Skip to main content

New Synthetic Strategies for Structured Silicones Using B(C6F5)3

  • Chapter
  • First Online:
Silicon Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 235))

Abstract

The dehydrocarbonative condensation of alkoxysilanes + hydrosilanes in the presence of the Lewis acid catalyst B(C6F5)3 (R3SiOR + HSiR3 ′′ → R3SiOSiR3 ′′ + RH) – described throughout this review as the Piers-Rubinsztajn reaction – provides a new, mild strategy for the controlled synthesis of silicones. In this review we examine the mechanistic parameters that control the reaction, and outline the types of accessible small molecules, linear, branched, and cross-linked materials (resins and elastomers) that can be prepared using this and related reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rubinsztajn, Chojnowski, and I have discussed why, in their hands, metathesis is frequently encountered, while we typically do not observe it. One possible explanation is the order of addition of reagents. Typically, we add catalyst to a mixture of the hydrosilane and alkoxysilane, while Chojnowski and coworkers use one of two alternate strategies (see Sect. 4.1). It is clear, nevertheless, that metathesis does not occur under all reaction conditions.

References

  1. Clarson SJ, Semlyen JA (1993) Siloxane polymers. PTR Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  2. Noll WJ (1968) Chemistry and technology of silicones. Academic Press, New York

    Google Scholar 

  3. Uchida H, Kabe Y, Yoshino K, Kawamata A, Tsumuraya T, Masamune S (1990) J Am Chem Soc 112:7077–7079

    Article  CAS  Google Scholar 

  4. Brook MA (2000) Organosilanes: where to find them, what to call them, how to detect them. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 1–26

    Google Scholar 

  5. General Electric silicone nomenclature: M = Me3SiO1 ∕ 2, D = Me2SiO2 ∕ 2, T = MeSiO3 ∕ 2, and Q = SiO4 ∕ 2. The subscript nomenclature is used to denote, for example with SiO4 ∕ 2, that there are four single bonds to oxygen from silicon, and that each oxygen bonds to another silicon through a single bond, i.e., Si(OSi)4 rather than SiO2, which might imply Si = O double bonds.

    Google Scholar 

  6. Ganicz T, Pakula T, Stanczyk WA (2006) J Organomet Chem 691:5052–5055

    Article  CAS  Google Scholar 

  7. Araud C (1992) Polydimethylsiloxane resin antifoaming compositions. US 5,082,590, Rhone-Poulenc Chimie

    Google Scholar 

  8. Ulman KL, Thomas X (1995) Silicone pressure sensitive adhesives for healthcare applications. In: Satas D (ed) Advances in pressure sensitive adhesive technology, vol 2. Satas, Warwick RI, pp 133–157

    Google Scholar 

  9. Piers WE (2005) The chemistry of perfluoroaryl boranes. In: Advances in organometallic chemistry, vol 52. Elsevier Academic Press, San Diego, pp 1–76

    Google Scholar 

  10. Parks DJ, Blackwell JM, Piers WE (2000) J Org Chem 65:3090–3098

    Article  CAS  Google Scholar 

  11. Rubinsztajn S, Cella J (2004) Polymer Prepr 45(1):635–636

    CAS  Google Scholar 

  12. Rubinsztajn S, Cella JA (2005) Silicone condensation reaction. European Patent Application, WO2005118682, General Electric

    Google Scholar 

  13. Rubinsztajn S, Cella JA (2006) Silicone condensation reaction. US 7064173, General Electric

    Google Scholar 

  14. Childs RF, Mulholland DL, Nixon A (1982) Can J Chem 60:801–808

    Article  CAS  Google Scholar 

  15. Childs RF, Mulholland DL, Nixon A (1982) Can J Chem 60:809–812

    Article  CAS  Google Scholar 

  16. Beckett MA, Brassington DS, Coles SJ, Hursthouse MB (2000) Inorg Chem Commun 3:530–533

    Article  CAS  Google Scholar 

  17. Stephan DW (2009) Dalton Trans 3129–3136

    Google Scholar 

  18. Stephan DW (2008) Org Biomol Chem 6:1535–1539

    Article  CAS  Google Scholar 

  19. Parks DJ, Piers WE (1996) J Am Chem Soc 118:9440–9441

    Article  CAS  Google Scholar 

  20. Chandrasekhar S, Reddy CR, Babu BN (2002) J Org Chem 67:9080–9082

    Article  CAS  Google Scholar 

  21. Blackwell JM, Foster KL, Beck VH, Piers WE (1999) J Org Chem 64:4887–4892

    Article  CAS  Google Scholar 

  22. Gevorgyan V, Rubin M, Benson S, Liu JX, Yamamoto Y (2000) J Org Chem 65:6179–6186

    Article  CAS  Google Scholar 

  23. Rubin M, Schwier T, Gevorgyan V (2002) J Org Chem 67:1936–1940

    Article  CAS  Google Scholar 

  24. Blackwell JM, Sonmor ER, Scoccitti T, Piers WE (2000) Org Lett 2:3921–3923

    Article  CAS  Google Scholar 

  25. Gevorgyan V, Rubin M, Liu JX, Yamamoto Y (2001) J Org Chem 66:1672–1675

    Article  CAS  Google Scholar 

  26. Rendler S, Oestreich M (2008) Angew Chem Int Ed 47:5997–6000

    Article  CAS  Google Scholar 

  27. Bassindale AR, Taylor PG (1989) Reaction mechanisms of nucleophilic attack at silicon. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, Chichester, UK, p 839

