Skip to main content

Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 231))

Abstract

Currently held mean-field theories for microphase-separation in AB-type diblock and ABA-type triblock copolymers are reviewed and their limitations are highlighted. Numerical predictions, based on these theories, for the design of such block copolymers are also presented. It is emphasized that the use of a numerical algorithm leading to successful design and synthesis of block copolymers in terms of order–disorder transition temperature (T ODT) is critically dependent upon the accuracy of the temperature-dependent interaction parameter. Specifically, the available temperature-dependent interaction parameters are often obtained using the molecular weights which are much lower than the molecular weights of the constituent blocks, in spite of the fact that the interaction parameters are molecular weight dependent. Two as yet unresolved issues, finite molecular weight effect and the phase behavior and phase transitions in highly asymmetric block copolymers, are discussed. These issues are fundamental enough to require a fresh look, particularly from a theoretical point of view, because the currently held mean-field theory cannot explain every conceivable phase behavior and phase transitions experimentally observed in block copolymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Szwarc M (1956) Living polymers. Nature 178:1168–1169

    CAS  Google Scholar 

  2. Szwarc M (1968) Carbanions, living polymers and electron transfer process. Interscience, New York

    Google Scholar 

  3. Kawai H, Soen T, Inoue T, Ono T, Uchida T (1972) Domain formation mechanisms of block and graft copolymers from solution. Prog Polym Sci Jpn 4:145–221, Kodansha, Tokyo

    Google Scholar 

  4. Sadron C, Gallot B (1973) Heterophases in block-copolymer/solvent systems in the liquid and in the solid state. Macromol Chem 164:301–332

    CAS  Google Scholar 

  5. Hashimoto T, Shibayama M, Fujimura M, Kawai H (1983) Microphase separation and the polymer-polymer interphase in block copolymers. In: Meier DJ (ed) Block copolymers science and technology. MMI Press, Symp Series, vol 3. Harwood Academic, New York, pp 63–108

    Google Scholar 

  6. Hajduk DA, Harper PE, Gruner SM, Honeker CC, Kim G, Thomas EL, Fetters LJ (1994) The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27:4063–4073

    CAS  Google Scholar 

  7. Helfand E (1975) Block copolymer theory. III. Statistical mechanics of the microdomain structure. Macromolecules 8:552–556

    Google Scholar 

  8. Helfand E, Wasserman ZR (1976) Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 9:879–889

    CAS  Google Scholar 

  9. Helfand E, Wasserman ZR (1977) Statistical thermodynamics of microdomain structures in block copolymer systems. Polym Eng Sci 17:582–586

    CAS  Google Scholar 

  10. Helfand, E, Wasserman ZR (1978) Block copolymer theory. 5. Spherical microdomains. Macromolecules 11:960–966

    CAS  Google Scholar 

  11. Helfand E, Wasserman ZR (1980) Block copolymer theory. 6. Cylindrical microdomains. Macromolecules 13:994–998

    CAS  Google Scholar 

  12. Helfand E, Wasserman ZR (1982) Microdomain structure and the interface in block copolymers. In: Goodman I (ed) Developments in block copolymers–1. Applied Science, New York, Chap 4

    Google Scholar 

  13. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617

    CAS  Google Scholar 

  14. Matsen MW, Schick M (1994) Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 72:2660–2663

    CAS  Google Scholar 

  15. Hasegawa H, Sakamoto N, Takeno H, Jinnai H, Hashimoto T, Schwahn D, Frielinghaus H, Janssen S, Imai M, Mortensen K (1999) Small-angle neutron scattering studies on phase behavior of block copolymers. Phys Chem Solids 60:1307–1312

    CAS  Google Scholar 

  16. Karis TE, Russell TP, Gallot Y, Mayes AM (1995) Rheology of the lower critical ordering transition. Macromolecules 28:1129–1134

    CAS  Google Scholar 

  17. Pollard M, Russell TP, Ruzette AVG, Mayes AM, Gallot Y (1998) The effect of hydrostatic pressure on the lower critical ordering transition in diblock copolymers. Macromolecules 31:6493–6498

    CAS  Google Scholar 

  18. Russell TP, Karis TE, Gallot Y, Mayes AM (1994) A lower critical ordering transition in a diblock copolymer melt. Nature 368:729–731

    CAS  Google Scholar 

  19. Ruzette AVG, Benerjee P, Mayes AM, Pollard M, Russell TP, Jerome R, Slawecki T, Hjelm R, Thiyagarajan P (1988) Phase behavior of diblock copolymers between styrene and n-alkyl methacrylate. Macromolecules 31:8509–8516

    Google Scholar 

  20. Ryu DY, Jeong U, Lee DH, Kim J, Youn HS, Kim JK (2003) Phase behavior of deuterated polystyrene-block-poly(n-penyl methacrylate) copolymers. Macromolecules 36:2894–2902

    CAS  Google Scholar 

  21. Weidisch R, Stamm M, Schubert DW, Arnold M, Budde H, Horring S (1999) Correlation between phase behavior and tensile properties of diblock copolymers. Macromolecules 32:3405–3411

    CAS  Google Scholar 

  22. Weidisch R, Schreyeck G, Ensslen M, Michler GM, Stamm M, Schubert DW, Budde H, Horing S, Jerome R (2000) Deformation behavior of weakly segregated block copolymers. 2. Correlation between phase behavior and deformation mechanisms of diblock copolymers. Macromolecules 33:5495–5504

    CAS  Google Scholar 

  23. Kawasaki K, Ohta T, Kohrogui M (1988) Equilibrium morphology of block copolymer melts. 2. Macromolecules 21:2972–2980

    CAS  Google Scholar 

  24. Mayes AM, Olvera de la Cruz M (1989) Microphase separation in multiblock copolymer melt. J Chem Phys 91:7228–7235

    CAS  Google Scholar 

  25. Ohta T, Kawasaki K (1986) Equilibrium morphology of block copolymer melts. Macromolecules 19:2621–2632

    CAS  Google Scholar 

  26. Vavasour JD, Whitmore MD (1992) Self-consistent mean field theory of the microphases of diblock copolymers. Macromolecules 25:5477–5486

    CAS  Google Scholar 

  27. Vavasour JD, Whitmore MD (1993) Self-consistent field theory of block copolymers with conformational asymmetry. Macromolecules 26:7070–7076

    CAS  Google Scholar 

  28. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    CAS  Google Scholar 

  29. Hashimoto T (1996) Order–disorder transition in block copolymers. In: Holden G, Legge NR, Quirk R, Schroeder HE (eds) Thermoplastic elastomers, 2nd edn. Hanser, Munich, Chap 15A

    Google Scholar 

  30. Hamley IW (1998) The physics of block copolymers. Oxford University Press, Oxford

    Google Scholar 

  31. Han CD (2007) Rheology and processing of polymeric materials. Vol 1. Polymer rheology. Oxford University Press, Oxford, Chap 8

    Google Scholar 

  32. Han CD (2007) Rheology and processing of polymeric materials. Vol 2 Polymer processing. Oxford University Press, Oxford, Chap 4

    Google Scholar 

  33. Fredrickson GH, Helfand E (1987) Fluctuation effects in the theory of microphase separation in block copolymers. J Chem Phys 87:697–706

