Advertisement

New Synthetic Strategies for Structured Silicones Using B(C6F5)3

  • Michael A. BrookEmail author
  • John B. Grande
  • François Ganachaud
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 235)

Abstract

The dehydrocarbonative condensation of alkoxysilanes + hydrosilanes in the presence of the Lewis acid catalyst B(C6F5)3 (R3SiOR + HSiR3 ′′ → R3SiOSiR3 ′′ + R H) – described throughout this review as the Piers-Rubinsztajn reaction – provides a new, mild strategy for the controlled synthesis of silicones. In this review we examine the mechanistic parameters that control the reaction, and outline the types of accessible small molecules, linear, branched, and cross-linked materials (resins and elastomers) that can be prepared using this and related reactions.

Keywords

B(C6F5)3 Controlled 3D silicone structures Dehydrocarbonative condensation Piers-Rubinsztajn reaction Silicone synthesis 

Notes

Acknowledgements

We gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Silcotech Canada, Siltech Canada, and Centre National de la Recherche Scientifique (CNRS). We also thank Prof. Alan Bassindale (Open University, UK), Prof. Warren Piers (Calgary), and Prof. Martin Oestreich (Münster) for helpful discussions.

References

  1. 1.
    Clarson SJ, Semlyen JA (1993) Siloxane polymers. PTR Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  2. 2.
    Noll WJ (1968) Chemistry and technology of silicones. Academic Press, New YorkGoogle Scholar
  3. 3.
    Uchida H, Kabe Y, Yoshino K, Kawamata A, Tsumuraya T, Masamune S (1990) J Am Chem Soc 112:7077–7079CrossRefGoogle Scholar
  4. 4.
    Brook MA (2000) Organosilanes: where to find them, what to call them, how to detect them. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 1–26Google Scholar
  5. 5.
    General Electric silicone nomenclature: M = Me3SiO1 ∕ 2, D = Me2SiO2 ∕ 2, T = MeSiO3 ∕ 2, and Q = SiO4 ∕ 2. The subscript nomenclature is used to denote, for example with SiO4 ∕ 2, that there are four single bonds to oxygen from silicon, and that each oxygen bonds to another silicon through a single bond, i.e., Si(OSi)4 rather than SiO2, which might imply Si = O double bonds.Google Scholar
  6. 6.
    Ganicz T, Pakula T, Stanczyk WA (2006) J Organomet Chem 691:5052–5055CrossRefGoogle Scholar
  7. 7.
    Araud C (1992) Polydimethylsiloxane resin antifoaming compositions. US 5,082,590, Rhone-Poulenc ChimieGoogle Scholar
  8. 8.
    Ulman KL, Thomas X (1995) Silicone pressure sensitive adhesives for healthcare applications. In: Satas D (ed) Advances in pressure sensitive adhesive technology, vol 2. Satas, Warwick RI, pp 133–157Google Scholar
  9. 9.
    Piers WE (2005) The chemistry of perfluoroaryl boranes. In: Advances in organometallic chemistry, vol 52. Elsevier Academic Press, San Diego, pp 1–76Google Scholar
  10. 10.
    Parks DJ, Blackwell JM, Piers WE (2000) J Org Chem 65:3090–3098CrossRefGoogle Scholar
  11. 11.
    Rubinsztajn S, Cella J (2004) Polymer Prepr 45(1):635–636Google Scholar
  12. 12.
    Rubinsztajn S, Cella JA (2005) Silicone condensation reaction. European Patent Application, WO2005118682, General ElectricGoogle Scholar
  13. 13.
    Rubinsztajn S, Cella JA (2006) Silicone condensation reaction. US 7064173, General ElectricGoogle Scholar
  14. 14.
    Childs RF, Mulholland DL, Nixon A (1982) Can J Chem 60:801–808CrossRefGoogle Scholar
  15. 15.
    Childs RF, Mulholland DL, Nixon A (1982) Can J Chem 60:809–812CrossRefGoogle Scholar
  16. 16.
    Beckett MA, Brassington DS, Coles SJ, Hursthouse MB (2000) Inorg Chem Commun 3:530–533CrossRefGoogle Scholar
  17. 17.
    Stephan DW (2009) Dalton Trans 3129–3136Google Scholar
  18. 18.
    Stephan DW (2008) Org Biomol Chem 6:1535–1539CrossRefGoogle Scholar
  19. 19.
    Parks DJ, Piers WE (1996) J Am Chem Soc 118:9440–9441CrossRefGoogle Scholar
  20. 20.
    Chandrasekhar S, Reddy CR, Babu BN (2002) J Org Chem 67:9080–9082CrossRefGoogle Scholar
  21. 21.
    Blackwell JM, Foster KL, Beck VH, Piers WE (1999) J Org Chem 64:4887–4892CrossRefGoogle Scholar
