yang CH, Bhongale CJ, Chou CH, Yang SH, Lo CN, Chen TM, Hsu CS (2007) Polymer 48:116Google Scholar
  39. 39.
    Wong WY, Wang XZ, He Z, Djurisic AB, Yip CT, Cheung KY, Wang H, Wang H, Mak CSK, Chan WK (2007) Nat Mater 6:521Google Scholar
  40. 40.
    Shrotriya V, Ouyang J, Tseng RJ, Yang GL, Yang Y (2005) Chem Phys Lett 411:138Google Scholar
  41. 41.
    Kim Y, Cook S, Kirkpatrick J, Nelson J, Durrant JR, Bradley DDC, Giles M, Heeney M, Hamilton R, McCulloch I (2007) Phys Chem Lett C 111:8137Google Scholar
  42. 42.
    Kim Y, Choulis SA, Nelson J, Bradley DDC (2005) J Mater Sci 40:1371Google Scholar
  43. 43.
    Wong WY, Wang XZ, He Z, Djurisic AB, Yip CT, Cheung KY, Wang H, Wang H, Mak CSK, Chan WK (2007) Nat Mater 6:521Google Scholar
  44. 44.
    Al-Ibrahim M, Sensfuss S, Uziel J, Ecke G, Ambacher O (2005) Sol Energ Mater Sol Cell 85:277Google Scholar
  45. 45.
    Kwong CY, Choy WCH, Djurisic AB, Chui PC, Cheng KW, Chan WK (2004) Nanotechnology 15:1156Google Scholar
  46. 46.
    Vu QT, Pavlik M, Hebestrei N, Rammelt U, Plieth W, Pfleger J (2005) React Funct Polym 65:69Google Scholar
  47. 47.
    Kwong CY, Djurisic AB, Chui PC, Cheng KW (2004) Chem Phys Lett 384:372Google Scholar
  48. 48.
    Zhang Q, Russell TP, Emrick T (2007) Chem Mater 19:3712Google Scholar
  49. 49.
    De Girolamo J, Reiss P, Pron A (2007) J Phys Chem C 111:14681Google Scholar
  50. 50.
    Sonar P, Sreenivasan KP, Madddanimath T, Vijayamohanan K (2006) Mater Res Bull 41:198Google Scholar
  51. 51.
    Chaudhary S, Lu H, Muller AM, Bardeen CJ, Ozkan M (2007) Nano Lett 7:1973Google Scholar
  52. 52.
    Geng J, Zeng T (2006) J Am Chem Soc 128:16827Google Scholar
  53. 53.
    Beek WJE, Wienk MM, Janssen RAJ (2006) Adv Funct Mater 16:1112Google Scholar
  54. 54.
    Ravirajan P, Peiro AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J (2006) J Phys Chem B 110:7635Google Scholar
  55. 55.
    Jaglarz J, Kassiba A, Armatys P, Pokladko M, Gondek E, Sanetra J (2004) Mater Sci 22:389Google Scholar
  56. 56.
    Boucle J, Ravirajan P, Nelson J (2007) J Mater Chem 17:3141Google Scholar
  57. 57.
    Hodes G (2001) Electrochemistry of nanomaterials. Wiley, WeinheimGoogle Scholar
  58. 58.
    Shionoya S, Yen W (1998) Phosphors handbook. Hardcover, CRC, New YorkGoogle Scholar
  59. 59.
    Smith RA (1964) Semiconductors. Cambridge University Press, CambridgeGoogle Scholar
  60. 60.
    Rajeshwar K, Tacconi NR, Chenthamarakshan CR (2001) Chem Mater 13:2765Google Scholar
  61. 61.
    Geusic JE, Singh S, Tipping DW, Rich TC (1967) Phys Rev Lett 19:1126Google Scholar
  62. 62.
    Penzkofer A, Falkenstein W (1976) Opt Commun 17:1Google Scholar
  63. 63.
    Staginus G, Frohlich D, Gaps T (1968) Rev Sci Instrum 39:1129Google Scholar
  64. 64.
    van der Ziel JP (1977) Phys Rev B 16:2775Google Scholar
  65. 65.
    Basov NG, Grasyuk AZ, Efimov VF, Zubarev IG, Katulin VA, Popov JM (1966) J Phys Soc Jpn Suppl 21:276Google Scholar
  66. 66.
    Panizza E (1967) Appl Phys Lett 10:265Google Scholar
  67. 67.
    Arsen’ev VV, Dneprovskii VS, Klyshko DN, Penin AN (1969) Sov Phys Dokl 12:4Google Scholar
  68. 68.
    Prasad PN (2004) Nanophotonics. Wiley, New JerseyGoogle Scholar
  69. 69.
    Peng WQ, Cong GW, Qu SC, Wang ZG (2006) Opt Mater 29:313Google Scholar
  70. 70.
    Nalwa HS, Rohwer LS (2003) Handbook of luminescence display materials & devices. American Scientific Publishers, Stevenson Ranch, CAGoogle Scholar
  71. 71.
    Bryan JD, Gamelin DR (2005) Prog Inorg Chem 54:47Google Scholar
  72. 72.
    Yang H, Holloway PH (2002) J Appl Phys 93:586Google Scholar
  73. 73.