    CAS  Google Scholar 

  34. Meier DJ (1987) Theoretical aspects of block copolymers. In: Legge NR Holden G Schroeder HE (eds) Thermoplastic elastomers Hanser Munich, Chap 11

    Google Scholar 

  35. Helfand E, Tagami Y (1972) Theory of the interface between immiscible polymers. II. J Chem Phys 56:3592–3601

    CAS  Google Scholar 

  36. Helfand E, Sapse AM (1975) Theory of unsymmetric polymer-polymer interfaces. J Chem Phys 62:1327–1311

    CAS  Google Scholar 

  37. Meier DJ (1969) Theory of block copolymers. I. Domain formation in A–B block copolymers. J Polym Sci Part C 26:81–98

    Google Scholar 

  38. Hashimoto T, Shibayama M, Kawai H (1983) Ordered structure in block copolymer solutions. 4. Scaling rules on size of fluctuations with block molecular weight, concentration, and temperature in segregation and homogeneous regimes. Macromolecules 16:1093–1101

    CAS  Google Scholar 

  39. Han CD, Baek DM, Kim JK (1990) Effect of microdomain structure on the order–disorder transition temperature of polystyrene-block-polyisoprene-block polystyrene copolymers Macromolecules 23:561–570

    Google Scholar 

  40. Richardson MJ, Savill NG (1977) Volumetric properties of polystyrene: influence of temperature, molecular weight and thermal treatment. Polymer 18:3–9

    CAS  Google Scholar 

  41. Han CD, Kim J, Kim JK (1989) Determination of order–disorder transition temperature of block copolymers. Macromolecules 22:383–394

    CAS  Google Scholar 

  42. Mori K, Hasegawa H, Hashimoto T (1985) Small-angle scattering from bulk block copolymers in disordered state. Estimation of χ-values from accidental thermal fluctuations. Polym J 17:799–806

    CAS  Google Scholar 

  43. De Gennes PG (1979) Scaling concepts in polymer physics Cornell University Press, Ithaca

    Google Scholar 

  44. Benoit H, Wu W, Benmouna M, Mozer B, Bauer B, Lapp A (1985) Elastic coherent scattering from multicomponent systems: applications to homopolymer mixtures and copolymers. Macromolecules 18:986–993

    CAS  Google Scholar 

  45. Kim JK (1995) Compatibilization effect of a block copolymer in two random copolymer blends. Polymer 36:1243–1252

    CAS  Google Scholar 

  46. Kim JK, Kimishima K, Hashimoto T (1993) Random-phase approximation calculation of the scattering function for multicomponent polymer systems. Macromolecules 26:125–136

    CAS  Google Scholar 

  47. Mayes AM, Olvera de la Cruz M (1991) Equilibrium domain spacing in weakly segregated block copolymers. Macromolecules 24:3975–3976

    CAS  Google Scholar 

  48. Mori K, Tanaka H, Hashimoto T (1987) Scattering function for disordered two-component polymer systems including block copolymers. Macromolecules 20:381–393

    CAS  Google Scholar 

  49. Morozov AN, Fraaije JGEM (2001) Phase behavior of ring diblock copolymer melt in equilibrium and under shear. Macromolecules 34:1526–1628

    CAS  Google Scholar 

  50. Olvera de la Cruz M, Sanchez IC (1986) Theory of multiphase separation in graft and star copolymers. Macromolecules 19:2501–2508

    CAS  Google Scholar 

  51. Vilgis T, Benmouna M, Benoit H (1991) Static scattering from multicomponent polymer systems: theoretical models. Macromolecules 24:4481–4488

    CAS  Google Scholar 

  52. Barrat JL, Fredrickson GH (1991) Collective and single-chain correlations near the block copolymer order–disorder transition. J Chem Phys 95:1281–1289

    CAS  Google Scholar 

  53. Almdal K, Koppi KA, Bates FS, Mortensen K (1992) Multiple ordered phases in a block copolymer melt. Macromolecules 25:1743–1751

    CAS  Google Scholar 

  54. Hajduk DA, Gruner SM, Rangarajan P, Register RA, Fetters LJ, Honeker C, Albalak RJ, Thomas EL (1994) Observation of a reversible thermotropic order–order transition in a diblock copolymer. Macromolecules 27:490–501

    CAS  Google Scholar 

  55. Hamley IW, Koppi KA, Rosedale JH, Bates FS, Almdal K, Mortensen K (1993) Hexagonal mesophases between lamellae and cylinders in a diblock copolymer melt. Macromolecules 26:5959–5970

    CAS  Google Scholar 

  56. Kim JK, Lee HH, Ree M, Lee KB, Park Y (1998) Ordering kinetics of cylindrical and spherical microdomains in an SIS block copolymer by synchrotron SAXS and rheology. Macromol Chem Phys 199:641–653

    CAS  Google Scholar 

  57. Kim JK, Lee HH, Gu Q, Chang T, Jeong YH (1998) Determination of order–order and order–disorder transition temperatures of SIS block copolymers by differential scanning calorimetry and rheology. Macromolecules 31:4045–4048

    CAS  Google Scholar 

  58. Kimishima K, Koga T, Hashimoto T (2000) Order-order phase transition between spherical and cylindrical microdomain structures of block copolymer. 1. Mechanism of the transition. Macromolecules 33:968–977

    CAS  Google Scholar 

  59. Lee HH, Jeong WY, Kim JK, Ihn KJ, Kornfield JA, Wang ZG, Qi S (2002) Orientational proliferation and successive twining from thermoreversible hexagonal-body-centered cubic transition. Macromolecules 34:785–794

    Google Scholar 

  60. Ryu CY, Lodge TP (1999) Thermodynamic stability and anisotropic fluctuations in the cylinder–sphere transition of a block copolymer. Macromolecules 32:7190–7201

    CAS  Google Scholar 

  61. Ryu CY, Vigild ME, Lodge TP (1998) Fluctuation with cubic symmetry in a hexagonal copolymer microstructure. Phys Rev Lett 81:5354–5357

    CAS  Google Scholar 

  62. Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY (1997) Order–order, order–disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:1621–1632

    CAS  Google Scholar 

  63. Sakurai S, Kawada H, Hashimoto T, Fetters LJ (1993) Thermoreversible morphology transition between spherical and cylindrical microdomains of block copolymers. Macromolecules 26:5796–5802

    CAS  Google Scholar 

  64. Brazovskii SA (1975) Phase transition of an isotropic system to a nonuniform state. Sov Phys (JETP) 41:85–89

    Google Scholar 

  65. Burger C, Ruland W, Semenov AN (1990) Polydispersity effects on the microphase-separation transition in block copolymers. Macromolecules 23:3339–3346 16:545–553

    Google Scholar 

  66. Han CD, Baek DM, Kim J, Kimishima K, Hashimoto T (1992) Viscoelastic behavior, phase equilibria, and microdomain morphology in mixtures of a block copolymer and a homopolymer. Macromolecules 25:3052–3067

    CAS  Google Scholar 

  67. Han CD, Baek DM, Kim JK, Ogawa T, Sakamoto N, Hashimoto T (1995) Effect of volume fraction on the order–disorder transition in low molecular weight polystyrene-block- polyisoprene copolymers. 1. Order–disorder transition temperature determined by rheological measurements. Macromolecules 28:5043–5062

