Skip to main content

Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses

  • Chapter
  • First Online:
Complex Macromolecular Systems II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 228))

Abstract

This review covers synthesis, materials development, and photophysics of azobenzene-containing block copolymers as potential media for reversible volume holographic data storage. For high-density holographic data storage, volume gratings must be inscribed in millimeter-thick samples to achieve efficient angle multiplexing. It is demonstrated that block copolymers with azobenzene side-groups in the minority block develop no detrimental surface relief structures and exhibit superior performance regarding volume gratings, compared to homopolymers and statistical copolymers. Several material concepts for optimizing the refractive index modulation and the stability of volume gratings are presented. Stabilities of more than 2 years were achieved. Most important is the development of polymer blends comprising the azobenzene-containing block copolymer and an optically transparent homopolymer. This enables the preparation of millimeter-thick samples with the required optical density of ∼ 0. 7 at the writing wavelength by conventional injection molding techniques. The inscription of up to 200 holograms at the same lateral position was demonstrated. In addition, more than 1,000 write/erase cycles can be performed. This is the first time that the inscription and erasure of the long-term stable angle-multiplexed volume gratings in a rewritable polymeric medium have been achieved by purely optical means. A second important application for azobenzene-containing materials is the controlled preparation of surface relief structures. It is demonstrated that azobenzene-containing molecular glasses are an ideal class for efficient formation of surface relief gratings (SRGs) with amplitude heights of more than 600 nm. Clear relationships can be established between the chemical structure of the molecules and the behavior of SRG formation. All results are in agreement with the gradient force model by Kumar et al. The surface patterns are stable enough to be transferred to a polymer surface via replica molding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

45 :

Electric field vector at an angle of 45 to the plane of incidence

AFM:

Atomic force microscopy

AIBN:

Azobisisobutyronitrile

ATRP:

Atom transfer radical polymerization

BS:

Beam splitter

c :

Cylindrical

CCD:

Charge-coupled device

CD:

Compact disc

d 0 :

1 Thickness of the film

Δd max :

Maximum SRG height

DSC:

Differential scanning calorimetry

\(\vec{E}\) :

Electric field vector of the incident light

f :

Gradient force

GPC:

Gel permeation chromatography

h :

Planck constant

HEMA:

Hydroxyethylmethacrylate

HOE:

Holographic optical element

I :

Intensity

J1 :

First order Bessel function

k :

Absorption coefficient

k b :

Boltzmann constant

λ:

Wavelength of laser beam

lcp:

Left circularly polarized light

m :

Miscible

M n :

Number average molecular weight

M w :

Weight average molecular weight

η:

Diffraction efficiency

n :

Refractive index of the sample

n 1 :

Refractive index modulation

n 1, max :

Maximum refractive index modulation

Δn :

Amplitude of the refractive index change between sample and air

NEXAFS:

Near-edge X-ray absorption fine structure

NMP:

Nitroxide mediated polymerization

NMR:

Nuclear magnetic resonance

ν:

Frequency

OD:

Optical density

p:

Electric field vector parallel to the plane of incidence

P:

Polarizer

P :

Polarization induced by the electric light field

PAP:

Photoaddressable polymers

PB:

Polybutadiene

PDI:

Polydispersity index

PDMS:

Poly(dimethyl)siloxane

PMMA:

Polymethylmethacrylate

POLMIC:

Polarized light microscopy

PS:

Polystyrene

rcp:

Right circularly polarized light

ROM:

Read-only memory

ru:

Repeating unit

s :

Sphere

s:

Electric field vector perpendicular to the plane of incidence

S :

Sensitivity

SAXS:

Small angle X-ray scattering

SRG:

Surface relief grating

τ1 :

Time constant of the build-up of the volume grating

τ2 :

Time constant of the build-up of the surface relief grating

t :

Writing time

T :

Temperature

T g :

Glass transition temperature

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

UV/vis:

Ultraviolet/visible

wA :

Normalized weight of block A

WAXS:

Wide-angle X-ray scattering

WORM:

Write-once read-many

θ:

Angle of incidence of the laser beam

Δφ:

Phase difference between volume and surface relief grating

χ:

Electrical susceptibility

References

  1. Ashley J, Bernal MP, Burr GW, Coufal H, Guenther H, Hoffnagle JA, Jefferson CM, Marcus B, Macfarlane RM, Shelby RM, Sincerbox GT (2000) IBM J Res Dev 44:341–368

    Article  CAS  Google Scholar 

  2. Hesselink L, Orlov SS, Bashaw MC (2004) Proc IEEE 92:1231–1280

    Article  CAS  Google Scholar 

  3. Schilling ML, Colvin VL, Dhar L, Harris AL, Schilling FC, Katz HE, Wysocki T, Hale A, Blyler LL, Boyd C (1999) Chem Mater 11:247–254

    Article  CAS  Google Scholar 

  4. Barbastathis G, Psaltis D (2000) Volume holographic multiplexing methods. In: Coufal H, Psaltis D, Sincerbox GT (eds) Holographic data storage. Springer, Berlin

    Google Scholar 

  5. Waldmann DA, Butler CJ, Raguin DH (2003) Proc SPIE 5216:10–25

    Article  CAS  Google Scholar 

  6. Schnoes M, Ihas B, Dhar L, Michaels D, Settachayanon S, Schomberger GL, Wilson WL (2003) Proc SPIE 4988:68–76

    Article  CAS  Google Scholar 

  7. Zhao Y, Ikeda T (2009) Smart light-responsive materials. Wiley, Hoboken, NJ

    Book  Google Scholar 

  8. Hagen R, Bieringer T (2001) Adv Mater 13:1805–1810

    Article  CAS  Google Scholar 

  9. Ringsdorf H, Schmidt H-W (1984) Makromol Chem 185:1327–1334

    Article  CAS  Google Scholar 

  10. Eich M, Wendorff JH, Ringsdorf H, Schmidt H-W (1985) Macromol Chem Phys 186: 2639–2647

    Article  CAS  Google Scholar 

  11. Eich M, Wendorff JH, Reck B, Ringsdorf H (1987) Macromol Rapid Commun 8:59–63

    Article  CAS  Google Scholar 

  12. Meng X, Natansohn A, Rochon P (1997) Polymer 38:2677–2682

    Article  CAS  Google Scholar 

  13. Cimrova V, Neher D, Kostromine S, Bieringer T (1999) Macromolecules 32:8496–8503

    Article  CAS  Google Scholar 

  14. Hvilsted S, Andruzzi F, Kullia C, Siesler HW, Ramanujam PS (1995) Macromolecules 28:2172–2183

    Article  CAS  Google Scholar 

  15. Berg RH, Hvilsted S, Ramanujam PS (1996) Nature 383:505–508

    Article  CAS  Google Scholar 

  16. Ringsdorf H, Schmidt HW, Baur G, Kiefer R, Windscheid F (1986) Liq Cryst 1:319–325

    Article  CAS  Google Scholar 

  17. Zilker SJ, Bieringer T, Haarer D, Stein RS, Van Egmond JW, Kostromine SG (1998) Adv Mater 10:855–859

    Article  CAS  Google Scholar 

  18. Zilker SJ, Huber MR, Bieringer T, Haarer D (1999) Appl Phys B 68:893–897

    Article  CAS  Google Scholar 

  19. Rochon P, Batalla E, Natansohn A (1995) Appl Phys Lett 66:136–138

    Article  CAS  Google Scholar 

  20. Kim DY, Tripathy SK, Li L, Kumar J (1995) Appl Phys Lett 66:1166–1168

    Article  CAS  Google Scholar 

  21. Minabe J, Maruyama T, Yasuda S, Kawano K, Hayashi K, Ogasawara Y (2004) Jpn J Appl Phys 43:4964–4967

    Article  CAS  Google Scholar 

  22. Tian Y, Watanabe K, Kong X, Abe J, Iyoda T (2002) Macromolecules 35:3739–3747

    Article  CAS  Google Scholar 

  23. Cui L, Zhao Y, Yavrian A, Galstian T (2003) Macromolecules 36:8246–8252

    Article  CAS  Google Scholar 

  24. Cui L, Tong X, Yan X, Liu G, Zhao Y (2004) Macromolecules 37:7097–7104

    Article  CAS  Google Scholar 

  25. Han Y-K, Dufour B, Wu W, Kowalewski T, Matyjaszewski K (2004) Macromolecules 37:9355–9365

    Article  CAS  Google Scholar 