    Hawang J, Oh MO, Kim I, Lee JK, Ha ChS (2005) Curr Appl Phys 5:31Google Scholar
  74. 74.
    Manzoor K, Vadera SR, Kumar N (2004) Appl Phys Lett 84:284Google Scholar
  75. 75.
    Yang H, Han S, Cui Y, Liang Y (2004) Mater Lett 58:2087Google Scholar
  76. 76.
    Toyama T, Yoshimura K, Fujii M, Haze H, Okamoto H (2005) Appl Surf Sci 244:524Google Scholar
  77. 77.
    Bol AA, van Beek R, Meijerink A (2002) Chem Mater 4:1121Google Scholar
  78. 78.
    Jian W, Zhuang J, Zhang D, Dai J, Yang W, Bai Y (2006) Mater Chem Phys 99:497Google Scholar
  79. 79.
    Swart HC, Greeff AP, Holloway PH, Berning GLP (1999) Appl Surf Sci 140:63Google Scholar
  80. 80.
    Raevskaya AE, Korzhak AV, Stroyuk AL, Kuchmii SY (2005) Theor Exp Chem 41:359Google Scholar
  81. 81.
    Kushida T, Kurita A, Watanabe M, Kanematsu Y, Hirata K, Okubo N, Kanemitsu Y (2000) J Lumin 87:466Google Scholar
  82. 82.
    Peng WQ, Cong GW, Qu SC, Wang ZG (2006) Opt Mater 29:313Google Scholar
  83. 83.
    Yang P, Lu M, Zhou G, Yuan DR, Xu D (2001) Inorg Chem Commun 4:734Google Scholar
  84. 84.
    Bhargava RN, Gallagher D, Welker T (1994) J Lumin 60:275Google Scholar
  85. 85.
    Kitai AH (1993) Solid state luminescence: theory, materials, and devices. Chapman & Hall, New YorkGoogle Scholar
  86. 86.
    Blasse GB, Grabmaier BC (1994) Luminescence materials. Springer, BerlinGoogle Scholar
  87. 87.
    McClean IP, Thomas CB (1992) Semicond Sci Technol 7:1394Google Scholar
  88. 88.
    Hirabayashi K, Kozawaguchi H (1986) Jpn J Appl Phys 25:711Google Scholar
  89. 89.
    Ozawa M, Satoh T, Hirate T (2008) E-MRS Fall Meeting 2007, Acta Materialia Gold Medal Workshop, Warsaw, Poland, September 17–21, (14.02.2008)
  90. 90.
    Dutta J, Hofmann H (2003) In: Nalwa HS (ed) Encyclopaedia of nanoscience and nanotechnology, vol. 10. American Scientific Publishers, Stevenson Ranch, CA, pp 1–23Google Scholar
  91. 91.
    McHardy J, Ludwig F (1992), Electrochemistry of semiconductors and electronics. Noyes, Park Ridge, NJGoogle Scholar
  92. 92.
    Cao L, Zhang J, Ren S, Huang S (2002) Appl Phys Lett 80:23Google Scholar
  93. 93.
    Yang H, Han S, Cui Y, Liang Y (2004) Mater Lett 58:2087Google Scholar
  94. 94.
    Sugunan A, Warad HC, Thanachayanont C, Dutta J (2005) In: 2nd ECTI annual conference proceedings, Pattaya, Thailand, 12–13 May 2005Google Scholar
  95. 95.
    Bhargava RN, Gallagher D, Hong X, Nurmiko A (1994) Phys Rev Lett 72:416Google Scholar
  96. 96.
    Maity R, Chattopadhyay KK (2004) Nanotechnology 15:812Google Scholar
  97. 97.
    Peng WQ, Qu SC, Cong GW, Zhang XQ, Wang ZG (2005) J Crys Growth 282:179Google Scholar
  98. 98.
    Martinez-Castanon GA, Martinez-Mendoza JR, Ruiz F, Gonzalez- Hernandez J (2007) Inorg Chem Commun 10:531Google Scholar
  99. 99.
    Kane RS, Cohen RE, Silbey R (1999) Chem Mater 11:90Google Scholar
  100. 100.
    Konishi M, Isobe T, Senna M (2001) J Lumin 93:1Google Scholar
  101. 101.
    Toyoda T, Cruz AB (2003) Thin Solid Films 438:132Google Scholar
  102. 102.
    Bol AA, Meijerink A (2001) J Phys Chem B 105:10197Google Scholar
  103. 103.
    Yu J, Liu H, Wang Y, Fernandez FE, Jia W (1997) J Lumin 75:252Google Scholar
  104. 104.
    Zhao K, Dai J, Zhuang J, Li J, Yang W (2007) Colloids Surf A 296:154Google Scholar
  105. 105.
    Karar N, Singh F, Mehta BR (2004) J Appl Phys 95:656Google Scholar
  106. 106.
    Zhuang J, Zhang X, Wang G, Li D, Yang W (2003) J Mater Chem 13:1853Google Scholar
  107. 107.
    Warad HC, Ghosh SC, Hemtanon B, Thanachayanont C, Dutta J (2005) Sci Technol Adv Mater 6:296–301Google Scholar
  108. 108.
    Bredol M, Althues H (2004) Solid State Phenomena 99:19Google Scholar
  109. 109.
