Skip to main content

Directed Synthesis of Micro-Sized Nanoplatelets of Gold from a Chemically Active Mixed Surfactant Mesophase

  • Chapter
  • First Online:
Interfacial Processes and Molecular Aggregation of Surfactants

Part of the book series: Advances in Polymer Science ((POLYMER,volume 218))

Abstract

We report the synthesis of gold nanoparticles of controllable size and morphology from ordered mesophasetemplates comprised of iso-octane, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and lecithin along withan aqueous phase containing auric acid (HAuCl4), the gold precursor. Highly facettednanoparticles are formed by the reduction of HAuCl4 directly by the dioctyl sulfosuccinatetermini of AOT. In sharp contrast, rapid reduction of the gold precursor by the addition of sodium borohydrideNaBH4 in the aqueous phase results in spherical nanoparticles. The size of the nanoparticlescan be adjusted by varying the auric acid concentration as well as the volume fraction of the aqueous phase.The value of this technique is the ease with which nanoscale particles of different shape and size can beformed, with concomitant impact on their physical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays. Science 293:2227–2231

    Article  CAS  Google Scholar 

  2. Link S, El-Sayed M (2000) Shape and Size Dependence of Radiative, Non-Radiative and Photochemical Properties of Gold Nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  3. El-Sayed MA (2001) Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc Chem Res 34(4):257–264

    Article  CAS  Google Scholar 

  4. Sun Y, Mayers B, Xia Y (2003) Transformation of Silver Nanospheres into Nanobelts and triangular Nanopaltes therough a Thermal Precess. Nano Lett 3:675–679

    Article  CAS  Google Scholar 

  5. Maillard M, Giorgio S, Pileni M-P (2003) Tuning the Size of Silver Nanodisks with Similar Aspect Ratios: Synthesis and Optical Properties. J Phys Chem 107:2466–2470

    CAS  Google Scholar 

  6. Schatz GC, Hupp JT, Kelley KL, Hao E (2002) Synthesis of Silver Nanodisks using Polystyrene Mesospheres as Templates. J Am Chem Soc 124:15182–15183

    Article  Google Scholar 

  7. Van Duyne RP, Haes AJ, Zou S, Schatz GC (2004) A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. J Phys Chem B 108:109–116

    Article  Google Scholar 

  8. Mirkin CA, Millstone JE, Park S, Shuford KL, Qin L, Schatz GC (2005) Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms. J Am Chem Soc 127:5312–5313

    Article  Google Scholar 

  9. Khlebtsov NG, Trachuk LA, Mel'nikov AG (2005) The Effect of the Size, Shape, and Structure of Metal Nanoparticles on the Dependence of Their Optical Properties on the Refractive Index of a Disperse Medium. Opt Spectrosc 98:77–83

    Article  CAS  Google Scholar 

  10. Chen S, Wang ZL, Ballato J, Fougler SH, Carroll DL (2003) Monopod, Tripod and Tetrapod Gold nanoparticles. J Am Chem Soc 125:16186–16187

    Article  CAS  Google Scholar 

  11. Pradhan N, Pal A, Pal T (2001) Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles. Langmuir 17:1800–1802

    Article  CAS  Google Scholar 

  12. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 16:631–635

    Article  Google Scholar 

  13. Yun WS et al. (2005) Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates. Chem Mater 17(22):5558–5561

    Article  Google Scholar 

  14. Nicewarner-Pena SR et al. (2001) Submicrometer Metallic Barcodes. Science 294:137–141

    Article  CAS  Google Scholar 

  15. Jaramillo TF, Baeck S-H, Cuenya BR, McFarland EW (2003) Catalytic Activity of Supported Au Nanoparticles Deposited from Block Copolymer Micelles. J Am Chem Soc 125:7148–7149

    Article  CAS  Google Scholar 

  16. Xin X, Luo G, Zhao R (2005) Advances in preparation and application of supported gold nano-particles catalyst with high catalytic activity. Shiyou Huagong 34:898–902

    CAS  Google Scholar 

  17. Gates BC, Fierro-Gonzalez JC (2005) Catalysis by supported gold: Roles of cationic and zerovalent gold. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, USA, March 13–17, 2005, PETR-021

    Google Scholar 

  18. Maye MM, Luo J, Han L, Kariuki N, Rab Z, Khan N, Naslund HR, Zhong C-J (2004) Gold and alloy nanoparticle catalysts in fuel cell reactions. Div Fuel Chem 49:938–939