    Chapter  Google Scholar 

  28. Bassindale AR, Glyne SJ, Taylor PG (1998) Reaction mechanisms of nucleophilic attack at silicon. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2. Wiley, Chichester, UK, p 495

    Chapter  Google Scholar 

  29. Corriu RJP, Guérin C, Moreau JJE (1984) Stereochemistry at silicon. In: Eliel EL, Wilen SH, Allinger NL (eds) Topics in stereochemistry, vol 15. Wiley, New York, pp 43–198

    Chapter  Google Scholar 

  30. Brook MA (2000) Replacing H with Si: silicon-based reagents. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 189–255

    Google Scholar 

  31. Chojnowski J, Rubinsztajn S, Cella JA, Fortuniak W, Cypryk M, Kurjata J, Kazmierski K (2005) Organometallics 24:6077–6084

    Article  CAS  Google Scholar 

  32. Shinke S, Tsuchimoto T, Kawakami Y (2005) Silicon Chem 3:243–249

    Article  Google Scholar 

  33. Chojnowski J, Rubinsztajn S, Fortuniak W, Kurjata J (2007) J Inorg Org Polym Mater 17:173–187

    Article  CAS  Google Scholar 

  34. Chojnowski J, Rubinsztajn S, Fortuniak W, Kurjata J (2008) Macromolecules 41:7352–7358

    Article  CAS  Google Scholar 

  35. Chojnowski J, Fortuniak W, Kurjata J, Rubinsztajn S, Cella JA (2006) Macromolecules 39:3802–3807

    Article  CAS  Google Scholar 

  36. Cella J, Rubinsztajn S (2008) Macromolecules 41:6965–6971

    Article  CAS  Google Scholar 

  37. Rubinsztajn S, Cella JA, Chojnowski J, Fortuniak W, Kurjata J (2006) Process for synthesis of diorganosilanes by disproportionation of hydridosiloxanes. US 7148370, General Electric

    Google Scholar 

  38. Brook MA (2000) Silicones. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 256–308

    Google Scholar 

  39. Xunjun C, Yingde C, Guoqiang Y, Liewen L (2007) J Appl Polym Sci 106:1007–1013

    Article  Google Scholar 

  40. Thompson DB, Brook MA (2008) J Am Chem Soc 130:32–33

    Article  CAS  Google Scholar 

  41. Sigwalt P (1987) Polym J 19:567–580

    Article  CAS  Google Scholar 

  42. Sigwalt P, Nicol P, Masure M (1989) Makromol chem. Supp 15:15–30

    CAS  Google Scholar 

  43. Jordan E, Lestel L, Boileau S, Cheradame H, Gandini A (1989) Makromol Chem Phys 190:267–276

    Article  CAS  Google Scholar 

  44. Bergquist C, Bridgewater BM, Harlan CJ, Norton JR, Friesner RA, Parkin G (2000) J Am Chem Soc 122:10581–10590

    Article  CAS  Google Scholar 

  45. Longuet C, Joly-Duhamel C, Ganachaud F (2007) Macromol Chem Phys 208:1883–1892

    Article  CAS  Google Scholar 

  46. Rubinsztajn S, Cella JA (2005) Macromolecules 38:1061–1063

    Article  CAS  Google Scholar 

  47. Kurjata J, Fortuniak W, Rubinsztajn S, Chojnowski J (2009) Eur Polym J 45:3372–3379

    Article  CAS  Google Scholar 

  48. Owen MJ (1990) Siloxane surface activity. In: Zeigler JM, Fearon FWG (eds) Silicon-based polymer science: a comprehensive resource. American Chemical Society, Washington, D.C., pp 705–739

    Google Scholar 

  49. Chen X, Cui Y, Yin G, Jia Z, Liu Z (2008) Huagong Xuebao (Chinese edn), vol 59, pp 1143–1149

    Google Scholar 

  50. Grande JB, Thompson DB, Gonzaga F, Brook MA Controlled geometry functional silicones (in press)

    Google Scholar 

  51. Brook MA (2000) Formation of Si–C bonds: the synthesis of functional organosilanes. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 381–458