    CAS  Google Scholar 

  68. Floudas G, Vlassopoulos D, Pitsikalis M, Hadjichristidis N, Stamm M (1996) Order–disorder transition and ordering kinetics in binary diblock copolymer mixtures of styrene and isoprene. J Chem Phys 104:2083–2088

    CAS  Google Scholar 

  69. Lin CC, Jonnalagadda SV, Kesani PK, Dai HJ, Balsara NP (1994) Effect of molecular structure on the thermodynamics of block copolymer melts. Macromolecules 27:7769–7780

    CAS  Google Scholar 

  70. Mai SM, Fairclough PA, Terrill NJ, Turner SC, Hamley IW, Matsen MW, Ryan AJ, Booth C (1998) Microphase-separation in poly(oxyethylene)-poly(oxybuthylene) diblock copolymers. Macromolecules 31:8110–8116

    CAS  Google Scholar 

  71. Mai SM, Mingvanish W, Turner SC, Chaibundit C, Fairclough PA, Heatley F, Matsen MW, Ryan AJ, Booth C (2000) Microphase-separation behavior of triblock copolymer melts: comparison with diblock copolymer melts. Macromolecules 33:5124–5130

    CAS  Google Scholar 

  72. Rosedale JH, Bates SF, Almdal K, Mortensen K, Wignall GD (1995) Order and disorder in symmetric diblock copolymer melts. Macromolecules 28:1429–1443

    Google Scholar 

  73. Schulz MF, Khandpur AK, Bates FS, Almdal K, Mortensen K, Hajduk DA, Grune SM (1996) Phase behavior of polystyrene–poly(2-vinylpyridine) diblock copolymers. Macromolecules 29:2857–2867

    CAS  Google Scholar 

  74. Hong KM Noolandi J (1981) Theory of inhomogeneous multicomponent polymer systems. Macromolecules 14:727–736

    Google Scholar 

  75. Hong KM, Noolandi H (1983) Theory of phase equilibria in systems containing block copolymers. Macromolecules 16:1083–1093

    CAS  Google Scholar 

  76. Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091–1098

    CAS  Google Scholar 

  77. Sakurai S, Irie H, Umeda H, Nomura S, Lee HH, Kim JK (1998) Gyroid structures and morphological control in binary blends of polystyrene-block-polyisoprene diblock copolymers. Macromolecules 31:336–343

    CAS  Google Scholar 

  78. Sakurai S, Umeda H, Furukawa C, Irie H, Nomura S, Lee HH, Kim JK (1998) Thermally induced morphological transition from lamella to gyroid in a binary blend of diblock copolymers. J Chem Phys 108:4333–4339

    CAS  Google Scholar 

  79. Cochran EW, Garcia-Cervera CJ, Fredrickson GH (2006) Stability of the gyroid phase in diblock copolymers at strong segregation. Macromolecules 39:2449–2451

    CAS  Google Scholar 

  80. Hashimoto T, Tsukahara Y, Kawai H (1980) Analysis of segmental interdiffusion in phase-separated block copolymers and polymer blends by small-angle X-ray scattering. J Polym Sci Polym Lett Ed 18:585–592

    CAS  Google Scholar 

  81. Hashimoto T, Shibayama M, Kawai H (1980) Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. 4. Molecular-weight dependence of lamellar microdomains. Macromolecules 13:1237–1247

    CAS  Google Scholar 

  82. Hashimoto T, Shibayama M, Kawai H, Watanabe H, Kotaka T (1983) Ordered structure in block polymer solutions. 2. Its effect on rheological behavior. Macromolecules 16:361–371

    CAS  Google Scholar 

  83. Hashimoto T, Kowsaka K, Shibayama M, Kawai H (1986) Time-resolved small-angle X-ray scattering studies on the kinetics of the order-disorder transition of block polymers. 2. Concentration and temperature dependence. Macromolecules 19:754–762

    CAS  Google Scholar 

  84. Hashimoto T, Ijichi Y, Fetters LJ (1988) Order-disorder transition of starblock copolymers. J Chem Phys 89:2463–2472

    CAS  Google Scholar 

  85. Roe RJ, Fishkis M, Chang JC (1981) Small-angle X-ray diffraction study of thermal treatment in styrene-butadiene block copolymers. Macromolecules 14:1091–1103

    CAS  Google Scholar 

  86. Shibayama M, Hashimoto T, Kawai H (1983) Ordered structure in block copolymer solutions. 1. Selective solvents. Macromolecules 16:16–28

    CAS  Google Scholar 

  87. Shibayama M, Hashimoto T, Kawai H (1983) Ordered structure in block copolymer solutions. 5. Equilibrium and nonequilibrium aspects of microdomain formation. Macromolecules 16:1434–1443

    CAS  Google Scholar 

  88. Zin WC, Roe RJ (1984) Phase equilibria and transitions in mixtures of a homopolymer and a block copolymer. 1. Small-angle X-ray scattering study. Macromolecules 17:183–188

    CAS  Google Scholar 

  89. Bates FS, Hartney MA (1985) Block copolymers near the microphase-separation transition. 3. Small-angle neutron scattering study of the homogeneous melt state. Macromolecules 18:2478–2486

    CAS  Google Scholar 

  90. Roe RJ (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, New York

    Google Scholar 

  91. Hashimoto T, Todo A, Itoi H, Kawai H (1977) Domain-boundary structure of styrene-isoprene block copolymer films cast from solutions. 2. Quantitative estimation of the interfacial thickness of lamellar microphase systems. Macromolecules 10:377–384

    CAS  Google Scholar 

  92. Tanaka H, Hasegawa H, Hashimoto T (1991) Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules 24:240–251

    CAS  Google Scholar 

  93. Ijichi Y, Hashimoto T, Fetters LJ (1989) Order–disorder transition of star block copolymers. 2. Effect of arm number. Macromolecules 22:2817–2824

    CAS  Google Scholar 

  94. Ogawa T, Sakamoto N, Hashimoto T, Han CD, Baek DM (1996) Effect of volume fraction on the order–disorder transition in low molecular weight polystyrene–block–polyisoprene copolymers. 2. Order–disorder transition temperature determined by small-angle X-ray scattering. Macromolecules 29:2113–2123

    CAS  Google Scholar 

  95. Russell TP, Hjelm RP, Seeger P (1990) Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate). Macromolecules 23:890–893

    CAS  Google Scholar 

  96. Sakamoto N, Hashimoto T (1995) Order-disorder transition of low molecular weight polystyrene-block-polyisoprene. 1. SAXS analysis of two characteristic temperature. Macromolecules 28:6825–6834

    CAS  Google Scholar 

  97. Sakurai S, Mori K, Okawara A, Kimishima K, Hashimoto T (1992) Evaluation of segmental interaction by small-angle X-ray scattering based on the random-phase approximation for asymmetric, polydisperse triblock copolymers. Macromolecules 25:2679–2691

    CAS  Google Scholar 

  98. Zha W, Han CD, Le DH, Han SH, Kim JK, Kang JH, Park C (2007) Origin of the difference in order–disorder transition temperature between polystyrene-block-poly(2-vinylpyridine) and polystyrene-block-poly(4-vinylpyridine) copolymers Macromolecules 40:2109–2119

    Google Scholar 

  99. Bodycomb J, Yamaguchi D, Hashimoto T (1996) Observation of a discontinuity in the value of Im − 1 at the order–disorder transition in diblock copolymer/homopolymer and diblock copolymer/diblock copolymer blends. Polym J 28:821–824