    Kubo T, Isobe T, Senna M (2002) J Lumin 99:39Google Scholar
  110. 110.
    Bunn CW (1935) Proc Phys Soc London 47:836Google Scholar
  111. 111.
    Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morko H (2005) J Appl Phys 98:041301Google Scholar
  112. 112.
    Li ZW, Gao W (2007) Thin Solid Films 515:3323Google Scholar
  113. 113.
    Chakrabarti S, Das D, Ganguli D, Chaudhuri S (2003) Thin Solid Films 441:228Google Scholar
  114. 114.
    Schirmer F, Zwingle D (1970) Solid State Commun 8:1559Google Scholar
  115. 115.
    Look DC (2001) Mater Sci Eng B 80:381Google Scholar
  116. 116.
    Kucheyev O, Williams JS, Jagadish C, Zou J, Evans C, Nelson AJ, Hamza AV (2003) Phys Rev B 67:094115Google Scholar
  117. 117.
    Turton R, Berry DA, Gardner TH, Miltz A (2004) Ind Eng Chem Res 43:1235Google Scholar
  118. 118.
    Xu JQ, Pan QY, Shun YA, Tian ZZ (2000) Sens Actuaators B Chem 66:2000Google Scholar
  119. 119.
    Hoffman L, Norris BJ, Wager JF (2003) Appl Phys Lett 82:733Google Scholar
  120. 120.
    Hoffman L (2004) J Appl Phys 95:5813Google Scholar
  121. 121.
    Curridal ML, Comparelli R, Cozzli PD, Mascolo G, Agostiano A (2003) Mater Sci Eng C 23:285Google Scholar
  122. 122.
    Peiro AM, Ravirajan P, Govender K, Boyle DS, Brien PO, Bradley DDC, Nelson J, Durrant JR (2005) Organic photovoltaic VI, Proc SPIE 5938:191Google Scholar
  123. 123.
    Beek WJE, Wienk MM, Janssen RAJ (2006) Adv Funct Mater 16:1112Google Scholar
  124. 124.
    Li ZW, Gao W, Reeves R (2005) Surf Coat Technol 198:319Google Scholar
  125. 125.
    Chichina M, Tichy M, Churpita Hubicka Z (2005) 14th Annual Conference of Doctoral Student. Prauge, Czech Republic, WDS’05 Proceedings of Contributed Papers, Part II, 325–331, 2005 (03.03.2008) WDS 2005 - Proceedings of Contributed Papers Proceedings of the 14th Annual Conference of Doctoral Students - WDS 2005 Prague, 7th June - 10th June, 2005
  126. 126.
    Vlachopoulos N, Liska P, Augustynski J, Gratzel M (1988) J Am Chem Soc 110:1216Google Scholar
  127. 127.
    Kong FT, Dai SY, Wang KJ (2007) Adv Opt Electron 1155:75384Google Scholar
  128. 128.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Gratzel M (1993) J Am Chem Soc 115:6382Google Scholar
  129. 129.
    Salafsky JS (1999) Phys Rev B 59:10885Google Scholar
  130. 130.
    Kumazawa N, Rafiqul Islam M, Takeuchi M (1999) J Electroanal Chem 472:137Google Scholar
  131. 131.
    Chin SS, Chiang K, Gordon Fane A (2006) J Membr Sci 275:202Google Scholar
  132. 132.
    Losito I, Amorisco A, Palmisano F, Zambonin PG (2005) Appl Surf Sci 240:180Google Scholar
  133. 133.
    Gogate PR, Pandit AB (2004) Adv Environ Res 8:501Google Scholar
  134. 134.
    Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539Google Scholar
  135. 135.
    Zhang Q, Gao L (2003) Langumir 19:967Google Scholar
  136. 136.
    Ramakrishna G, Ghosh HN (2003) Langumir 19:505Google Scholar
  137. 137.
    Kim CS, Moon BK, Park JH, Choi BC, Seo HJ (2003) J Cryst Growth 257:309Google Scholar
  138. 138.
    Hsu WP, Yu R, Matijevic E (1993) J Colloid Interface Sci 156:56Google Scholar
  139. 139.
    Rosenthal SJ, McBride J, Pennycook SJ, Feldman LC (2007) Surf Sci Rep 62:111Google Scholar
  140. 140.
    Nirmal M, Brus L (1999) Acc Chem Res 32: 407Google Scholar
  141. 141.
    El-Sayed MA (2001) Acc Chem Res 34:257Google Scholar
  142. 142.
    Dabbousi BO, Rodriguez-Viejo J, Mikulec V, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendii MG (1997) J Phys Chem B 101:9463Google Scholar
  143. 143.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706Google Scholar
  144. 144.
    Kippeny TC, Swafford LA, Rosenthal SJ (2002) J Chem Educ 79:1094Google Scholar
  145. 145.
    Qu L, Peng AZ, Peng X (2001) Nano Lett 1:333Google Scholar
  146. 146.
    Wang CC, Chen AL, Chen IH (2006) Polym Adv Technol 17:598Google Scholar
  147. 147.
    Murcia MJ, Shaw DL, Woodruff H, Naumann CA, Young BA, Long EC (2006) Chem Mater 18:2219–2225Google Scholar
  148. 148.
