Skip to main content

Nonlinear Rheological Properties of Dense Colloidal Dispersions Close to a Glass Transition Under Steady Shear

  • Chapter
  • First Online:
High Solid Dispersions

Part of the book series: Advances in Polymer Science ((POLYMER,volume 236))

Abstract

The nonlinear rheological properties of dense colloidal suspensions under steady shear are discussed within a first principles approach. It starts from the Smoluchowski equation of interacting Brownian particles in a given shear flow, derives generalized Green–Kubo relations, which contain the transients dynamics formally exactly, and closes the equations using mode coupling approximations. Shear thinning of colloidal fluids and dynamical yielding of colloidal glasses arise from competition between a slowing down of structural relaxation because of particle interactions, and enhanced decorrelation of fluctuations caused by the shear advection of density fluctuations. The integration through transients (ITT) approach takes account of the dynamic competition, translational invariance enters the concept of wavevector advection, and the mode coupling approximation enables one to explore quantitatively the shear-induced suppression of particle caging and the resulting speed-up of the structural relaxation. Extended comparisons with shear stress data in the linear response and in the nonlinear regime measured in model thermo-sensitive core-shell latices are discussed. Additionally, the single particle motion under shear observed by confocal microscopy and in computer simulations is reviewed and analysed theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This effect that flow speeds up the irreversible mixing is one mechanism active when stirring a solution. The non-affine motion even in laminar flow prevents the effect that stirring backwards would reverse the motion of the dissolved constituents.

  2. 2.

    The simplified notation with dimensionless quantities is used in the sections containing formal mainpulations, and in a number of original publications.

  3. 3.

    The MCT shear modulus at short times depends sensitively on the large cut-off k max for hard spheres [57], \(g(t,\dot{\gamma } = 0) = ({n}^{2}{k}_{\mathrm{B}}T/60{\pi }^{2}){ \int \nolimits \nolimits }_{{k}_{\mathrm{min}}}^{{k}_{\mathrm{max}}}\mathrm{d}k\,{k}^{4}{({c\prime}_{k})}^{2}\;{S}_{k}^{2}\,{\Phi }_{k}^{2}(t)\) gives the qualitatively correct [60, 75] short time g { lr}(t → 0) ∼ t − 1 ∕ 2, or high frequency divergence \(G\prime(\omega \gg {D}_{0}/{R}_{\mathrm{H}}^{2}) \sim \sqrt{\omega }\) only for k max.

  4. 4.

    The loss modulus rises again at very low frequencies, which may indicate that the colloidal glass at this density is metastable and may have a finite lifetime (an ultra-slow process is discussed in [32]).

  5. 5.

    An ultra-slow process causing the metastability of glassy states even without shear may have contributed to restore ergodicity in [32, 33].

  6. 6.

    Except for the introduction of the parameter γc, further quantitatively small, but qualitatively irrelevant, differences exist between the ISHSM defined here and used in Sect. 6.1 according to [45], and that originally defined in [43] and shown in Sect. 5.1; see [45] for discussion.

References

  1. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  2. Götze W, Sjögren L (1992) Rep Prog Phys 55:241