    CAS  Google Scholar 

  100. Koga K, Koga K, Hashimoto T (1999) Ultra-small-angle X-ray scattering studies on order- disorder transition in diblock copolymers. J Chem Phy 110:11076–11086

    CAS  Google Scholar 

  101. Sakamoto N, Hashimoto T (1998) Ordering dynamics of cylindrical and spherical microdomains in polystyrene-block-polyisoprene-block-polystyrene. 1. SAXS and TEM observations for the grain formation. Macromolecules 31:8493–8502

    CAS  Google Scholar 

  102. Stühn B (1992) The relation between the microphase-separation transition and the glass transition in diblock copolymers. J Polym Sci Polym Phys Ed 30:1013–1019

    Google Scholar 

  103. Ehlich D, Takenaka M, Hashimoto T (1993) Forced Rayleigh scattering study of diffusion of block copolymers. 2. Self-diffusion of block copolymer chains in lamellar microdomains and disordered melts. Macromolecules 26:492–498

    CAS  Google Scholar 

  104. Adams JL, Graessley WW, Register RA (1994) Rheology and the microphase-separation transition in styrene-isoprene block copolymers. Macromolecules 27:6026–6032

    CAS  Google Scholar 

  105. Balsara NP, Garetz BA, Chang MY, Dau HJ, Newstein MC, Goveas JL, Krishnamoorti R, Rai S (1998) Identification of the molecular parameters that govern ordering kinetics in a block copolymer melt. Macromolecules 31:5309–5315

    CAS  Google Scholar 

  106. Bates FS (1984) Block copolymers near the microphase-separation transition. 2. Linear dynamic mechanical properties. Macromolecules 17:2607–2613

    CAS  Google Scholar 

  107. Bates FS, Rosedale JH, Fredrickson GH (1990) Fluctuation effects in a symmetric diblock copolymer near the order-disorder transition. J Chem Phys 92:6255–6270

    CAS  Google Scholar 

  108. Chung CI, Lin MI (1978) Butadiene-styrene block copolymer. J Polym Sci Polym Phys Ed 16:545–553

    CAS  Google Scholar 

  109. Floudas G, Hadjichristidis N, Iatrou H, Pakula T, Fischer EW (1994) Microphase-separation in model 3-miktoarm star copolymers (simple graft) and terpolymers. 1. Statics and kinetics. Macromolecules 27:7735–7746

    CAS  Google Scholar 

  110. Floudas G, Pispas S, Hadjichristidis N, Pakula T, Erukhimovich I (1996) Microphase-separation in star block copolymers of styrene and isoprene. Theory, experiment, and simulation. Macromolecules 29:4142–4154

    CAS  Google Scholar 

  111. Futamura S, Meinecke E (1977) Effect of center block structure on the physical and rheological properties of ABA block copolymers. Part II. Rheological properties. Polym Eng Sci 17:563–569

    Google Scholar 

  112. Gehlsen MD, Bates FS (1993) Heterogeneous catalytic hydrogenation of polystyrene: thermodynamics of poly(vinylcyclohexane) containing diblock copolymers. Macromolecules 26:4122–4127

    CAS  Google Scholar 

  113. Gouinlock EV, Porter RS (1997) Linear dynamic mechanical properties of an SBS block copolymer. Polym Eng Sci 17:535–543

    Google Scholar 

  114. Modi MA, Krishnamoorti R, Tse MF, Wang HC (1999) Viscoelastic characterization of an order-order transition in a mixture of di- and triblock copolymers. Macromolecules 32: 4088–4097

    CAS  Google Scholar 

  115. Morrison FA, Winter HH, Gronski W, Barnes J (1990) Effects of unidirectional shear on the structure of triblock copolymers. 2. Polystyrene-polyisoprene-polystyrene. Macromolecules 23:4200–4205

    CAS  Google Scholar 

  116. Patel SS, Larson RG, Winey KI, Watanabe H (1995) Shear orientation and rheology of a lamellar polystyrene-polyisoprene block copolymer. Macromolecules 28:4313–4318

    CAS  Google Scholar 

  117. Phatak A, Macosko CW, Bates FS, Hahn SF (2005) Extrusion of triblock and pentablock copolymers: evolution of bulk and surface morphology. J Rheol 49:197–214

    CAS  Google Scholar 

  118. Rosedale JH, Bates FS (1990) Rheology of ordered and disordered symmetric poly(ethylenepropylene)-poly(ethylethylene) diblock copolymers. Macromolecules 23:2329–2338

    CAS  Google Scholar 

  119. Wang Z, Dormidontova EE, Lodge TP (2002) The order-disorder transition and the disordered micelle regime for poly(ethylenepropylene-b-dimethylsiloxane) spheres. Macromolecules 35:9687–9697

    CAS  Google Scholar 

  120. Winey KI, Gobran DS, Xu Z, Fetters LJ, Thomas EL (1994) Dynamics of block copolymer micelles. Macromolecules 27:2392–2397

    CAS  Google Scholar 

  121. Winter HH, Scott DB, Gronski W, Okamoto S, Hashimoto T (1993) Ordering by flow near the disorder-order transition of a triblock copolymer styrene-isoprene-styrene. Macromolecules 26:7236–7244

    CAS  Google Scholar 

  122. Yurekli K, Krishnamoorti R (2002) Dynamics of block copolymer micelles. Macromolecules 35:4075–4083

    CAS  Google Scholar 

  123. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  124. Han CD, Kim J (1987) Rheological technique for determining the order–disorder transition temperature of block copolymers. J Appl Polym Sci 25:1741–1764

    CAS  Google Scholar 

  125. Choi S, Lee KM, Han CD, Sota N, Hashimoto T (2003) Phase transitions in sphere-forming polystyrene-block-polyisoprene-block-polystyrene copolymer and its blends with homopolymer. Macromolecules 36:793–803

    CAS  Google Scholar 

  126. Choi S, Vaidya NY, Han CD, Sota N, Hashimoto T (2003) Effects of sample preparation method and thermal history on phase transition in highly asymmetric block copolymers: comparison with symmetric block copolymers. Macromolecules 36:7707–7720

    CAS  Google Scholar 

  127. Han CD, Vaidya NY, Kim D, Shin G, Yamaguchi D, Hashimoto T (2000) Lattice order/disordering and demicellization/micellization transitions in highly asymmetric polystyrene-block-polyisoprene copolymers. Macromolecules 33:3767–3780

    CAS  Google Scholar 

  128. Kim JK, Lee HH, Sakurai S, Aida S, Masamoto J, Nomura S, Kitagawa Y, Suda Y (1999) Lattice disordering and domain dissolution transitions in polystyrene-block-poly(ethylene-co-but-1-ene)-block-polystyrene copolymer having a highly asymmetric composition. Macromolecules 32:6707–6717

    CAS  Google Scholar 

  129. Balsara NP, Perahia D, Safinaya CR, Tirrell M, Lodge TP (1992) Birefringence detection of the order-to-disorder transition in block copolymer liquids. Macromolecules 25:3896–3901

    CAS  Google Scholar 

  130. Kasten H, Stühn B (1995) Density discontinuity at the microphase-separation transition of a symmetric diblock copolymers. Macromolecules 28:4777–4778