    Reiss P, Bleuse J, Pron A (2002) Nano Lett 781:2Google Scholar
  149. 149.
    Liu HW, Laskar IR, Huang CP, Cheng JA, Cheng SS, Luo LY, Wang HR, Chen TM (2005) Thin Solid Films 489:296Google Scholar
  150. 150.
    Kratschmer W (1995) Nanostruct Mater 6:65Google Scholar
  151. 151.
    Dresselhaus MS, Dresselhaus G (1997) Nanostruct Mater 9:33Google Scholar
  152. 152.
    Bernholc J, Roland Ch, Yakobson B (1997) Curr Opin Solid State Mater 2:706Google Scholar
  153. 153.
    Mintmire JW, White CT (1995) Carbon 33:893Google Scholar
  154. 154.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624Google Scholar
  155. 155.
    Paradise M, Goswami T (2007) Mater Des 28:1477Google Scholar
  156. 156.
    Baibarac M, Gomez-Romero P (2006) J Nanosci Nanotechnol 6:1Google Scholar
  157. 157.
    Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng R 49:89Google Scholar
  158. 158.
    Breuret O, Sundararaj U (2004) Polym Compos 25:630Google Scholar
  159. 159.
    Desai AV, Haque MA (2005) Thin Wall Struct 43:1787Google Scholar
  160. 160.
    Lau KT, Chipara M, Ling HY, Hui D (2004) Composites B 35:95Google Scholar
  161. 161.
    Lau KT, Hui D (2002) Composites B 33:263Google Scholar
  162. 162.
    Thostenson ET, Ren Z, Chou TW (2001) Compos Sci Technol 61:1899Google Scholar
  163. 163.
    Winkler K, Balch AL, Kutner W (2006) J Solid State Electrochem 10:761Google Scholar
  164. 164.
    Buseck PR (2002) Earth Planet Sci Lett 203:781Google Scholar
  165. 165.
    Miller GP (2006) C R Chimie 9:952Google Scholar
  166. 166.
    Briggs JB, Miller GP (2006) C R Chim 9:916Google Scholar
  167. 167.
    Adamopoulos G, Heiser T, Giovanella U, Ould-Saad S, van de Wetering KI, Brochon C, Zorba T, Paraskevopoulos KM, Hadziioannou G (2006) Thin Solid Films 511:371Google Scholar
  168. 168.
    Camaioni N, Ridolfi G, Casalbore-Miceli G, Possamai G, Garlaschelli L, Maggini M (2002) Sol Energ Mater Sol Cell 76:107Google Scholar
  169. 169.
    Al-Ibrahim M, Sensfuss S, Uziel J, Ecke G, Ambacher O (2005) Sol Energ Mater Sol Cell 85:277Google Scholar
  170. 170.
    Kim Y, Nelson J, Durrant J, Bradley DD, Heo K, Park J, Kim H, McCulloch I, Heeney M, Ree M, Ha ChS (2006) Soft Matter 3:117Google Scholar
  171. 171.
    Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Prog Polym Sci 29:1079Google Scholar
  172. 172.
    Hutchison KLG, Schick G, Rubin Y, Wudl F (1999) J Am Chem Soc 121:5611Google Scholar
  173. 173.
    Protiere M, Reiss P (2006) Nanoscale Res Lett 1:62Google Scholar
  174. 174.
    Collins PG, Avouris P (2000) Sci Am 283:62Google Scholar
  175. 175.
    Kim P, Shi L, Majumdar A, McEuen PL (2001) Phys Rev Lett 87:215502Google Scholar
  176. 176.
    Liu J, Liu T, Kumar S (2005) Polymer 46:3419Google Scholar
  177. 177.
    Mark JE (1999) Polymer data handbook Oxford University Press, New YorkGoogle Scholar
  178. 178.
    Howard M (1980) Plastics desk top data bank, Book B, 5th edn. International Plastics Selector, San DiegoGoogle Scholar
  179. 179.
    Reichmanis E, Katz H, Kloc Ch, Maliakal A (2005) Bell Labs Tech J 10:87Google Scholar
  180. 180.
    Hunt AT (2006) Technical report. nGimat TM Co. Atlanta, USA pdfs/Nanocomposites_Metal_Ceramic_Polymer.pdf (20.08.2008)
  181. 181.
    Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, ChichesterGoogle Scholar
  182. 182.
    Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook 4th edn. Wiley, New YorkGoogle Scholar
  183. 183.
    Pedone L, Caponetti E, Leone M, Militello V, Panto V, Polizzi S, Saladino ML (2005) J Colloid Interface Sci 284:495Google Scholar
  184. 184.
    Wang ZG, Zu XT, Yu HJ, He X, Zhu S, Wei QM, Wang LM (2006) Nucl Instrum Methods Phys Res Sect B 250:196Google Scholar
  185. 185.
    Wang ZG, Zu S, Xiang X, Fang LM, Wang LM (2006) Phys Lett 359:252Google Scholar
  186. 186.
    Wang ZG, Zu XT, Yu HJ (2006) J Nanopart Res 8:137Google Scholar
  187. 187.
    Hong RY, Qian JZ, Cao JX (2006) Powder Technol 163:160Google Scholar
  188. 188.