    Google Scholar 

  52. Li YN, Kawakami Y (1999) Macromolecules 32:6871–6873

    Article  CAS  Google Scholar 

  53. Zhang Z, Lyons LJ, Jin JJ, Amine K, West R (2005) Chem Mater 17:5646–5650

    Article  CAS  Google Scholar 

  54. Neumann T, Herrwerth S, Reibold T, Krohm H-G (2006) Solvent-free reaction of hydrosilyl-containing branched polyorganosiloxanes with alcohols. German Patent Application DE 102005004676 Goldschmidt AG

    Google Scholar 

  55. Xue L, Kawakami Y (2007) Polym J 39:379–388

    Article  CAS  Google Scholar 

  56. Brook MA (2000) Hydrosilanes as reducing agents. In: Silicon in organic, organometallic and polymer chemistry, Wiley, New York, pp 171–188

    Google Scholar 

  57. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Angew Chem Int Edit 46:9136

    Article  CAS  Google Scholar 

  58. Geier SJ, Stephan DW (2009) J Am Chem Soc 131:3476–3477

    Article  CAS  Google Scholar 

  59. Wuts PGM, Greene TW (2006) Greene’s protective groups in organic synthesis, 4th edn. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  60. Thompson DB, Gonzaga F, Fawcett AS, Brook MA (2008) Silicon Chem 3:327–334

    Article  Google Scholar 

  61. Knott W, Droese J, Klein K-D, Landers R, Windbiel D (2008) Method for manufacturing SiOC-linked, linear polydimethyl siloxane polyoxyalkyl block copolymers and their application. EP 1935922, Evonik Goldschmidt Gmbh

    Google Scholar 

  62. Neumann T, Knott W (2008) Method for converting polyorganosiloxanes and their application. EP 1935920, Evonik Goldschmidt

    Google Scholar 

  63. Henning F, Knott W, Dudzik H (2009) Method for producing branched SiH functional polysiloxanes and the use thereof for producting SiC- and SiOC-linked, branched organomodified polysiloxanes. DE 102007055485, Evonik Goldschmidt

    Google Scholar 

  64. Oestreich S, Scheiba M, Stadtmueller S, Weimann M (2006) Use of organo-modified siloxanes for improving the surface properties of thermoplastic elastomers. EP 1640418, Goldschmidt GMBH

    Google Scholar 

  65. Hoque MA, Kakihana Y, Shinke S, Kawakami Y (2009) Macromolecules 42:3309–3315

    Article  CAS  Google Scholar 

  66. Zhou DQ, Kawakami Y (2005) Macromolecules 38:6902–6908

    Article  CAS  Google Scholar 

  67. Casty GL, Rodriguez G (2009) Preparation of supported silyl-capped silica-bound anion activators and associated catalysts. US Patent Application 20090018290, ExxonMobil Chemical Company

    Google Scholar 

  68. Di Saverio A, Focante F, Camurati I, Resconi L, Beringhelli T, D’Alfonso G, Donghi D, Maggioni D, Mercandelli P, Sironi A (2005) Inorg Chem 44:5030–5041

    Article  Google Scholar 

  69. Danopoulos AA, Galsworthy JR, Green MLH, Cafferkey S, Doerrer LH, Hursthouse MB (1998) Chem Commun 2529–2530

    Google Scholar 

  70. Longuet C, Ganachaud F (2008) Copolycondensation of functional silanes and siloxanes in solution using tris(pentafluorophenyl) borane as a catalyst in a view to generate hybrid silicones. In: Ganachaud F, Boileau S, Boury B (eds) Silicon based polymers. Springer, Netherlands, pp 119–134

    Chapter  Google Scholar 

  71. Neumann B, Vincent B, Krustev R, Muller HJ (2004) Langmuir 20:4336–4344

    Article  CAS  Google Scholar 

  72. Pouget E, Holgado-Garcia E, Vasilenko IV, Kostjuk SV, Campagne JM, Ganachaud F (2009) Macromol Rapid Comm 30:1128–1132

    Article  CAS  Google Scholar 

  73. Pouget E, Ganachaud F, Boutevin B, Loubat C (2008) Silicone elastomer made by grafting hydrogen-polyorganosiloxane with alkenyl sulfone using optionally halogenated triphenylborane as Lewis acid. FR 2912410A1, Specific Polymers

    Google Scholar 

  74. Pouget E, Garcia EH, Ganachaud F (2008) Macromol Rapid Comm 29:425–430

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Silcotech Canada, Siltech Canada, and Centre National de la Recherche Scientifique (CNRS). We also thank Prof. Alan Bassindale (Open University, UK), Prof. Warren Piers (Calgary), and Prof. Martin Oestreich (Münster) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Brook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Brook, M.A., Grande, J.B., Ganachaud, F. (2010). New Synthetic Strategies for Structured Silicones Using B(C6F5)3 . In: Muzafarov, A. (eds) Silicon Polymers. Advances in Polymer Science, vol 235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_47

Download citation

Publish with us

Policies and ethics