    CAS  Google Scholar 

  131. Stühn B, Mutter R, Albrecht T (1992) Direct observation of structure formation at the temperature-driven order-to-disorder transition in diblock copolymers. Europhys Lett 18:427–432

    Google Scholar 

  132. Voronov VP, Buleiko VM, Podneks VE, Hamley IW, Fairclough JPA, Ryan AJ, Mai SM, Liao BX, Booth C (1997) A high resolution calorimetry study of the order-disorder transition in a diblock copolymer melt. Macromolecules 30:6674–6676

    CAS  Google Scholar 

  133. Ryu DY, Lee DJ, Kim JK, Lavery KA, Russell TP, Han YS, Seong BS, Lee CHH, Thiyagarajan P (2003) Effect of hydrostatic pressure on closed-loop phase behavior of block copolymers. Phys Rev Lett 90:235501–1–235501–4

    Google Scholar 

  134. Dudowicz J, Freed KF (1991) Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions. 2. Application to binary blends. Macromolecules 24:5096–5111

    CAS  Google Scholar 

  135. Dudowicz J, Freed KF (1991) Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions. 3. Application to PS(D)/PVME blends. Macromolecules 24:5112–5123

    CAS  Google Scholar 

  136. Freed KF, Dudowicz J (1992) On the large entropic contribution to the effective interaction parameter of polystyrene-poly(methyl methacrylate) diblock copolymer systems. J Chem Phys 97:2105–2109

    CAS  Google Scholar 

  137. Dudowicz J, Freed KF (1993) Relation of effective interaction parameters for binary blends and diblock copolymers: lattice cluster theory predictions and comparison with experiment. Macromolecules 26:213–220

    CAS  Google Scholar 

  138. Maurer WW, Bates FS, Lodge TP, Almdal K, Mortensen K, Fredrickson GH (1998) Can a single function for χ account for block copolymer and homopolymer blend phase behavior? J Chem Phys 108:2989–3000

    CAS  Google Scholar 

  139. Sakamoto N, Hashimoto T (1998) Ordering dynamics of a symmetric polystyrene-block- polyisoprene. 1. Ordering mechanism from the disordered state. Macromolecules 31:3292–3302

    CAS  Google Scholar 

  140. Segalman RA, Hexemer A, Hayward RC, Kramer EJ (2003) Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 36:3272–3288

    CAS  Google Scholar 

  141. Abuzaina FM, Patel AJ, Mochrie S, Narayanan S, Sandy A, Garetz BA, Balsar NP (2005) Structure and phase behavior of block copolymer melts near the sphere–cylinder boundary. Macromolecules 38:7090–7097

    CAS  Google Scholar 

  142. Han CD (1988) The influence of molecular weight distribution on the linear viscoelastic properties of polymer blends. J Appl Polym Sci 35:167–213

    CAS  Google Scholar 

  143. Han CD, Jhon MS (1986) Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers. J Appl Polym Sci 32:3809–3840

    Google Scholar 

  144. Han CD, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539

    CAS  Google Scholar 

  145. Dormidontova EE, Lodge TP (2001) The order–disorder transition and the disordered micelle regime in sphere-forming block copolymer melts. Macromolecules 34:9143–9155

    CAS  Google Scholar 

  146. Matsen MW (2002) The standard Gaussian model for block copolymer melts. J Phys Condens Matter 44:R21–R47

    Google Scholar 

  147. Wang J, Wang ZG, Yang Y (2005) Nature of disordered micelles in sphere-forming block copolymer melts. Macromolecules 38:1979–1988

    CAS  Google Scholar 

Download references

Acknowledgment

We wish to acknowledge with gratitude that our collaboration for a period over 20 years with Professor Takeji Hashimoto has helped us to have a better understanding of the phase behavior and phase transitions in block copolymers. J.K. Kim acknowledges the support of the National Creative Research Initiative Program by the National Research Foundation (NRF) of Korea. We gratefully acknowledge that the American Chemical Society, Oxford University Press, and the Society of Polymer Science, Japan, gave us permissions to reproduce some of the figures appearing in this chapter.

Supplementary Material There are five Fortran computer programs, which can be run using Compaq Visual Fortran or any other Fortran compiler. They are Helfanddi.f, Helfandtri.f, Leibler.f, Mayestri.f, and Fredkim.f. This material is available free of charge via the Internet at http://springer.org.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Kon Kim or Chang Dae Han .

Editor information

Editors and Affiliations

1 Appendix A Derivation of (9)

According to Helfand [7], the free energy difference between the microphase-separated and homogeneous states is given by

$$\begin{array}{rcl} \frac{\Delta {G}_{m}} {V {k}_{\mathrm{B}}T}& =& \frac{1} {V {k}_{\mathrm{B}}T}\int \nolimits \nolimits \mathrm{d\mathbf{r}}\,\left \{\Delta {f}^{{_\ast}}\left ({\varphi }_{ A}\left (\mathbf{r}\right ),{\varphi }_{B}\left (\mathbf{r}\right )\right ) - {\varphi }_{A}\left (\mathbf{r}\right ) \frac{\partial \Delta {f}^{{_\ast}}} {\partial {\varphi }_{A}\left (\mathbf{r}\right )} - {\varphi }_{B}\left (\mathbf{r}\right ) \frac{\partial \Delta {f}^{{_\ast}}} {\partial {\varphi }_{B}\left (\mathbf{r}\right )}\right \} \\ & & -\frac{{n}_{\mathrm{c}}^{t}} {V } \ln {Q}_{\mathrm{c}} - \frac{\alpha \left ({N}_{A}\bar{{v}}_{0A}\right )\left ({N}_{B}\bar{{v}}_{0B}\right )} {{\left [\left ({N}_{A}\bar{{v}}_{0A}\right ) + \left ({N}_{B}\bar{{v}}_{0B}\right )\right ]}^{2}} \\ \end{array}$$
(A1)

in which Δf appearing inside the bracket of the first term on the right-hand side is the free energy density of a mixture having the local volume fractions φ A (r) and φ B (r) at position r, which are different from the average volume fractions of A and B blocks in the homogeneous state. The second term on the right-hand side of (A1) represents the conformational entropy contribution, \(S = -{k}_{\mathrm{B}}\ln {\left ({Q}_{\mathrm{c}}\right )}^{{n}_{\mathrm{c}}^{t} }\), and the last term on the right-hand side represents the Flory–Huggins interaction energy density in the homogeneous state, G o = αf(1 − f) in which α (having the units of mol ∕ cm3) is the interaction parameter which is related to the Flory–Huggins interaction parameter χ by α = χ ∕ V ref with Vref being the molar volume of a reference component and f is the average volume fractions of block A defined by \({N}_{A}\bar{{v}}_{0A}/\left ({N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}\right )\) with N k being the degree of polymerization of component k(k = A or B) and \(\bar{{v}}_{ok}\) being the monomeric molar volume of component k(k = A or B).