    Park SJ, Lim ST, Cho MS, Kim HM, Joo J, Choi HJ (2005) Curr Appl Phys 5:302Google Scholar
  189. 189.
    Lee WJ, Lee SE, Kim ChG (2006) Compos Struct 76:406Google Scholar
  190. 190.
    Wang M, Pramoda KP, Goh SH (2006) Carbon 44:613Google Scholar
  191. 191.
    Jin HJ, Choi HJ, Yoon SH, Myung SJ, Shim SE (2005) Chem Mater 17:4034Google Scholar
  192. 192.
    Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S (2004) Composites B 35:173Google Scholar
  193. 193.
    Dai J, Wang Q, Li W, Wei Z, Xu G (2007) Mater Lett 61:27Google Scholar
  194. 194.
    Tang E, Cheng G, Pang G, Ma X, Xing F (2006) Colloid Polym Sci 284:422Google Scholar
  195. 195.
    Martiradonna L, Stomeo T, De Giorgi M, Cingolani R, De Vittorio M (2006) Microelectron Eng 83:1478Google Scholar
  196. 196.
    Vassiltsova OV, Zhao Z, Petrukhina MA, Carpenter MA (2007) Sens Actuators B 123:522Google Scholar
  197. 197.
    Huang KJ, Rajendran P, Liddell CM (2007) J Colloid Interface Sci 308:112Google Scholar
  198. 198.
    Adamopoulos G, Heiser T, Giovanella U, Ould-Saad S, van de Wetering KI, Brochon C, Zorba T, Paraskevopoulos KM, Hadziioannou G (2006) Thin Solid Films 511:371Google Scholar
  199. 199.
    Wang Z, Lu M, Li HL, Guo XY (2006) Mater Chem Phys 100:77Google Scholar
  200. 200.
    Zhao PQ, Wu XL, Fan JY, Chu PK, Siu GG (2006) Scr Mater 55:1123Google Scholar
  201. 201.
    Pentimalli M, Antolini F, Bauer EM, Capitani D, Luccio TD, Viel S (2006) Mater Lett 60:2657Google Scholar
  202. 202.
    Antolini F, Pentimalli M, Luccio TD, Terzi R, Schioppa M, Re M, Mirenghi L, Tapfer L (2005) Mater Lett 59:3181Google Scholar
  203. 203.
    Antolini F, Ghezelbash C, Esposito C, Trave E, Tapfer L, Korgel BA (2006) Mater Lett 60:1095Google Scholar
  204. 204.
    Riegler J, Ehler O, Nann T (2006) Anal Bioanal Chem 384:645Google Scholar
  205. 205.
    Joumaa N, Lansalot M, Theretz A, Elaissari A (2006) Langumir 22:1810Google Scholar
  206. 206.
    Sherman RL, Ford J, Ford WT (2005) 21:5218Google Scholar
  207. 207.
    Iezzi RA (1998) Technical report 11-18-04. Elf Atochem North America Inc., Research Center, King of Prussia, Pa., Philadelphia, USA Iezzi_Article_From_PCI%20Mag.pdf (25.03.2008)
  208. 208.
    Jugnickel BJ (1996) The polymeric materials encyclopaedia. CRC, Boca RatonGoogle Scholar
  209. 209.
    Dohany JE (1981) US Patent 4360652Google Scholar
  210. 210.
    Hsu CC, Geil PH (1989) J Mater Sci 24:1219Google Scholar
  211. 211.
    Anandan S, Pitchumani S, Muthuraaman B, Maruthamuthu P (2006) Sol Energy Mater Sol Cells 90:1715Google Scholar
  212. 212.
    Hilczer B, Kulek J, Polomska M, Glinchuk MD, Ragulya AV, Pietraszko A (2005) Ferroelectr 316:31Google Scholar
  213. 213.
    Wang YJ, Kim D (2007) Electrochim Acta 52:3181Google Scholar
  214. 214.
    Lijie D, Chuanxi X, Juan Ch, Cewen N (2004) J Wuhan Univ Technol Mater Sci Ed 19:9Google Scholar
  215. 215.
    Gallagher SJ, Norton B, Eames PC (2007) Sol Energy 81:813Google Scholar
  216. 216.
    Dang ZM, Wang HY, Zhang YH, Qi JQ (2005) Macromol Rapid Commun 26:1185Google Scholar
  217. 217.
    Hongying Q, Chuanxi X, Lijie D, Guanghui Z (2006) J Wuhan Univ Technol Mater Sci Ed 21:133Google Scholar
  218. 218.
    Yan L, Wang K, Ye L (2003) J Mater Sci Lett 22:1713Google Scholar
  219. 219.
    Lu Ch, Cui Z, Wang Y, Li Z, Guan Ch, Yang B, Shen J (2003) J Mater Chem 13:2189Google Scholar
  220. 220.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 16:578Google Scholar
  221. 221.
    Strenger-Smith JD (1998) Prog Polym Sci 23:57Google Scholar
  222. 222.
    Chan HSO, Ng SC (1998) Prog Polym Sci 23:1167Google Scholar
  223. 223.
    Kim DY, Cho HN, Kim CY (2000) Prog Polym Sci 25:1089Google Scholar
  224. 224.
    Pron A, Rannou P (2002) Polym Sci 27:135Google Scholar
  225. 225.