    CAS  Google Scholar 

  19. Raj CR, Okajima T, Ohsaka T (2003) Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem 543:127–133

    Article  CAS  Google Scholar 

  20. Wang E, Cheng W, Dong S (2002) Gold nanoparticles As Fine Tuners of Electrochemical Properties of Electrode/Solution Interface. Langmuir 18(25):9947–9952

    Article  Google Scholar 

  21. Evans SD, Johnson SR, Mahon SW, Ulman A (1997) Synthesis and Characterization of Surfactant-Stabilized Gold Nanoparticles. Supramol Sci 4:329–333

    Article  Google Scholar 

  22. Lev O, Neiman B, Eli G (2001) Use of Gold Nanoparticles to Enhance Capillary Electrophoresis. Anal Chem 73:5220–5227

    Article  Google Scholar 

  23. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  24. Huynh WU, Dittmer JJ, Alivisatos AP (2004) Hybrid Nanorod-Polymer Solar Cells. Science 295(5564):2425–2427

    Article  Google Scholar 

  25. McConnell WP et al. (2000) Electronic and Optical Properties of Chemically Modified Metal Nanoparticles and Molecularly Bridged Nanoparticle Arrays. J Phys Chem B 104:8925–8930

    Article  CAS  Google Scholar 

  26. Hayat M (1989) Gold: Principles, Methods, and Applications, Vol 1. Academic, London

    Google Scholar 

  27. Sastry M, Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A (2004) Biological Synthesis of Triangular Gold Nanoprisms. Nat Mater 3:482–488

    Article  Google Scholar 

  28. Regan MR, Banerjee IA (2005) Bioinspired Preparation of Germania Supported Nanocatalysts. Abstracts, 33rd Northeast Regional Meeting of the American Chemical Society, Fairfield, CT, USA, July 14–17, ONSUB-041

    Google Scholar 

  29. Chiang CL (2001) Controlled Growth of Gold Nanoparticles in AOT/C12E4/Isooctane Mixed Reverse Micelles. J Colloid Int Sci 239:334–341

    Article  CAS  Google Scholar 

  30. Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size Controlled Synthesis of Gold Nanoparticles Using Photochemically Prepared Seed Particles. J Nanoparticle Res 3:257–261

    Article  CAS  Google Scholar 

  31. Chiang C-L, Hsu M-B, Lai L-B (2004) Control of Nucleation and Growth of Gold Nanoparticles in AOT/Span80/Isooctane Mixed Reverse Micelles. J Solid State Chem 177:3891–3895

    Article  CAS  Google Scholar 

  32. Sakai T, Alexandridis P (2005) Spontaneous Formation of Gold Nanoparticles in Poly(ethylene oxide)-Poly(propylene oxide) Solutions: Solvent Quality and Polymer Structure Effects. Langmuir 21:8019–8025

    Article  CAS  Google Scholar 

  33. Alexandridis P (2004) Nanoparticle Synthesis and Colloidal Stabilization using Amphiphilic Block Copolymer Solutions. Abstracts, 32nd Northeast Regional Meeting of the American Chemical Society, Rochester, NY, USA, October 31–November 3, GEN-119

    Google Scholar 

  34. Alexandridis P, Sakai T (2004) Amphiphilic block copolymer solutions as media for the facile synthesis and colloidal stabilization of metal nanoparticles. Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, USA, August 22–26, 2004, PMSE-510

    Google Scholar 

  35. Alexandridis P, Sakai T (2005) Amphiphilic block copolymer-templated nanoparticle synthesis and stabilization. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, USA, March 13–17, 2005, COLL-474

    Google Scholar 

  36. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous Pluronic block copolymer solutions at ambient temperature. Langmuir 20:8426–8430

    Article  CAS  Google Scholar 

  37. Van der Zande BMI, Böhmer MR, Fokkink LGJ, Schönenberger C (2000) Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties. Langmuir 16:451–458

    Article  Google Scholar 

  38. Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles. Chem Mater 12:202–205

    Article  CAS  Google Scholar 

  39. Cepak VM, Martin CR (1998) Preparation and Stability of Template-Synthesized Metal Nanorod Sols in Organic Solvents. J Phys Chem B 102:9985–9990

    Article  CAS  Google Scholar 

  40. Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of Rod like Gold Particles by UV Irradiation Using Cationic Micelles as a Template. Langmuir 11:3285–3287

    Article  CAS  Google Scholar 

  41. Murphy CJ, Jana NR, Gearheart L (2001) Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J Phys Chem B 105:4065–4067

    Google Scholar 

  42. Murphy CJ, Jana NR (2002) Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  43. Cao L, Liu Z, Zhu T (2006) Formation Mechanisms of Non-Spherical Gold Nanoparticles During Seeding Growth: Roles of Anion Adsorption and Reduction Rate. J Colloid Interface Sci 293:67–69