  26. Wang G, Tong X, Zhao Y (2004) Macromolecules 37:8911–8917

    Article  CAS  Google Scholar 

  27. Ravi P, Sin SL, Gan LH, Gan YY, Tam KC, Xia XL, Hu X (2005) Polymer 46:137–146

    Article  CAS  Google Scholar 

  28. Forcen P, Oriol L, Sanchez C, Alcala R, Hvilsted S, Jankova K, Loos J (2007) J Polym Sci Polym Chem 45:1899–1910

    Article  CAS  Google Scholar 

  29. Forcen P, Oriol L, Sanchez C, Rodriguez FJ, Alcala R, Hvilsted S, Jankova K (2007) Eur Polym J 43:3292–3300

    Article  CAS  Google Scholar 

  30. Tong X, Cui L, Zhao Y (2004) Macromolecules 37:3101–3112

    Article  CAS  Google Scholar 

  31. Sin SL, Gan LH, Hu X, Tam KC, Gan YY (2005) Macromolecules 38:3943–3948

    Article  CAS  Google Scholar 

  32. Yu H, Shishido A, Ikeda T, Iyoda T (2005) Macromol Rapid Commun 26:1594–1598

    Article  CAS  Google Scholar 

  33. Kadota S, Aoki K, Nagano S, Seki T (2006) Colloids Surf 284/285:535–541

    Article  CAS  Google Scholar 

  34. Morikawa Y, Kondo T, Nagano S, Seki T (2007) Chem Mater 19:1540–1542

    Article  CAS  Google Scholar 

  35. Tang X, Gao L, Fan X, Zhou Q (2007) J Polym Sci A 45:2225–2234

    Article  CAS  Google Scholar 

  36. Tang X, Gao L, Fan X, Zhou Q (2007) J Polym Sci A 45:5190–5198

    Article  CAS  Google Scholar 

  37. Zhang Y, Zhang W, Chen X, Cheng Z, Wu J, Zhu J, Zhu X (2008) J Polym Sci A 46:777–789

    Article  CAS  Google Scholar 

  38. Ding L, Mao H, Xu J, He J, Ding X, Russell TP, Robello DR, Mis M (2008) Macromolecules 41:1897–1900

    Article  CAS  Google Scholar 

  39. He X, Sun W, Yan D, Xie M, Zhang Y (2008) J Polym Sci A 46:4442–4450

    Article  CAS  Google Scholar 

  40. Yu H, Naka Y, Shishido A, Ikeda T (2008) Macromolecules 41:7959–7966

    Article  CAS  Google Scholar 

  41. Gimeno S, Forcen P, Oriol L, Pinol M, Sanchez C, Rodriguez FJ, Alcala R, Jankova K, Hvilsted S (2009) Eur Polym J 45:262–271

    Article  CAS  Google Scholar 

  42. Yoshida E, Ohta M (2005) Colloid Polym Sci 283:521–531

    Article  CAS  Google Scholar 

  43. Mao G, Wang J, Clingman SR, Ober CK (1997) Macromolecules 30:2556–2567

    Article  CAS  Google Scholar 

  44. Osuji CO, Chen JT, Mao G, Ober CK, Thomas EL (2000) Polymer 41:8897–8907

    Article  CAS  Google Scholar 

  45. Hayakawa T, Horiuchi S, Shimizu H, Kawazoe T, Ohtsu M (2002) J Polym Sci Polym Chem 40:2406–2414

    Article  CAS  Google Scholar 

  46. Shirota Y (2000) J Mater Chem 10:1–25

    Article  CAS  Google Scholar 

  47. Strohriegl P, Grazulevicius JV (2002) Adv Mater 14:1439–1452

    Article  CAS  Google Scholar 

  48. Van der Auweraer M, De Schryver FC, Borsenberger PM, Bassler H (1994) Adv Mater 6:199–213

    Article  Google Scholar 

  49. Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913–915

    Article  CAS  Google Scholar 

  50. Thelakkat M, Schmidt HW (1998) Adv Mater 10:219–223

    Article  CAS  Google Scholar 

  51. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Nature 395:583–585

    Article  CAS  Google Scholar 

  52. Thelakkat M, Schmitz C, Hohle C, Strohriegl P, Schmidt HW, Hofmann U, Schloter S, Haarer D (1999) Phys Chem Chem Phys 1:1693–1698

