Skip to main content

Practical Surfactant Mixing Rules Based on the Attainment of Microemulsion–Oil–Water Three-Phase Behavior Systems

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 218))

Abstract

Surfactant mixture are generally used to fine-tune formulations to an exact property value, such aschanging its hydrophilicity. To do so a precise characterization method has to be used. The presentedtechnique consists of the attainment of a microemulsion–oil–water Winsor III three-phasebehavior in a reference system. It allows one to classify surfactants in a hydrophilicity scalewith an accuracy equivalent to one tenth of HLB unit. The characterization method is applied in differentways, including simple and double scans, to an unknown surfactant and to mixtures of two base surfactants.It is also used to test the ideality of the mixing rule expression, which is equivalent to a linearvariation of the characteristic parameter versus the mixture composition. Conditions for linearity of themixing rule are discussed. The selective partitioning of different species results in non-linear mixingrules, whose detection is discussed according to the aspect of the three-phase region in different diagrams.Typical mixing rules for pH sensitive systems containing fatty acids and fatty amines are shown. Anionic–nonionicmixtures are found to exhibit a slight deviation from ideality. The special case of antagonistic anionic–cationicmixture is shown to be easily linearized by introducing a virtual, catanionic species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salager JL (1996) Quantifying the Concept of Physico-Chemical Formulation in Surfactant–Oil–Water Systems. Prog Colloid Polym Sci 100:137–142

    Article  CAS  Google Scholar 

  2. Shah DO, Schechter RS (eds) (1977) Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press, New York

    Google Scholar 

  3. Winsor P (1954) Solvent Properties of Amphiphilic Compounds. Butterworth, London

    Google Scholar 

  4. Bourrel M, Schechter RS (1988) Microemulsions and Related Systems. Marcel Dekker, New York

    Google Scholar 

  5. Reed RL, Healy RN (1977) Some physicochemical aspects of microemulsion flooding: a review. In: Shah DO, Schechter RS (eds) Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press, New York, pp 383–347

    Google Scholar 

  6. Shinoda K, Kunieda H (1983) Phase Properties of Emulsions: PIT and HLB. In: Becher P (ed) Encyclopedia of Emulsion Technology, vol 1: Basic Theory, Chap. 5. Marcel Dekker, NY, pp 337–367

    Google Scholar 

  7. Salager JL, Vasquez E, Morgan J, Schechter RS, Wade WH (1979) Optimum formulation of surfactant–water–oil systems for minimum interfacial tension and phase behavior. Soc Petrol Eng J 19:107–115

    Google Scholar 

  8. Bourrel M, Salager JL, Schechter RS, Wade WH (1980) A Correlation for Phase Behavior of Nonionic Surfactants. J Colloid Interface Sci 75:451–461

    Article  CAS  Google Scholar 

  9. Salager JL (1999) Microemulsions. In: Broze G (ed) Handbook of Detergents – Part A: Properties. Surfactant Sci Ser, vol 82, Chap 8. Marcel Dekker, New York, pp 253–302

    Chapter  Google Scholar 

  10. Salager JL, Márquez N, Graciaa A, Lachaise J (2000) Partitioning of ethoxylated octylphenol Surfactants in Microemulsion–oil–water Systems. Influence of Temperature and relation between Partitioning Coefficient and Physicochemical Formulation. Langmuir 16:5534–5539

    Article  CAS  Google Scholar 

  11. Márquez N, Antón RE, Graciaa A, Lachaise J, Salager JL (1995) Partitioning of Ethoxylated Alkyl Phenol Surfactants in Microemulsion–oil–water systems. Colloid Surface A 100:225–231

    Article  Google Scholar 

  12. Márquez N, Antón RE, Graciaa A, Lachaise J, Salager JL (1998) Partitioning of Ethoxylated Alkyl Phenol Surfactants in Microemulsion–oil–water systems. Part II. Influence of Hydrophobe Branching. Colloid Surface A 131:45–49

    Article  Google Scholar 

  13. Márquez N, Graciaa A, Lachaise J, Salager JL (2002) Partitioning of ethoxylated alkylphenol surfactants in microemulsion–oil–water systems: Influence of physicochemical formulation variables. Langmuir 18:6021–6024

    Article  Google Scholar 

  14. Márquez N, Bravo B, Ysambertt F, Chávez G, Subero N, Salager JL (2003) Analysis of Polyethoxylated Surfactants in Microemulsion–oil–water Systemas. Part III. Fractionation and Partitioning of Polyethoxylated Alcohol Surfactants. Anal Chim Acta 477:293–303