By defining the first term inside the bracket on the right-hand side of (A1) as \({W}_{\xi }(\mathbf{r})\),

$$-{W}_{\xi }\left (\mathbf{r}\right ) = \frac{1} {{k}_{\mathrm{B}}T}\Delta {f}^{{_\ast}}\left ({\varphi }_{ A}\left (\mathbf{r}\right ),{\varphi }_{B}\left (\mathbf{r}\right )\right ) - {\varphi }_{A}\left (\mathbf{r}\right ) \frac{\partial \Delta {f}^{{_\ast}}} {\partial {\varphi }_{A}\left (\mathbf{r}\right )} - {\varphi }_{B}\left (\mathbf{r}\right ) \frac{\partial \Delta {f}^{{_\ast}}} {\partial {\varphi }_{B}\left (\mathbf{r}\right )} $$
(A2)
we have
$$\frac{\Delta {G}_{m}} {V {k}_{\mathrm{B}}T} = -\frac{1} {V }\int \nolimits \nolimits \mathrm{d\mathbf{r}}\,{W}_{\xi }\left (\mathbf{r}\right ) -\frac{{n}_{\mathrm{c}}^{t}} {V } \ln {Q}_{\mathrm{c}} - \frac{\alpha \left ({N}_{A}\bar{{v}}_{0A}\right )\left ({N}_{B}\bar{{v}}_{0B}\right )} {{\left [\left ({N}_{A}\bar{{v}}_{oA}\right ) + \left ({N}_{B}\bar{{v}}_{oB}\right )\right ]}^{2}}$$
or
$$\begin{array}{rcl} \frac{\Delta {G}_{m}} {{k}_{\mathrm{B}}T\,{n}_{\mathrm{c}}^{t}}& =& - \frac{1} {{n}_{\mathrm{c}}^{t}} \int \nolimits \nolimits \mathrm{d\mathbf{r}}\,{W}_{\xi }\left (\mathbf{r}\right ) -\ln {Q}_{\mathrm{c}} - \frac{V } {{n}_{\mathrm{c}}^{t}}\, \frac{\alpha \left ({N}_{A}\bar{{v}}_{0A}\right )\left ({N}_{B}\bar{{v}}_{0B}\right )} {{\left [\left ({N}_{A}\bar{{v}}_{0A}\right ) + \left ({N}_{B}\bar{{v}}_{0B}\right )\right ]}^{2}} \\ & =& - \frac{1} {{n}_{\mathrm{c}}^{t}} \int \nolimits \nolimits \mathrm{d\mathbf{r}}\,{W}_{\xi }\left (\mathbf{r}\right ) -\ln {Q}_{\mathrm{c}} - \frac{\alpha \left ({N}_{A}\bar{{v}}_{0A}\right )\left ({N}_{B}\bar{{v}}_{0B}\right )} {\left [\left ({N}_{A}\bar{{v}}_{0A}\right ) + \left ({N}_{B}\bar{{v}}_{0B}\right )\right ]} \end{array}$$
(9)
in which use was made of \({V }_{\mathrm{c}} = {N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}\) and \(V = {n}_{\mathrm{c}}^{t}{V }_{\mathrm{c}}\).

2 Appendix B Derivation of (19)

NIA assumes that the interfacial thickness (λI) of a block copolymer is much smaller than its domain sizes, D A and D B (i.e., λID A + D B ) and thus D = D A + D B . Then we have

$$\frac{D} {{N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}} = \frac{{D}_{A}} {{N}_{A}\bar{{v}}_{0A}} = \frac{{D}_{B}} {{N}_{B}\bar{{v}}_{0B}} $$
(B1)
yielding
$${D}_{A} = \frac{{N}_{A}\bar{{v}}_{0A}D} {{N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}};\quad {D}_{B} = \frac{{N}_{B}\bar{{v}}_{0B}D} {{N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}} $$
(B2)
where N A and N B are the degrees of polymerization of block chain A and block chain B, respectively, and \(\bar{{v}}_{0A}\) and \(\bar{{v}}_{0B}\) are the monomeric molar volumes of block chain A and block chain B, respectively.

Now, the area of the interface, S, is defined by [34]

$$S = V/\left (D/2\right ) = 2{n}_{\mathrm{c}}^{t}{V }_{\mathrm{ c}}/D = 2{n}_{\mathrm{c}}^{t}\left ({N}_{ A}\bar{{v}}_{0A} + {N}_{A}\bar{{v}}_{0B}\right )/D $$
(B3)
in which V is the volume of the system, D denotes the size of the microdomains, \({n}_{\mathrm{c}}^{t}\) is the total number of block copolymer chains, and V c is the molecular volume of one block copolymer chain. In (B3) the following relationships are used: (i) \(V = {n}_{\mathrm{c}}^{t}{V }_{\mathrm{c}}\) and (ii) \({V }_{\mathrm{c}} = {N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}\). Thus, from (B3) we have
$$S/{n}_{\mathrm{c}}^{t} = 2\left ({N}_{ A}\bar{{v}}_{0A} + {N}_{B}{v}_{0B}\right )/D $$
(B4)
Substitution of (B4) into the left-hand side of (17) gives
$$\frac{2\gamma } {{k}_{\mathrm{B}}T}\left ({N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}\right )/D = - \frac{1} {{n}_{\mathrm{c}}^{t}} \int \nolimits \nolimits \mathrm{d}\mathbf{r}{W}_{\xi }^{I}\left (\mathbf{r}\right ) $$
(B5)
From (16) with m = 2. 5 and c = 0. 085, we have
$$-\ln \,{Q}_{k} = 0.085{\left [{D}_{k}/2{R}_{g,k}\right ]}^{2.5} = 0.085{\left ({6}^{1/2}/2\right )}^{2.5}{\left ( \frac{{D}_{k}} {{b}_{k}{N}_{k}^{1/2}}\right )}^{2.5} $$
(B6)
in which use was made of the definition, \({R}_{g,k} = {b}_{k}{N}_{k}^{1/2}/{6}^{1/2}\). Substitution of (B2) into (B6) gives
$$-\ln {Q}_{A} -\ln {Q}_{B} = 0.141\frac{{\left ({N}_{A}^{1/2}\,\bar{{v}}_{0A}/{b}_{A}\right )}^{2.5} +{ \left ({N}_{B}^{1/2}\,\bar{{v}}_{0B}/{b}_{B}\right )}^{2.5}} {{\left ({N}_{A}\bar{{v}}_{0A} + {N}_{B}\bar{{v}}_{0B}\right )}^{2.5}} {D}^{2.5} $$
(B7)

Finally, substitution of (10), with the aid of (11) and (B7), and (B5) into (9) gives (19).