    Winder C, Sariciftci NS (2004) J Mater Chem 14:1077Google Scholar
  226. 226.
    Jang J (2006) Adv Polym Sci 199:189Google Scholar
  227. 227.
    Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:954Google Scholar
  228. 228.
    Fahlman M, Salaneck WR (2002) Surf Sci 500:904Google Scholar
  229. 229.
    Reddinger JL, Reynolds JR (1999) Adv Polym Sci 145:57Google Scholar
  230. 230.
    McQuade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537Google Scholar
  231. 231.
    Kim Y, Cook S, Choulis SA, Nelson J, Durrant JR, Bradley DC (2005) Synth Met 152:105Google Scholar
  232. 232.
    Beek WJE, Wienk MM, Janssen RA (2004) Adv Mater 16:1009Google Scholar
  233. 233.
    Shon JH, Dodabalapur A, Bao Z, Kloe C, Schenker G, Batlogg B (2001) Nature 410:189Google Scholar
  234. 234.
    Spannggasrd H, Krebs FC (2004) Sol Energy Mater Sol Cells 83:125Google Scholar
  235. 235.
    Grimsdale AC, Mullen K (2006) Adv Polym Sci 199:1Google Scholar
  236. 236.
    Kim DY, Cho HN, Kim CY (2000) Prog Polym Sci 25:1089Google Scholar
  237. 237.
    Ho PKH, Friend RH (2002) J Chem Phys 116:6782Google Scholar
  238. 238.
    Estrada M, Mejia I, Cerdeira A, Iniguez B (2008) Solid State Electron 52:53Google Scholar
  239. 239.
    Estrada M, Mejia I, Cerdeira A, Pallares J, Marsal LF, Iniguez B (2008) Solid State Electron 52:787Google Scholar
  240. 240.
    Werzer O, Matoy K, Strohriegl P, Resel R (2007) Thin Solid Films 515:5601Google Scholar
  241. 241.
    Cotts DB, Reyes Z (1987) Electrically conductive organic polymers for advanced applications. SRI International, Menlo Park, CAGoogle Scholar
  242. 242.
    Bertho S, Haeldermans I, Swinnen A, Moons W, Martens T, Lutsen L, Vanderzande D, Manca J, Senes A, Bonfiglio A (2007) Sol Energy Mater Sol Cells 91:385Google Scholar
  243. 243.
    Ghosh M, Barman A, De SK, Chatterjee S (1998) Synt Met 97:23Google Scholar
  244. 244.
    Mo TC, Wang HW, Chen SY, Yeh YC (2008) Ceram Int 34:1767Google Scholar
  245. 245.
    Ahlskog M, Reghu M, Noguchi T, Ohnishi T (1997) Synt Met 89:11Google Scholar
  246. 246.
    Bhatia V, Gupta D, Kabra D, Narayan KS (2007) J Mater Sci Mater Electron 18:925Google Scholar
  247. 247.
    Roncali J (1997) Chem Rev 97:173Google Scholar
  248. 248.
    McCullough RD (1998) Adv Mater 10:9Google Scholar
  249. 249.
    Tan Z, Zhou E, Yang Y, He Y, Yang C, Li Y (2007) Eur Polym J 43:855Google Scholar
  250. 250.
    Ji JS, Lin YJ, Lu HP, Wang L, Rwei SP (2006) Thin Solids Film 511–512:182Google Scholar
  251. 251.
    Vu QT, Pavlik M, Hebestreit N, Rammelt U, Plieth W, Pfleger J (2005) React Funct Polym 65:69Google Scholar
  252. 252.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2427Google Scholar
  253. 253.
    Cui Y, Duan XF, Hu JT, Lieber CM (2000) J Phys Chem 104:5213Google Scholar
  254. 254.
    Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KW (2003) Phys Rev B 67:115326Google Scholar
  255. 255.
    Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisatos AP (2003) Adv Funct Mater 13:73Google Scholar
  256. 256.
    Huynh WU, Peng X, Alivisatos AP (1999) Adv Mater 11:923Google Scholar
  257. 257.
    Vidya V, Ambily S, Narang SN, Major S, Talwar SS (2002) Colloids Surf 198:383Google Scholar
  258. 258.
    Pradhan B, Batabyal SK, Pal A (2006) J Appl Phys Lett 88:093106Google Scholar
  259. 259.
    Kymakis E, Amaratunga GAJ (2002) Appl Phys Lett 80:112Google Scholar
  260. 260.
    Parke ID (1994) J Appl Phys 75:1656Google Scholar
  261. 261.
    Kymakis E, Alexandrou I, Amaratunga GAJ (2003) J Appl Phys 93:1764Google Scholar
  262. 262.
    McCarthy B, Coleman JN, Curran SA, Dalton AB, Davey AP, Konya Z, Fonseca A, Nagy JB, Blau WJ (2000) J Mater Sci Lett 19:2239Google Scholar
  263. 263.
    Berson S, Bettignies R, Bailly S, Guillerez S (2007) Adv Funct Mater 17:1377Google Scholar
  264. 264.
    Zhang Y, Wada T, Sasabe H (1998) J Mat Chem 8:809Google Scholar
  265. 265.
    Kippelen B, Peyghambarian N (2003) Adv Polym Sci 161:87Google Scholar
  266. 266.