    Article  CAS  Google Scholar 

  53. Schmitz C, Posch P, Thelakkat M, Schmidt HW (1999) Phys Chem Chem Phys 1:1777–1781

    Article  CAS  Google Scholar 

  54. Shirota Y (2005) J Mater Chem 15:75–93

    Article  CAS  Google Scholar 

  55. Kim M-J, Seo E-M, Vak D, Kim D-Y (2003) Chem Mater 15:4021–4027

    Article  CAS  Google Scholar 

  56. Chun C, Kim M-J, Vak D, Kim DY (2003) J Mater Chem 13:2904–2909

    Article  CAS  Google Scholar 

  57. Ishow E, Lebon B, He Y, Wang X, Bouteiller L, Galmiche L, Nakatani K (2006) Chem Mater 18:1261–1267

    Article  CAS  Google Scholar 

  58. Stracke A, Wendorff JH, Goldmann D, Janietz D (2000) Liq Cryst 27:1049–1057

    Article  CAS  Google Scholar 

  59. Kulikovska O, Goldenberg LM, Kulikovsky L, Stumpe J (2008) Chem Mater 20:3528–3534

    Article  CAS  Google Scholar 

  60. Adams J, Gronski W (1989) Macromol Rapid Commun 10:553–557

    Article  CAS  Google Scholar 

  61. Frenz C, Fuchs A, Schmidt H-W, Theissen U, Haarer D (2004) Macromol Chem Phys 205:1246–1258

    Article  CAS  Google Scholar 

  62. Bates FS, Rosedale JH, Bair HE, Russell TP (1989) Macromolecules 22:2557–2564

    Article  CAS  Google Scholar 

  63. Sänger J, Tefehne C, Lay R, Gronski W (1996) Polym Bull 36:19–26

    Article  Google Scholar 

  64. Frenz C (2003) Diblock copolymers with photoaddressable chromophores for holographic data storage. PhD Thesis, University of Bayreuth

    Google Scholar 

  65. Stevens H, Rehage G, Finkelmann H (1984) Macromolecules 17:851–856

    Article  CAS  Google Scholar 

  66. Breiner T, Kreger K, Hagen R, Häckel M, Kador L, Mueller AHE, Kramer EJ, Schmidt H-W (2007) Macromolecules 40:2100–2108