    Article  Google Scholar 

  3. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, New York

    Book  Google Scholar 

  4. Laun HM, Bung R, Hess S, Loose W, Hess O, Hahn K, Hädicke E, Hingmann R, Schmidt F, Lindner P (1992) J Rheol 36:743

    Article  CAS  Google Scholar 

  5. Brady JF (1993) J Chem Phys 99:567

    Article  CAS  Google Scholar 

  6. Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Phys Rev Lett 78:2020

    Article  CAS  Google Scholar 

  7. Sollich P (1998) Phys Rev E 58:738

    Article  CAS  Google Scholar 

  8. Fielding S, Sollich P, Cates ME (2000) J Rheol 44:323

    Article  CAS  Google Scholar 

  9. Berthier L, Barrat J-L, Kurchan J (2000) Phys Rev E 61:5464

    Article  CAS  Google Scholar 

  10. Berthier L, Barrat J-L (2002) J Chem Phys 116:6228

    Article  CAS  Google Scholar 

  11. Pusey PN, van Megen W (1987) Phys Rev Lett 59:2083

    Article  CAS  Google Scholar 

  12. Megen W, Pusey PN (1991) Phys Rev A 43:5429

    Article  Google Scholar 

  13. van Megen W, Underwood SM (1993) Phys Rev Lett 70:2766

    Article  Google Scholar 

  14. van Megen W, Underwood SM (1994) Phys Rev E 49:4206

    Article  Google Scholar 

  15. van Megen W, Mortensen TC, Müller J, Williams SR (1998) Phys Rev E 58:6073

    Article  Google Scholar 

  16. Hébraud P, Lequeux F, Munch J, Pine D (1997) Phys Rev Lett 78:4657

    Article  Google Scholar 

  17. Beck C, Härtl W, Hempelmann R (1999) J Chem Phys 111:8209

    Article  CAS  Google Scholar 

  18. Bartsch E, Eckert T, Pies C, Sillescu H (2002) J Non-Cryst Solids 802:307

    Google Scholar 

  19. Eckert T, Bartsch E (2003) Faraday Discuss 123:51

    Article  CAS  Google Scholar 

  20. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Science 287:627

    Article  CAS  Google Scholar 

  21. Mason TG, Weitz DA (1995) Phys Rev Lett 75:2770

    Article  CAS  Google Scholar 

  22. Zackrisson M, Stradner A, Schurtenberger P, Bergenholtz J (2006) Phys Rev E 73:011408

    Article  Google Scholar 

  23. Senff H, Richtering W (1999) J Chem Phys 111:1705

    Article  CAS  Google Scholar 

  24. Senff H, Richtering W, Norhausen Ch, Weiss A, Ballauff M (1999) Langmuir 15:102

    Article  CAS  Google Scholar 

  25. Petekidis G, Vlassopoulos D, Pusey P (1999) Faraday Discuss 123:287

    Article  Google Scholar 

  26. Petekidis G, Vlassopoulos D, Pusey PN (2004) J Phys Condens Matter 16:S3955

    Article  CAS  Google Scholar 

  27. Petekidis G, Moussaid A, Pusey PN (2002) Phys Rev E 66:051402;

    Article  CAS  Google Scholar 

  28. Petekidis G, Vlassopoulos D, Pusey PN (2003) Faraday Discuss 123:287

    Article  CAS  Google Scholar 

  29. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2006) Europhys Lett 75:624

    Article  CAS  Google Scholar 

  30. Besseling R, Weeks ER, Schofield AB, Poon WC (2007) Phys Rev Lett 99:028301

    Article  CAS  Google Scholar 

  31. Crassous JJ, Siebenbürger M, Ballauf M, Drechsler M, Henrich O, Fuchs M (2006) J Chem Phys 125:204906

    Article  CAS  Google Scholar 

  32. Crassous JJ, Siebenbürger M, Ballauf M, Drechsler M, Hajnal D, Henrich O, Fuchs M (2008) J Chem Phys 128:204902

    Article  CAS  Google Scholar 

  33. Siebenbürger M, Fuchs M, Winter H, Ballauff M (2009) Viscoelasticity and shear flow of concentrated, non-crystallizing colloidal suspensions: Comparison with Mode-Coupling Theory. J Rheol 53:707–726

    Article  Google Scholar 

  34. Phung T, Brady J, Bossis G (1996) J Fluid Mech 313:181

    Article  CAS  Google Scholar 

  35. Strating P (1999) Phys Rev E 59:2175

    Article  CAS  Google Scholar 

  36. Doliwa B, Heuer A (2000) Phys Rev E 61:6898

    Article  CAS  Google Scholar 

  37. Purnomo EH, van den Ende D, Mellema J, Mugele F (2006) Europhys Lett 76:74

    Article  CAS  Google Scholar 

  38. Götze W (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition. Session LI of Les Houches summer schools of theoretical physics, North-Holland, Amsterdam, 287, 1989

    Google Scholar 

  39. Götze W (1999) J Phys Condens Matter 11:A1

    Article  Google Scholar 

  40. Miyazaki K, Reichman DR (2002) Phys Rev E 66:050501

    Article  Google Scholar 

  41. Miyazaki K, Reichman DR, Yamamoto R (2004) Phys Rev E 70:011501

    Article  Google Scholar 

  42. Kobelev V, Schweizer KS (2005) Phys Rev E 71:021401

    Article  Google Scholar 

  43. Fuchs M, Cates ME (2002) Phys Rev Lett 89:248304

    Article  Google Scholar 

  44. Fuchs M, Cates ME (2005) J Phys Condens Matter 17:S1681

    Article  CAS  Google Scholar 

  45. Fuchs M, Cates ME (2009) A mode coupling theory for Brownian particles in homogeneous steady shear flow. J Rheol 53:957–1000