3 Appendix C Derivation of (34) and (37)–(39)

C.1 Derivation of (34)

According to the RPA, we have

$${\psi }_{i}\left (q\right ) = -\beta \tilde{{S}}_{ij}\left (q\right ){U}_{j}\left (q\right ) = -\beta {S}_{ij}\left (q\right ){U}_{j}^{eff}\left (q\right ) $$
(C1)
where i = A and B, j = A and B for a diblock copolymer, β = 1 ∕ k B T, and \({U}_{j}^{\mathit{eff }}\left (q\right )\) is given by
$${U}_{j}^{eff}\left (q\right ) = {U}_{ j}\left (q\right ) + {\phi }_{jm}{\psi }_{m}\left (q\right ) + \Theta $$
(C2)
in which Θ is the self-consistent potential acting on all monomers of blocks A and B, and
$${\phi }_{jm} = \left (1/\beta \right ){\chi }_{jm} $$
(C3)
From (C2) we have
$$\begin{array}{rcl}{ U}_{A}^{\mathit{eff }}\left (q\right ) - {U}_{ B}^{\mathit{eff }}\left (q\right )& =& {U}_{ A}\left (q\right ) - {U}_{B}\left (q\right ) + \left ({\phi }_{AA} - {\phi }_{AB}\right ){\psi }_{A}\left (q\right ) + \left ({\phi }_{BA} - {\phi }_{BB}\right ){\psi }_{B}\left (q\right ) \\ & =& {U}_{A}\left (q\right ) - {U}_{B}\left (q\right ) -\left (2/\beta \right )\chi {\psi }_{A}\left (q\right ) \\ \end{array}$$
(C4)
in which use was made of χ AB = χ BA = χ, χ AA = χ BB = 0, and ψ A (q) = − ψ B (q). Also, from (C1), we have
$$\begin{array}{rcl}{ \psi }_{A}\left (q\right )& +& {\psi }_{B}\left (q\right ) = 0 = -\beta \left ({S}_{AA}\left (q\right ){U}_{A}^{\mathit{eff }}\left (q\right ) + {S}_{ AB}\left (q\right ){U}_{B}^{\mathit{eff }}\left (q\right )\right. \\ & +& \left.{S}_{BA}\left (q\right ){U}_{A}^{\mathit{eff }}\left (q\right ) + {S}_{ BB}\left (q\right ){U}_{B}^{\mathit{eff }}\left (q\right )\right ) \\ \end{array}$$
(C5)
Rearrangement of (C5) with the aid of the relationship S AB (q) = S BA (q) gives
$${U}_{B}^{eff}\left (q\right )/\,{U}_{ A}^{eff}\left (q\right ) = -\left (\,{S}_{ AA}\left (q\right ) + {S}_{AB}\left (q\right )\right )/\left ({S}_{AB}\left (q\right ) + {S}_{BB}\left (q\right )\right ) $$
(C6)
On the other hand, from (C1) and ψ A (q) = − ψ B (q), we have
$$\tilde{{S}}_{AA}\left (q\right ) =\tilde{ {S}}_{BB}\left (q\right ) = -\tilde{{S}}_{AB}\left (q\right ) = -\tilde{{S}}_{BA}\left (q\right ) =\tilde{ S}\left (q\right ) $$
(C7)
Using (C7) and (C1), we have
$$\tilde{S}\left (q\right )\left ({U}_{A}\left (q\right ) - {U}_{B}\left (q\right )\right ) = {S}_{AA}\left (q\right ){U}_{A}^{eff}\left (q\right ) + {S}_{ AB}\left (q\right ){U}_{B}^{eff}\left (q\right ) $$
(C8)
Also, from (C1), we have
$${\psi }_{A}\left (q\right ) = -\beta \tilde{S}\left (q\right )\left ({U}_{A}\left (q\right ) - {U}_{B}\left (q\right )\right ) $$
(C9)
From (C4) and (C9) we have
$${U}_{A}^{eff} - {U}_{ B}^{eff}\left (q\right ) = \left (1 + 2\chi \tilde{S}\left (q\right )\right )\left ({U}_{ A}\left (q\right ) - {U}_{B}\left (q\right )\right ) $$
(C10)
and from (C7) and (C10) we have
$${ U}_{A}^{eff}-{U}_{ B}^{eff}\left (q\right ) = \left (1 + 2\chi \tilde{S}\left (q\right )\right )\left ({S}_{ AA}\left (q\right ){U}_{A}^{eff}\left (q\right ) + {S}_{ AB}\left (q\right ){U}_{B}^{eff}\left (q\right )\right )/\tilde{S}\left (q\right ) $$
(C11)
Finally, from (C6) and (C11) we have
$$1/\tilde{S}\left (q\right ) = \left ({S}_{AA}\left (q\right ) +\; 2{S}_{AB}\left (q\right ) + {S}_{BB}\left (q\right )\right )/\left ({S}_{AA}\left (q\right ){S}_{BB}\left (q\right ) - {S{}_{AB}}^{2}\left (q\right )\right ) - 2\chi $$
(34)

C.2 Derivation of (37) and (39)

S AA (q) can be expressed by

$$\begin{array}{rcl}{ S}_{AA}\left (q\right )& =& \frac{1} {N}{\int \nolimits \nolimits }_{0}^{fN}{\int \nolimits \nolimits }_{0}^{fN}\exp \left (-y\left \vert i - j\right \vert \right )\mathrm{d}j\mathrm{d}i = \frac{2} {N}{\int \nolimits \nolimits }_{0}^{fN}{\int \nolimits \nolimits }_{0}^{i}\exp \left (-y\left (i - j\right )\right )\mathrm{d}j\mathrm{d}i \\ & =& \frac{2} {N}{\int \nolimits \nolimits }_{0}^{fN}\exp \left (-yi\right )\left (1/y\right )\left (\exp \left (yi\right ) - 1\right )\mathrm{d}i = \frac{2} {yN}{\int \nolimits \nolimits }_{0}^{fN}\left (1 -\exp \left (-yi\right )\right )\mathrm{d}i \\ & =& \frac{2} {yN}\left (fN + \frac{\exp \left (-fNy\right ) - 1} {y} \right ) = \frac{2} {{y}^{2}N}\left (fNy +\exp \left (-fNy\right ) - 1\right ) \\ & =& \frac{2N} {{\left (yN\right )}^{2}}\left (fNy +\exp \left (-fNy\right ) - 1\right ) = \frac{2N} {{x}^{2}} \left (fx +\exp \left (-fx\right ) - 1\right ) = Ng\left (f,x\right )\end{array}$$
(37)
in which y = q 2 b 2 ∕ 6 and x = yN = q 2 Nb 2 ∕ 6 are used. S BB (q) can be obtained from (37) by changing the integration range from f N to (1 − f)N. Further, S AB (q) can be expressed by
$$\begin{array}{rcl}{ S}_{AB}\left (q\right )& =& \frac{1} {N}{\int \nolimits \nolimits }_{fN}^{N}{ \int \nolimits \nolimits }_{0}^{fN}\exp (-y\left (i - j\right )\mathrm{d}j\mathrm{d}i= \frac{1} {N}\left [{\int \nolimits \nolimits }_{fN}^{N}\exp \left (-yi\right )\mathrm{d}i\right ]\left [{\int \nolimits \nolimits }_{0}^{fN}\exp \left (yj\right )\mathrm{d}j\right ] \\ & =& \frac{1} {N}\left [\frac{-\exp \left (-Ny\right ) +\exp \left (-fNy\right )} {y} \right ]\left [\frac{\exp \left (fNy\right ) - 1} {y} \right ] \\ & =& \frac{1} {{y}^{2}N}\left [-\exp \left (-\left (1 - f\right )Ny\right ) +\exp \left (-Ny\right ) + 1 -\exp \left (-fNy\right )\right ] \\ & =& \frac{N} {2{\left (yN\right )}^{2}}\left [\begin{array}{l} 2\left \{Ny +\exp \left (-Ny\right ) - 1\right \} - 2\left \{fNy +\exp \left (-fNy\right ) - 1\right \}\\ - 2\left \{\left (1 - f \right ) Ny +\exp \left (-\left (1 - f \right ) Ny \right ) - 1 \right \} \end{array} \right ] \\ & =& \frac{N} {2} \left [g\left (1,x\right ) - g\left (f,x\right ) - g\left (1 - f,x\right )\right ] \end{array}$$
(39)