    Article  CAS  Google Scholar 

  67. Häckel M, Kador L, Kropp D, Schmidt H-W (2007) Adv Mater 19:227–231

    Article  CAS  Google Scholar 

  68. Shirota Y, Moriwaki K, Yoshikawa S, Ujike T, Nakano H (1998) J Mater Chem 8:2579–2581

    Article  CAS  Google Scholar 

  69. Fuhrmann T, Tsutsui T (1999) Chem Mater 11:2226–2232

    Article  CAS  Google Scholar 

  70. Nakano H, Takahashi T, Kadota T, Shirota Y (2002) Adv Mater 14:1157–1160

    Article  CAS  Google Scholar 

  71. Audorff H, Walker R, Kador L, Schmidt HW (2009) J Phys Chem B 113:3379–3384

    Article  CAS  Google Scholar 

  72. Häckel M, Kador L, Kropp D, Frenz C, Schmidt H-W (2005) Adv Funct Mater 15:1722–1727

    Article  CAS  Google Scholar 

  73. Kogelnik H (1969) Bell Syst Tech J 48:2909–2947

    Google Scholar 

  74. Magnusson R, Gaylord TK (1978) J Opt Soc Am 68:806–809

    Article  Google Scholar 

  75. Natansohn A, Rochon P (2002) Chem Rev 102:4139–4175

    Article  CAS  Google Scholar 

  76. Song OK, Wang CH, Pauley MA (1997) Macromolecules 30:6913–6919

    Article  CAS  Google Scholar 

  77. Boehm N, Materny A, Kiefer W, Steins H, Mueller MM, Schottner G (1996) Macromolecules 29:2599–2604

    Article  CAS  Google Scholar 

  78. Brown D, Natansohn A, Rochon P (1995) Macromolecules 28:6116–6123

    Article  CAS  Google Scholar 

  79. Häckel M, Kador L, Kropp D, Frenz C, Schmidt H-W (2005) Proc SPIE 5939:593908/ 1–593908/10

    Google Scholar 

  80. Häckel M, Kador L, Frenz C, Schmidt H-W (2004) Proc SPIE 5521:63–72

    Article  CAS  Google Scholar 

  81. Carvalho LL, Borges TFC, Cardoso MR, Mendonca CR, Balogh DT (2006) Eur Polym J 42:2589–2595

    Article  CAS  Google Scholar 

  82. Schulz BM, Huber MR, Bieringer T, Krausch G, Zilker SJ (2001) Synth Met 124:155–157

    Article  CAS  Google Scholar 

  83. Yager KG, Tanchak OM, Godbout C, Fritzsche H, Barrett CJ (2006) Macromolecules 39:9311–9319

    Article  CAS  Google Scholar 

  84. Viswanathan NK, Kim DY, Bian S, Williams J, Liu W, Li L, Samuelson L, Kumar J, Tripathy SK (1999) J Mater Chem 9:1941–1955

    Article  CAS  Google Scholar 

  85. Rochon P, Natansohn A, Callender CL, Robitaille L (1997) Appl Phys Lett 71:1008–1010

    Article  CAS  Google Scholar 

  86. Delaire JA, Nakatani K (2000) Chem Rev 100:1817–1845

    Article  CAS  Google Scholar 

  87. Watanabe O, Tsuchimori M, Okada A, Ito H (1997) Appl Phys Lett 71:750–752

    Article  CAS  Google Scholar 

  88. Kato J, Yamaguchi I, Tanaka H (1996) Opt Lett 21:767–769

    Article  CAS  Google Scholar 

  89. Pedersen TG, Johansen PM (1997) Phys Rev Lett 79:2470–2473

    Article  CAS  Google Scholar 

  90. Pedersen TG, Johansen PM, Holme NCR, Ramanujam PS, Hvilsted S (1998) Phys Rev Lett 80:89–92

    Article  CAS  Google Scholar 

  91. Barrett CJ, Natansohn AL, Rochon PL (1996) J Phys Chem 100:8836–8842

    Article  CAS  Google Scholar 

  92. Barrett CJ, Rochon PL, Natansohn AL (1998) J Chem Phys 109:1505–1516

    Article  CAS  Google Scholar 

  93. Yager KG, Barrett CJ (2006) Macromolecules 39:9320–9326

    Article  CAS  Google Scholar 

  94. Henneberg O, Geue T, Saphiannikova M, Pietsch U, Rochon P, Natansohn A (2001) Appl Surf Sci 182:272–279

    Article  CAS  Google Scholar 

  95. Leffin P, Fiorini C, Nunzi J-M (1998) Opt Mater 9:323–328

    Article  Google Scholar 

  96. Viswanathan NK, Balasubramanian S, Li L, Kumar J, Tripathy SK (1998) J Phys Chem B 102:6064–6070

    Article  CAS  Google Scholar 

  97. Percec V, Schlueter D, Kwon YK, Blackwell J, Moeller M, Slangen PJ (1995) Macromolecules 28:8807–8818

    Article  CAS  Google Scholar 

  98. Xiang M, Li X, Ober CK, Char K, Genzer J, Sivaniah E, Kramer EJ, Fischer DA (2000) Macromolecules 33:6106–6119

    Article  CAS  Google Scholar 

  99. Wang J, Mao G, Ober CK, Kramer EJ (1997) Macromolecules 30:1906–1914

    Article  CAS  Google Scholar 

  100. You F, Paik MY, Häckel M, Kador L, Kropp D, Schmidt H-W, Ober CK (2006) Adv Funct Mater 16:1577–1581

    Article  CAS  Google Scholar 

  101. Paik MY, Krishnan S, You F, Li X, Hexemer A, Ando Y, Kang SH, Fischer DA, Kramer EJ, Ober CK (2007) Langmuir 23:5110–5119