    Pielichowski J, Bogdal D (2004) Nonlinear Opt Quantum Opt 32:59Google Scholar
  267. 267.
    Winiarz JG, Zhang L, Lal M, Friend CS, Prasad PN (1999) Chem Phys 245:417Google Scholar
  268. 268.
    Yu W, Xu Z, Teng F, Yang S, Hou Y, Qian L, Qu C, Quan S, Xu X (2005) Phys Lett A 338:402Google Scholar
  269. 269.
    Yang S, Jiang Y, Teng F, Xu Z, Hou Y, Xu X (2006) Solid State Commun 139:415Google Scholar
  270. 270.
    Jiang Y, Yang S, Teng F, Xu Z, Hou Y, Xu X (2007) J Lumin 122:617Google Scholar
  271. 271.
    Horii Y, Kitagawa M, Taneoka H, Kusano H, Murakami T, Hino Y, Kobayashi H (2001) Mater Sci Eng B 85:92Google Scholar
  272. 272.
    Kawakami S, Kitagawa M, Kusano H, Morita D, Horii Y, Hirooka Y, Hatano K, Sawada T, Tsushima T, Kobayashi H (2000) Thin Solid Films 363:17Google Scholar
  273. 273.
    Xi H, Qian X, Yin J, Bian L, He R, Zhu Z (2003) Mater Lett 57:2657Google Scholar
  274. 274.
    Bogdal D, Prociak A (2007) Microwave-enhanced polymer chemistry and technology. Blackwell-Wiley, OxfordGoogle Scholar
  275. 275.
    He R, Qian X, Yin J, Bian L, Xi H, Zhu Z (2003) Mater Lett 57:1351Google Scholar
  276. 276.
    Cheng J, Wang S, Li XY, Yan Y, Yang S, Yang CL, Wang JN, Ge WK (2001) Chem Phys Lett 333:375Google Scholar
  277. 277.
    Gao Y, Liang C, Tang A, Teng F, Li D, Deng Z, Huang S (2007) J Lumin 122:646Google Scholar
  278. 278.
    Zhang T, Xu Z, Qian L, Tao DL, Teng F, Xu XR (2006) Opt Mater 29:216Google Scholar
  279. 279.
    Wu HX, Qiu XQ, Cai RF, Qian SX (2007) App Surf Sci 253:5122Google Scholar
  280. 280.
    Wu W, Li J, Liu L, Yanga L, Guo ZX, Dai L, Zhu D (2002) Chem Phys Lett 364:196Google Scholar
  281. 281.
    Qian J, Qian S, Cai Z (1999) Solid State Commun 109:371Google Scholar
  282. 282.
    Wang D, Ke G, Qian S (1995) Phys Lett 12:717Google Scholar
  283. 283.
    Park JH, Park OO, Kim J, Yu JW, Kim JK, Kim YC (2004) Curr Appl Phys 4:659Google Scholar
  284. 284.
    Kim JY, Kim M, Kim H, Joo J, Choi JH (2002) Opt Mater 21:147Google Scholar
  285. 285.
    Kim JY, Kim ES, Choi JH (2002) J Appl Phys 91:1944Google Scholar
  286. 286.
    Wang G, Qian S, Xu J, Wang W, Liu X, Lu X, Li F (2000) Physica B 279:116Google Scholar
  287. 287.
    Gurunathan K, Vadivel Murugan A, Marimuthu R, Mulik UP, Amalnerkar DP (1999) Mater Chem Phys 61:173Google Scholar
  288. 288.
    Peres LO, Varela H, Garcia JR, Fernandes MR, Torresi RM, Nart FC, Gruber J (2001) Synth Met 118:65Google Scholar
  289. 289.
    Xin Y, Huang Z, Chen J, Wang C, Tong Y, Liu S (2008) Mater Lett 62:991Google Scholar
  290. 290.
    Yang BD, Yoon KH, Chung KW (2004) Synth Met 143:25Google Scholar
  291. 291.
    Salafsky JS, Lubberhuizen WH, Schropp REI (1998) Chem Phys Lett 290:297Google Scholar
  292. 292.
    Zhang J, Wang B, Ju X, Liu T, Hu T (2001) Polymer 42:3697Google Scholar
  293. 293.
    Zhang J, Ju X, Wang B, Li Q, Liu T, Hu T (2001) Synth Met 118:181Google Scholar
  294. 294.
    Yang SH, Nguyen TP, Rendu PL, Hsu CS (2005) Composites A 36:509Google Scholar
  295. 295.
    Sirimanne PM, Premalal EVA, Pitigala PKDDP, Tennakone K (2006) Sol Energy Mater Sol CellsGoogle Scholar
  296. 296.
    Su SJ, Kuramoto N (2000) Synth Met 108:121Google Scholar
  297. 297.
    Tang A, Teng F, Jin H, Gao Y, Hou Y, Liang C, Wang Y (2007) Mater Lett 61:2178Google Scholar
  298. 298.
    Taylor RM, Church KH, Sluch MI (2007) Displays 28:92Google Scholar
  299. 299.
    Gao M, Richter B, Kirsein S (1999) Synth Met 102:1213Google Scholar
  300. 300.