  22. 22.
    Gevorgyan V, Rubin M, Benson S, Liu JX, Yamamoto Y (2000) J Org Chem 65:6179–6186CrossRefGoogle Scholar
  23. 23.
    Rubin M, Schwier T, Gevorgyan V (2002) J Org Chem 67:1936–1940CrossRefGoogle Scholar
  24. 24.
    Blackwell JM, Sonmor ER, Scoccitti T, Piers WE (2000) Org Lett 2:3921–3923CrossRefGoogle Scholar
  25. 25.
    Gevorgyan V, Rubin M, Liu JX, Yamamoto Y (2001) J Org Chem 66:1672–1675CrossRefGoogle Scholar
  26. 26.
    Rendler S, Oestreich M (2008) Angew Chem Int Ed 47:5997–6000CrossRefGoogle Scholar
  27. 27.
    Bassindale AR, Taylor PG (1989) Reaction mechanisms of nucleophilic attack at silicon. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, Chichester, UK, p 839CrossRefGoogle Scholar
  28. 28.
    Bassindale AR, Glyne SJ, Taylor PG (1998) Reaction mechanisms of nucleophilic attack at silicon. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2. Wiley, Chichester, UK, p 495CrossRefGoogle Scholar
  29. 29.
    Corriu RJP, Guérin C, Moreau JJE (1984) Stereochemistry at silicon. In: Eliel EL, Wilen SH, Allinger NL (eds) Topics in stereochemistry, vol 15. Wiley, New York, pp 43–198CrossRefGoogle Scholar
  30. 30.
    Brook MA (2000) Replacing H with Si: silicon-based reagents. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 189–255Google Scholar
  31. 31.
    Chojnowski J, Rubinsztajn S, Cella JA, Fortuniak W, Cypryk M, Kurjata J, Kazmierski K (2005) Organometallics 24:6077–6084CrossRefGoogle Scholar
  32. 32.
    Shinke S, Tsuchimoto T, Kawakami Y (2005) Silicon Chem 3:243–249CrossRefGoogle Scholar
  33. 33.
    Chojnowski J, Rubinsztajn S, Fortuniak W, Kurjata J (2007) J Inorg Org Polym Mater 17:173–187CrossRefGoogle Scholar
  34. 34.
    Chojnowski J, Rubinsztajn S, Fortuniak W, Kurjata J (2008) Macromolecules 41:7352–7358CrossRefGoogle Scholar
  35. 35.
    Chojnowski J, Fortuniak W, Kurjata J, Rubinsztajn S, Cella JA (2006) Macromolecules 39:3802–3807CrossRefGoogle Scholar
  36. 36.
    Cella J, Rubinsztajn S (2008) Macromolecules 41:6965–6971CrossRefGoogle Scholar
  37. 37.
    Rubinsztajn S, Cella JA, Chojnowski J, Fortuniak W, Kurjata J (2006) Process for synthesis of diorganosilanes by disproportionation of hydridosiloxanes. US 7148370, General ElectricGoogle Scholar
  38. 38.
    Brook MA (2000) Silicones. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 256–308Google Scholar
  39. 39.
    Xunjun C, Yingde C, Guoqiang Y, Liewen L (2007) J Appl Polym Sci 106:1007–1013CrossRefGoogle Scholar
  40. 40.
    Thompson DB, Brook MA (2008) J Am Chem Soc 130:32–33CrossRefGoogle Scholar
  41. 41.
    Sigwalt P (1987) Polym J 19:567–580CrossRefGoogle Scholar
  42. 42.
    Sigwalt P, Nicol P, Masure M (1989) Makromol chem. Supp 15:15–30Google Scholar
  43. 43.
    Jordan E, Lestel L, Boileau S, Cheradame H, Gandini A (1989) Makromol Chem Phys 190:267–276CrossRefGoogle Scholar
  44. 44.
    Bergquist C, Bridgewater BM, Harlan CJ, Norton JR, Friesner RA, Parkin G (2000) J Am Chem Soc 122:10581–10590CrossRefGoogle Scholar
  45. 45.
    Longuet C, Joly-Duhamel C, Ganachaud F (2007) Macromol Chem Phys 208:1883–1892CrossRefGoogle Scholar
  46. 46.
    Rubinsztajn S, Cella JA (2005) Macromolecules 38:1061–1063CrossRefGoogle Scholar
  47. 47.
    Kurjata J, Fortuniak W, Rubinsztajn S, Chojnowski J (2009) Eur Polym J 45:3372–3379CrossRefGoogle Scholar
  48. 48.
    Owen MJ (1990) Siloxane surface activity. In: Zeigler JM, Fearon FWG (eds) Silicon-based polymer science: a comprehensive resource. American Chemical Society, Washington, D.C., pp 705–739Google Scholar
  49. 49.
    Chen X, Cui Y, Yin G, Jia Z, Liu Z (2008) Huagong Xuebao (Chinese edn), vol 59, pp 1143–1149Google Scholar
  50. 50.
    Grande JB, Thompson DB, Gonzaga F, Brook MA Controlled geometry functional silicones (in press)Google Scholar
  51. 51.
    Brook MA (2000) Formation of Si–C bonds: the synthesis of functional organosilanes. In: Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 381–458Google Scholar
  52. 52.
    Li YN, Kawakami Y (1999) Macromolecules 32:6871–6873CrossRefGoogle Scholar