    Article  CAS  Google Scholar 

  46. Dhont JKG (1996) An introduction to dynamics of colloids. Elsevier, Amsterdam

    Google Scholar 

  47. Risken H (1989) The Fokker–Planck equation. Springer, Berlin

    Book  Google Scholar 

  48. Dhont JKG, Briels W (2008) J Rheol Acta 47:257–281

    Article  CAS  Google Scholar 

  49. Bender J, Wagner NJ (1996) J Rheol 40:899

    Article  CAS  Google Scholar 

  50. Varnik F, Bocquet L, Barrat JL (2004) J Chem Phys 120:2788

    Article  CAS  Google Scholar 

  51. Ganapathy R, Sood AK (2006) Phys Rev Lett 96:108301

    Article  Google Scholar 

  52. Ballesta P, Besseling R, Isa L, Petekidis G, Poon WCK (2008) Phys Rev Lett 101:258301

    Article  CAS  Google Scholar 

  53. Van Kampen NG (2007) Stochastic processes in physics and chemistry. North Holland, Amsterdam

    Google Scholar 

  54. Forster D (1975) Hydrodynamic fluctuations, broken symmetry, and correlation functions. WA Benjamin, Reading, MA

    Google Scholar 

  55. Götze W, Sjögren L (1987) Z Phys B 65:415

    Article  Google Scholar 

  56. Schofield J, Oppenheim I (1992) Physica A 187:210

    Article  CAS  Google Scholar 

  57. Nägele G, Bergenholtz J (1998) J Chem Phys 108:9893

    Article  Google Scholar 

  58. Miyazaki K, Wyss HM, Reichman DR, Weitz DA (2006) Europhys Lett 75:915

    Article  CAS  Google Scholar 

  59. Brader JM, Voigtmann Th, Cates ME, Fuchs M (2007) Phys Rev Lett 98:058301

    Article  CAS  Google Scholar 

  60. Lionberger RA, Russel WB (1994) J Rheol 38:1885

    Article  CAS  Google Scholar 

  61. Onuki A, Kawasaki K (1979) Ann Phys (NY) 121:456

    Article  CAS  Google Scholar 

  62. Kawasaki K, Gunton JD (1973) Phys Rev A 8:2048

    Article  CAS  Google Scholar 

  63. Indrani AV, Ramaswamy S (1995) Phys Rev E 52:6492

    Article  CAS  Google Scholar 

  64. Bergenholtz J, Fuchs M (1999) Phys Rev E 59:5706

    Article  CAS  Google Scholar 

  65. Dawson K, Foffi G, Fuchs M, Gotze W, Sciortino F, Sperl M, Tartaglia P, Voigtmann T, Zaccarelli E (2001) Phys Rev E 63:011401

    Article  CAS  Google Scholar 

  66. Fabbian L, Götze W, Sciortino F, Tartaglia P, Thiery F (1999) Phys Rev E 59:R1347–R1350

    Article  CAS  Google Scholar 

  67. Sciortino F (2009) Nonlinear rheological properties of dense colloidal dispersions close to a glass transition under steady shear. Adv Polymer Sci. doi:10.1007/12_2009_30

    Google Scholar 

  68. Sciortino F (2003) Nat Mater 1:145–146

    Article  Google Scholar 

  69. Pham KN, Puertas AM, Bergenholtz J, Egelhaaf SU, Moussaid A, Pusey PN, Schofield AB, Cates ME, Fuchs M, Poon WCK (2002) Science 296:104–106