    Chen Y, Midorikawa T, Bai J, Liu Y, Araki Y, Ito O (2005) Polymer 46:9803Google Scholar
  301. 301.
    Gao J, Hide F, Wang H (1997) Synth Met 84:979Google Scholar
  302. 302.
    Gospodinova N, Terlemezyan (1998) Prog Polym Sci 23:1443Google Scholar
  303. 303.
    Zhang D, Wang Y (2006) Mater Sci Eng B 134:9Google Scholar
  304. 304.
    Somani PR (2002) Mater Chem Phys 77:81Google Scholar
  305. 305.
    Araujo WS, Margarit ICP, Ferreira M, Mattos OR, Neto PL (2001) Electrochim Acta 46:1307Google Scholar
  306. 306.
    Vaschetto ME, Monkman AP, Springborg M (1999) J Mol Struct 468:181Google Scholar
  307. 307.
    Palaniappan S, Amarnath CA (2006) React Funct Polym 66:1741Google Scholar
  308. 308.
    Zhou S, Wu T, Kan J (2007) Eur Polym J 43:395Google Scholar
  309. 309.
    Yoshikawa H, Hino T, Kuramoto N (2006) Synth Met 156:1187Google Scholar
  310. 310.
    Troitsky VI, Berzina TS, Fontana MP (2002) Synth Met 129:39Google Scholar
  311. 311.
    Malinauskas A (2001) Polymer 42:3957Google Scholar
  312. 312.
    Goel S, Gupta A, Singh KP, Mehrotra R, Kandpal HC (2007) Mater Sci Eng A 443:71Google Scholar
  313. 313.
    Huang JX, Moore JA, Acquaye JH, Kaner RB (2005) Macromolecules 38:317Google Scholar
  314. 314.
    Liao C, Gu M (2002) Thin Solid Films 408:37Google Scholar
  315. 315.
    Paterno LG, Manolache S, Denes F (2002) Synth Met 130:85Google Scholar
  316. 316.
    Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H (2006) Polymer 47:7361Google Scholar
  317. 317.
    Tai H, Jiang Y, Xie G, Yu G, Chen X (2007) Sens Actuators B 125:644Google Scholar
  318. 318.
    Sathiyanarayanan S, Syed Azim S, Venkatachari G (2007) Prog Org Coat 59:291Google Scholar
  319. 319.
    Li X, Wang G, Li X, Lu D (2004) Appl Surf Sci 229:395Google Scholar
  320. 320.
    Xiong S, Wang Q, Chen Y (2007) Mater Chem Phys 103:450Google Scholar
  321. 321.
    Yavuz AG, Gok A (2007) Synth Met 157:235Google Scholar
  322. 322.
    Yan B, Chen D, Jiao X (2004) Mater Res Bull 39:1655Google Scholar
  323. 323.
    Khanna PK, Kulkarni MV, Singh N, Lonkar SP, Subbarao VVVS, Viswanath AK (2006) Mater Chem Phys 95:24Google Scholar
  324. 324.
    Khanna PK, Lonkar SP, Subbarao VVVS, Jun KW (2004) 87:49Google Scholar
  325. 325.
    Lee KP, Gopalan AI, Santhosh P, Lee SH, Nho YC (2007) Compos Sci Technol 67:811Google Scholar
  326. 326.
    Long Y, Chen Z, Duvail JL, Zhang Z, Wan M (2005) Physica B 370:121Google Scholar
  327. 327.
    Kaushik D, Sharma M, Singh RR, Gupta DK, Pandey RK (2006) Mater Lett 60:2994Google Scholar
  328. 328.
    He Y (2004) Powder Technol 147:59Google Scholar
  329. 329.
    Wu TM, Lin YW (2006) Polymer 47:3576Google Scholar
  330. 330.
    Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Polymer 47:5715Google Scholar
  331. 331.
    Mottaghitalb V, Xi B, Spinks GM, Wallace GG (2006) Synth Met 156:796Google Scholar
  332. 332.
    Guo M, Chen J, Li J, Tao B, Yao S (2005) Anal Chim Acta 532:71Google Scholar
  333. 333.
    Zhou Y, He B, Zhou W, Huang J, Li X, Wu B, Li H (2004) Electrochim Acta 49:257Google Scholar
  334. 334.
    Yu Y, Che B, Si Z, Li L, Chen W, Xue G (2005) Synth Met 150:271Google Scholar
  335. 335.
    Qiao Y, Li CM, Bao SJ, Bao QL (2007) J Power Sources 170:79Google Scholar
  336. 336.
    Gupta V, Miura N (2006) Electrochim Acta 52:1721Google Scholar
  337. 337.
    Gupta V, Miura N (2006) J Power Sources 157:616Google Scholar
  338. 338.
    Baibarac M, Gomez-Romero P, Lira-Cantu M, Casan-Pastor N, Mestres N, Lefrant S (2006) Eur Polym J 42:2302Google Scholar
  339. 339.
    Baibarac M, Lira-Cantu M, Oro Sol J, Baltog I, Casan-Pastor N, Gomez-Romero P (2007) Compos Sci Technol 67:2556 Editor: K. DušekGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyKrakowPoland
  2. 2.Department of Chemical Engineering, Fachhochschule MünsterUniversity of Applied SciencesSteinfurtGermany

Personalised recommendations