    Article  Google Scholar 

  44. Huang MH, Kuo C-H (2005) Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach. Langmuir 21:2012–2016

    Article  Google Scholar 

  45. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic Metal Nanoparticles: Synthesis, Assembly and Optical Applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  46. Hsu H-Y, El-Sayed M, Eustis S (2004) Photochemical Synthesis of Gold nanoparticles with Interesting Shapes. NIN REU Res Accomp, pp 68–69

    Google Scholar 

  47. Yang P, Song JH, Kim F (2002) Photochemical Synthesis of Gold Nanorods. J Am Chem Soc 124:14316–14317

    Article  Google Scholar 

  48. Wang CRC, Yu Y-Y, Chang S-S, Lee C-L (1997) Gold Nanorods: Electrochemical Synthesis and Optical Properties. J Phys Chem B 101:6661–6664

    Article  Google Scholar 

  49. Hupp JT, Schatz GC, Hao E, Bailey RC, Li S (2003) Synthesis and Optical Properties of “Branched” Gold Nanocrystals. Nano Lett 4:327–330

    Google Scholar 

  50. Willner I, Shlyahovsky B, Pavlov V, Popov I, Xiao Y (2005) Shape and Color of Au Nanoparticles Follow Biocatalytic Processes. Langmuir 21:5659–5662

    Article  Google Scholar 

  51. Chen S, Carroll DL (2002) Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Lett 2:1003–1007

    Article  CAS  Google Scholar 

  52. Mirkin CA, Jin R, Cao YC, Hao E, Metraux GS, Schatz GC (2003) Controlling Anisotropic Nanoparticle Growth Through Plasmon Excitation. Nature 425:487–490

    Article  Google Scholar 

  53. Dong S, Jin Y, Shao Y (2004) Synthesis of Gold Nanoplates by Asparate Reduction of Gold Chloride. Chem Commun

    Google Scholar 

  54. Simmons BA, Irvin GC, Agarwal V, Bose A, John VT, McPherson GL, Balsara NP (2002) Small Angle Neutron Scattering Study of Microstructural Transitions in a Surfactant-Based Gel Mesophase. Langmuir 18:624–632

    Article  CAS  Google Scholar 

  55. Halder A, Ravishankar N (2007) Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater 19(14):1854–1858

    Article  CAS  Google Scholar 

  56. Halder A, Ravishankar N (2006) Gold Nanostructures from Cube-Shaped Crystalline Intermediates. J Phys Chem B 110(13):6595–6600

    Article  CAS  Google Scholar 

  57. Wang L-Y, Chen X, Zhan J, Sui Z-M, Zhao JK, Sun ZW (2004) Controllable morphology formation of gold nano- and micro-plates in amphiphilic block copolymer-based liquid crystalline phase. Chem Lett 33(6):720–721

    Article  CAS  Google Scholar 

  58. Uwada T, Asahi T, Masuhara H, Ibano D, Fujishiro M, Tominaga T (2007) Multiple resonance modes in localized surface plasmon of single hexagonal/triangular gold nanoplates. Chem Lett 36(2):318–319

    Article  CAS  Google Scholar 

  59. Huang W-L, Chen C-H, Huang MH (2007) Investigation of the Growth Process of Gold Nanoplates Formed by Thermal Aqueous Solution Approach and the Synthesis of Ultra-Small Gold Nanoplates. J Phys Chem C 111(6):2533–2538

    Article  CAS  Google Scholar 

  60. Wei H, Wang EK (2007) Submicrometre scale single-crystalline gold plates of nanometre thickness: synthesis through a nucleobase process and growth mechanism. Nanotechnology 18(29):295603/1–295603/5

    Google Scholar 

  61. Kawasaki H, Yonezawa T, Nishimura K, Arakawa R (2007) Fabrication of submillimeter-sized gold plates from thermal decomposition of HAuCl4 in two-component ionic liquids. Chem Lett 36(8):1038–1039

    Article  CAS  Google Scholar 

  62. Luo YL (2007) Preparation of single-crystalline gold microplates on a large scale by heating a HAuCl4-tartaric acid aqueous solution. Mater Lett 61(1):134–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Bose .

Editor information

Ranga Narayanan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarkar, J., Ramanath, G., John, V., Bose, A. (2008). Directed Synthesis of Micro-Sized Nanoplatelets of Gold from a Chemically Active Mixed Surfactant Mesophase. In: Narayanan, R. (eds) Interfacial Processes and Molecular Aggregation of Surfactants. Advances in Polymer Science, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2008_167

Download citation

Publish with us

Policies and ethics