    Article  CAS  Google Scholar 

  102. Ando H, Takahashi T, Nakano H, Shirota Y (2003) Chem Lett 32:710–711

    Article  CAS  Google Scholar 

  103. Chun C, Ghim J, Kim M-J, Kim DY (2005) J Polym Sci Polym Chem 43:3525–3532

    Article  CAS  Google Scholar 

  104. Nakano H, Takahashi T, Tanino T, Shirota Y (2007) J Photopolym Sci Technol 20:87–89

    Article  CAS  Google Scholar 

  105. Yang K, Yang S, Kumar J (2006) Phys Rev B 73:165204–1–14

    Article  CAS  Google Scholar 

  106. Lefin P, Fiorini C, Nunzi J-M (1998) Opt Mater 9:323–328

    Article  CAS  Google Scholar 

  107. Kumar J, Li L, Jiang XL, Kim DY, Lee TS, Tripathy S (1998) Appl Phys Lett 72:2096–2098

    Article  CAS  Google Scholar 

  108. Seo E-M, Kim MJ, Shin Y-D, Lee J-S, Kim D-Y (2001) Mol Cryst Liquid Cryst 370:143–146

    Article  CAS  Google Scholar 

  109. Reinke N, Draude A, Fuhrmann T, Franke H, Lessard RA (2004) Appl Phys B 78:205–209

    Article  CAS  Google Scholar 

  110. Sobolewska A, Miniewicz A (2007) J Phys Chem B 111:1536–1544

    Article  CAS  Google Scholar 

  111. Walker R, Audorff H, Kador L, Schmidt HW (2009) Adv Funct Mater 19:2630–2638

    Article  CAS  Google Scholar 

  112. Natansohn A, Rochon P, Gosselin J, Xie S (1992) Macromolecules 25:2268–2273

    Article  CAS  Google Scholar 

  113. Breiner T (2001) Block coplymers with functionalized poly(2-hydroxyethyl methacrylate) segments for optical data storage. PhD Thesis, University of Bayreuth

    Google Scholar 

  114. Kidowaki M, Jujiwara T, Morino S, Ichimura K, Stumpe J (2000) Appl Phys Lett 76:1377–1379

    Article  CAS  Google Scholar 

  115. Kreger K, Loeffler C, Walker R, Wirth N, Bingemann D, Audorff H, Roessler EA, Kador L, Schmidt H-W (2007) Macromol Chem Phys 208:1530–1541

    Article  CAS  Google Scholar 

  116. Kawano K, Ishii T, Minabe J, Niitsu T, Nishikata Y, Baba K (1999) Opt Lett 24:1269–1271

    Article  CAS  Google Scholar 

  117. Chen AG, Brady DJ (1993) Appl Phys Lett 62:2920–2922

    Article  CAS  Google Scholar 

  118. Holme NCR, Ramanujam PS, Hvilsted S (1996) Opt Lett 21:902–904

    Article  CAS  Google Scholar 

  119. Jiang XL, Li L, Kumar J, Kim DY, Tripathy SK (1998) Appl Phys Lett 72:2502–2504

    Article  CAS  Google Scholar 

  120. Lagugné-Labarthet F, Buffeteau T, Sourisseau C (2002) Phys Chem Chem Phys 4:4020–4029

    Article  CAS  Google Scholar 

  121. Jang J-S, Shin D-H (2001) Opt Lett 26:1797–1799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to Dr. Thomas Breiner, Dr. Carsten Frenz, Dr. Michael Häckel, and Dr. Ulrich Theissen for their contributions and their dedicated work during their Ph.D. theses at the University of Bayreuth. Daniela Kropp and Christina Löffler (Makromolekulare Chemie I) are gratefully acknowledged for their invaluable contributions in material synthesis and sample preparation.

HWS wishes to express his special gratitude to Helmut Ringsdorf for inspiring him in 1982 to synthesize and study the first azobenzene side chain liquid-crystalline polymers in his diploma thesis. As this chapter clearly demonstrates, the topic has now broad application potentials and is still fascinating to us.

The authors are grateful to the German Science Foundation for generously providing financial support for this work within the framework of the collaborative research centre SFB 481, project B2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lothar Kador or Hans-Werner Schmidt .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Helmut Ringsdorf on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Audorff, H., Kreger, K., Walker, R., Haarer, D., Kador, L., Schmidt, HW. (2009). Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses. In: Müller, A., Schmidt, HW. (eds) Complex Macromolecular Systems II. Advances in Polymer Science, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_35

Download citation

Publish with us

Policies and ethics