    Article  CAS  Google Scholar 

  70. Poon WCK, Pham KN, Egelhaaf SU, Pusey PN (2003) J Phys Cond Matt 15:S269–S275

    Article  CAS  Google Scholar 

  71. Fuchs M, Ballauff M (2005) Colloids Surf A 270/271:232

    Google Scholar 

  72. Franosch T, Fuchs M, Götze W, Mayr MR, Singh AP (1997) Phys Rev E 55:7153

    Article  CAS  Google Scholar 

  73. Fuchs M, Mayr MR (1999) Phys Rev E 60:5742

    Article  CAS  Google Scholar 

  74. Franosch T, Götze W, Mayr MR, Singh AP (1998) J Non-Cryst Solids 235/237:71

    Google Scholar 

  75. Verberg R, de Schepper IM, Feigenbaum MJ, Cohen EGD (1997) J Stat Phys 87:1037

    Article  Google Scholar 

  76. Henrich O, Pfeifroth O, Fuchs M (2007) J Phys Condens Matter 19:205132

    Article  Google Scholar 

  77. Szamel G (2001) J Chem Phys 114:8708

    Article  CAS  Google Scholar 

  78. Johnson SJ, de Kruif CG, May RP (1988) J Chem Phys 89:5909

    Article  CAS  Google Scholar 

  79. Lionberger RA, Russel WB (2000) Adv Chem Phys 111:399

    Article  CAS  Google Scholar 

  80. Fuchs M, Cates ME (2003) Faraday Discuss 123:267

    Article  CAS  Google Scholar 

  81. Varnik F, Henrich O (2006) Phys Rev B 73:174209

    Article  Google Scholar 

  82. Fuchs M, Götze W, Hofacker I, Latz A (1991) J Phys Condens Matter 3:5047–5071

    Article  Google Scholar 

  83. Zausch J, Horbach J, Laurati M, Egelhaaf SU, Brader JM, Voigtmann Th, Fuchs M (2008) J Phys Condens Matt 20:404210

    Article  Google Scholar 

  84. Angelani L, Leonardo RD, Ruocco G, Scala A, Sciortino F (2000) Phys Rev Lett 85:5356

    Article  CAS  Google Scholar 

  85. Broderix K, Bhattachrya KK, Cavagna A, Zippelius Z (2000) Phys Rev Lett 85:5360

    Article  CAS  Google Scholar 

  86. Hajnal D, Fuchs M (2009) Eur Phys J E, in print. doi:10.1140/epje/i2008-10361-0; also at arXiv:0807.1288

    Google Scholar 

  87. Götze W (1984) Z Phys B 56:139

    Article  Google Scholar 

  88. Fuchs M, Götze W, Hildebrand S, Latz A (1992) J Phys Condens Matter 4:7709

    Article  Google Scholar 

  89. Saltzman EJ, Yatsenko G, Schweizer KS (2008) J Phys Condens Matter 20:244129

    Article  Google Scholar 

  90. Pusey PN (1978) J Phys A 11:119

    Article  CAS  Google Scholar 

  91. Varnik F (2006) J Chem Phys 125:164514

    Article  CAS  Google Scholar 

  92. Henrich O, Varnik F, Fuchs M (2005) J Phys Condens Matter 17:S3625

    Article  CAS  Google Scholar 

  93. Götze W, Voigtmann Th (2003) Phys Rev E 67:021502

    Article  Google Scholar 

  94. Foffi G, Götze W, Sciortino F, Tartaglia P, Voigtmann Th (2003) Phys Rev Lett 91:085701

    Article  CAS  Google Scholar 

  95. Kob W, Andersen HC (1995) Phys Rev E 51:4626; 52:4134

    Google Scholar 

  96. Gleim T, Kob W, Binder K (1998) Phys Rev Lett 81:4404

    Article  CAS  Google Scholar 

  97. Flenner E, Szamel G (2005) Phys Rev E 72:011205

    Article  Google Scholar 

  98. Brader JM, Cates ME, Fuchs M (2008) Phys Rev Lett 101:138301

    Article  CAS  Google Scholar 

Download references

Acknowledgment

It is a great pleasure to thank all my colleagues for the enjoyable and fruitful collaboration on this topic. I especially thank Mike Cates for introducing me to rheology, and Matthias Ballauff for his inspiring studies. Kind hospitality in the group of John Brady, where part of this review was written, is gratefully acknowledged. Financial support is acknowledged by the Deutsche Forschungsgemeinschaft in SFB-TR6, SFB 513, IRTG 667, and via grant Fu 309/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Fuchs, M. (2009). Nonlinear Rheological Properties of Dense Colloidal Dispersions Close to a Glass Transition Under Steady Shear. In: Cloitre, M. (eds) High Solid Dispersions. Advances in Polymer Science, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_30

Download citation

Publish with us

Policies and ethics