  53. 53.
    Zhang Z, Lyons LJ, Jin JJ, Amine K, West R (2005) Chem Mater 17:5646–5650CrossRefGoogle Scholar
  54. 54.
    Neumann T, Herrwerth S, Reibold T, Krohm H-G (2006) Solvent-free reaction of hydrosilyl-containing branched polyorganosiloxanes with alcohols. German Patent Application DE 102005004676 Goldschmidt AGGoogle Scholar
  55. 55.
    Xue L, Kawakami Y (2007) Polym J 39:379–388CrossRefGoogle Scholar
  56. 56.
    Brook MA (2000) Hydrosilanes as reducing agents. In: Silicon in organic, organometallic and polymer chemistry, Wiley, New York, pp 171–188Google Scholar
  57. 57.
    Chase PA, Welch GC, Jurca T, Stephan DW (2007) Angew Chem Int Edit 46:9136CrossRefGoogle Scholar
  58. 58.
    Geier SJ, Stephan DW (2009) J Am Chem Soc 131:3476–3477CrossRefGoogle Scholar
  59. 59.
    Wuts PGM, Greene TW (2006) Greene’s protective groups in organic synthesis, 4th edn. Wiley-Interscience, New JerseyCrossRefGoogle Scholar
  60. 60.
    Thompson DB, Gonzaga F, Fawcett AS, Brook MA (2008) Silicon Chem 3:327–334CrossRefGoogle Scholar
  61. 61.
    Knott W, Droese J, Klein K-D, Landers R, Windbiel D (2008) Method for manufacturing SiOC-linked, linear polydimethyl siloxane polyoxyalkyl block copolymers and their application. EP 1935922, Evonik Goldschmidt GmbhGoogle Scholar
  62. 62.
    Neumann T, Knott W (2008) Method for converting polyorganosiloxanes and their application. EP 1935920, Evonik GoldschmidtGoogle Scholar
  63. 63.
    Henning F, Knott W, Dudzik H (2009) Method for producing branched SiH functional polysiloxanes and the use thereof for producting SiC- and SiOC-linked, branched organomodified polysiloxanes. DE 102007055485, Evonik GoldschmidtGoogle Scholar
  64. 64.
    Oestreich S, Scheiba M, Stadtmueller S, Weimann M (2006) Use of organo-modified siloxanes for improving the surface properties of thermoplastic elastomers. EP 1640418, Goldschmidt GMBHGoogle Scholar
  65. 65.
    Hoque MA, Kakihana Y, Shinke S, Kawakami Y (2009) Macromolecules 42:3309–3315CrossRefGoogle Scholar
  66. 66.
    Zhou DQ, Kawakami Y (2005) Macromolecules 38:6902–6908CrossRefGoogle Scholar
  67. 67.
    Casty GL, Rodriguez G (2009) Preparation of supported silyl-capped silica-bound anion activators and associated catalysts. US Patent Application 20090018290, ExxonMobil Chemical CompanyGoogle Scholar
  68. 68.
    Di Saverio A, Focante F, Camurati I, Resconi L, Beringhelli T, D’Alfonso G, Donghi D, Maggioni D, Mercandelli P, Sironi A (2005) Inorg Chem 44:5030–5041CrossRefGoogle Scholar
  69. 69.
    Danopoulos AA, Galsworthy JR, Green MLH, Cafferkey S, Doerrer LH, Hursthouse MB (1998) Chem Commun 2529–2530Google Scholar
  70. 70.
    Longuet C, Ganachaud F (2008) Copolycondensation of functional silanes and siloxanes in solution using tris(pentafluorophenyl) borane as a catalyst in a view to generate hybrid silicones. In: Ganachaud F, Boileau S, Boury B (eds) Silicon based polymers. Springer, Netherlands, pp 119–134CrossRefGoogle Scholar
  71. 71.
    Neumann B, Vincent B, Krustev R, Muller HJ (2004) Langmuir 20:4336–4344CrossRefGoogle Scholar
  72. 72.
    Pouget E, Holgado-Garcia E, Vasilenko IV, Kostjuk SV, Campagne JM, Ganachaud F (2009) Macromol Rapid Comm 30:1128–1132CrossRefGoogle Scholar
  73. 73.
    Pouget E, Ganachaud F, Boutevin B, Loubat C (2008) Silicone elastomer made by grafting hydrogen-polyorganosiloxane with alkenyl sulfone using optionally halogenated triphenylborane as Lewis acid. FR 2912410A1, Specific PolymersGoogle Scholar
  74. 74.
    Pouget E, Garcia EH, Ganachaud F (2008) Macromol Rapid Comm 29:425–430CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Michael A. Brook
    • 1
    Email author
  • John B. Grande
    • 1
  • François Ganachaud
    • 2
  1. 1.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada
  2. 2.Institut Charles Gerhardt UMR5253 CNRS, Equipe «Ingénierie et Architectures Macromoléculaires»Ecole Nationale Supérieure de Chimie de MontpellierMontpellier, CedexFrance

Personalised recommendations