4 Appendix D Derivation of (50)

The difference in free energy density (Φ)( = ΔG m k B T) between the microphase-separated and disordered states is given by [33]

$$\Phi \left [\varphi \right ] = \frac{1} {2\lambda }\left ({{r}_{n}}^{2} -{ {r}_{ 0}}^{2}\right ) + \frac{d} {\tilde{{N}}^{1/2}}\left ({{r}_{n}}^{1/2} -{ {r}_{ 0}}^{1/2}\right ) -\frac{2} {3}n{\theta }_{n}{{a}_{n}}^{3} + \frac{1} {2}n{\eta }_{n}{{a}_{n}}^{4} $$
(D1)
in which \(\tilde{N}\) is defined by (48), λ and d are defined in (49), n describes the type of microdomain structure (i.e., n = 1 for lamellar microdomains, n = 3 for cylindrical microdomains, and n = 6 for body-centered-cubic (bcc) lattice), and θ n and η n depend on the type of microdomain structure; namely (i) θ1 = 0 and η1 = − λ ∕ 2 for n = 1, (ii) θ3 = μ and η3 = − λ ∕ 2 for n = 3, and (iii) θ6 = − 2μ and η6 = 3λ ∕ 2 for n = 6 in which μ = 3c 3 with N being the degree of polymerization, Γ 3 being the third-order vertex function (see (33)), and c being defined in (49). In reference to (D1), r n and r o are the inverse susceptibilities of the microphase-separated and disordered states, respectively, and they are given by
$${r}_{0} = \tau + \mathrm{d}\lambda /{\left ({r}_{0}\tilde{N}\right )}^{1/2} $$
(D2)
and
$${r}_{n} = \tau + \mathrm{d}\lambda /{\left ({r}_{n}\tilde{N}\right )}^{1/2} + n\lambda {{a}_{ n}}^{2} $$
(D3)
and a n is the amplitude of the concentration of block A and is related to the order parameter ψ in the Leibler theory [13]. Also, r n can be expressed in term of a n by [33]
$${r}_{n} = {\theta }_{n}{a}_{n} - {\eta }_{n}{{a}_{n}}^{2} $$
(D4)
τ appearing in (D2) and (D3) is defined by
$$\tau = \left [\frac{2{\left (\chi N\right )}_{s} - 2\chi N} {{c}^{2}} \right ] = \left [\frac{F\left ({x}^{{_\ast}},f\right ) -\, 2\chi N} {{c}^{2}} \right ] $$
(D5)
which is a measure of the distance from the spinodal, where use was made of (χN) s = F(x , f) ∕ 2 with x (or q ) being the value of x (or q) at which \(\tilde{S}(q)\) defined by (42) becomes a maximum.

Let us now calculate τ for n = 1 (lamellar microdomains). From (D3) and (D4) we obtain

$$\tau = -{r}_{1}\left [1 + \mathrm{d}\lambda /\left ({{r}_{1}}^{3/2}\tilde{{N}}^{1/2}\right )\right ] $$
(D6)
On the other hand, a rearrangement of (D2) gives
$$\tau = {r}_{0}\left [1 -\mathrm{d}\lambda /\left ({{r}_{0}}^{3/2}\tilde{{N}}^{1/2}\right )\right ] $$
(D7)

From the point of view of dimensional analysis, the second term inside the bracket of both (D6) and (D7) should be dimensionless and thus we have

$${r}_{1} = {k}_{1}{\left (\mathrm{d}\lambda \right )}^{2/3}\tilde{{N}}^{-1/3};{r}_{ 0} = {k}_{0}{\left (\mathrm{d}\lambda \right )}^{2/3}\tilde{{N}}^{-1/3} $$
(D8)

in which k 1 and k 0 are constants. From (D6)–(D8) we have

$$-{k}_{1}\left (1 +{ {k}_{1}}^{-3/2}\right ) = {k}_{ 0}\left (1 -{ {k}_{0}}^{-3/2}\right )$$

or

$$\left ({{k}_{1}}^{1/2} -{ {k}_{ 0}}^{1/2}\right ) = \left ({k}_{ 1} + {k}_{0}\right ){\left ({k}_{1}{k}_{0}\right )}^{1/2} $$
(D9)
Note that at a transition temperature Φ = 0 (see (D1) for the definition of Φ). Substitution of (D8) into (D1), with the aid of (D4), gives
$$\begin{array}{rcl} \Phi \left [\phi \right ] ={ \mathrm{d}}^{4/3}{\lambda }^{1/3}\tilde{{N}}^{-2/3}\,\left [\left (1/2\right )\left ({{k}_{ 1}}^{2} -{ {k}_{ 0}}^{2}\right ) + \left ({{k}_{ 1}}^{1/2} -{ {k}_{ 0}}^{1/2}\right ) -{ {k}_{ 1}}^{2}\right ] = 0& & \\ \end{array}$$
or
$$\begin{array}{rcl} \left ({{k}_{1}}^{1/2} -{ {k}_{ 0}}^{1/2}\right ) = \left ({{k}_{ 1}}^{2} +{ {k}_{ 0}}^{2}\right )/2& & \\ \end{array}$$
(D10)
From (D9) and (D10) we have
$$\left ({k}_{1} + {k}_{0}\right ){\left ({k}_{1}{k}_{0}\right )}^{1/2} = \left ({{k}_{ 1}}^{2} +{ {k}_{ 0}}^{2}\right )/2$$
or
$$\sqrt{R}(R + 1) = ({R}^{2} + 1)/2 $$
(D11)
with R = k 1k 0, yielding R = 5. 27451. Also, from (D10) we have
$${ {k}_{0}}^{1/2}\left ({R}^{1/2} - 1\right ) ={ {k}_{ 0}}^{2}\left ({R}^{2} + 1\right )/2 $$
(D12)
yielding k 0 = 0. 200801. Then, we obtain k 1 = 1. 059138. Finally, from (D6) we have
$$\tau = -\left ({k}_{1} +{ {k}_{1}}^{-1/2}\right ){\left (\mathrm{d}\lambda \right )}^{2/3}\tilde{{N}}^{-1/3} = -2.0308{\left (\mathrm{d}\lambda \right )}^{2/3}\tilde{{N}}^{-1/3} $$
(D13)
Rearrangement of (D5) gives
$${ \left (\chi N\right )}_{t} ={ \left (\chi N\right )}_{s} -\left (1/2\right )\,{c}^{2}\tau $$
(D14)
Substituting values of c, d and λ for f = 0. 5 into (D14), we obtain
$${ \left (\chi N\right )}_{t} = 10.495 + 41.022/\tilde{{N}}^{1/3}$$
(50)
for which use was made of the numerical values: \({x}^{{_\ast}}\,=\,3.7852,{\partial }^{2}F\left (f,x\right )/\partial {x}^{2}\left \vert {}_{{x}^{{_\ast}}}\right. = 0.9624\), and λ = 106. 18 given in Table 1 of Fredrickson and Helfand [33].

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Kim, J.K., Han, C.D. (2009). Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers. In: Lee, KS., Kobayashi, S. (eds) Polymer Materials. Advances in Polymer Science, vol 231. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_20

Download citation

Publish with us

Policies and ethics