    Article  Google Scholar 

  15. Antón RE, Garcés N, Yajure A (1997) A correlation for three-phase behavior of cationic surfactant–oil–water systems. J Dispers Sci Technol 18:539–555

    Article  Google Scholar 

  16. Marzdall L (1977) The effect of alcohols on the hydrophilic–lipophilic balance of nonionic surfactants. J Colloid Interface Sci 60:570–573

    Article  Google Scholar 

  17. Hayes M, El-Emary M, Schechter RS, Wade WH (1979) The Relation between the EACNmin concept and Surfactant HLB. J Colloid Interface Sci 68(3):591–592

    Article  CAS  Google Scholar 

  18. Antón RE, Salager JL (1990) Effect of the electrolyte anion on the salinity contribution to optimum formulation of anionic surfactant microemulsions. J Colloid Interface Sci 140:75–81

    Article  Google Scholar 

  19. Bavière M, Schechter RS, Wade WH (1981) The influence of alcohols on microemulsion composition. J Colloid Interface Sci 81:266–299

    Article  Google Scholar 

  20. Fotland P, Skauge A (1986) Ultralow interfacial tension as a function of pressure. J Dispers Sci Technol 7:563–579

    Article  CAS  Google Scholar 

  21. Skauge A, Fotland P (1990) Effect of Pressure and Temperature on the Phase Behavior of Microemulsions. SPE Reserv Engin 5:601–608

    CAS  Google Scholar 

  22. Salager JL, Antón RE (1999) Ionic Microemulsions. In: Kumar P, Mittal K (eds) Handbook of Microemulsions Science and Technology, Chap 8. Marcel Dekker, New York, pp 247–280

    Google Scholar 

  23. Salager JL, Antón RE, Andérez JM, Aubry JM (2001) Formulation des microémulsions par la méthode HLD. In: Techniques de l'Ingénieur. Thème: Chimie et Bio. Base: Formulation. Dossier J2157. Editions T.I. Paris

    Google Scholar 

  24. Nardello V, Chailloux N, Poprawski J, Salager JL, Aubry JM (2003) HLD concept as a tool for the characterization of cosmetic hydrocarbon oils. Polym Int 52:602–609

    Article  CAS  Google Scholar 

  25. Pierlot C, Poprawski J, Catté M, Salager JL, Aubry JM (2003) Experimental design for the determination of the physicochemical parameters of optimum water–oil surfactant systems. Polym Int 52:614–618

    Article  CAS  Google Scholar 

  26. Poprawski J, Catté M, Marquez L, Marti MJ, Salager JL, Aubry JM (2003) Application of hydrophilic–lipophilic deviation formulation concept to microemulsions containing pine oil and nonionic surfactants. Polym Int 52:629–632

    Article  CAS  Google Scholar 

  27. Doe PH, Wade WH, Schechter RS (1977) Alkyl benzene sulfonates for producing low interfacial tensions between hydrocarbons and water. J Colloid Interface Sci 59:525–531

    Article  CAS  Google Scholar 

  28. Doe P, El-Emary M, Wade WH, Schechter RS (1977) Surfactants for producing low interfacial tension II. Linear alkylbenzene sulfonates with additional alkyl groups. J Am Oil Chem Soc 54:570

    Article  CAS  Google Scholar 

  29. Doe P, El-Emary M, Wade WH, Schechter RS (1978) Surfactants for producing low interfacial tension III. Di- and Tri-alkylbenzene sulfonates. J Am Oil Chem Soc 55:513

    Article  CAS  Google Scholar 

  30. Graciaa A, Barakat Y, El-Emary M, Fortney L, Schechter RS, Yiv S, Wade WH (1982) HLB, CMC and phase behavior as related to hydrophobe branching. J Colloid Interface Sci 89:209–216

    Article  CAS  Google Scholar 

  31. Johansson I (2004) Does Hydrophobe Branching make a Surfactant more or less Hydrophilic? Spec Chem Mag 11:38–40

    Google Scholar 

  32. Tropsch J, Baur R (2004) How does branching influence surfactant properties? Isotridecanols as surfactant base alcohols. CD Proc 6th World Surfactant Congress CESIO, Berlin, Germany, June 21–23

    Google Scholar 

  33. Salager JL, Bourrel M, Schechter RS, Wade WH (1979) Mixing rules for optimum phase behavior formulations of surfactant–oil–water systems. Soc Petrol Eng J 19:271–278

    CAS  Google Scholar 

  34. Wade WH, Morgan JC, Jacobson JK, Schechter RS (1977) Low interfacial tension involving mixtures of surfactants. Soc Petrol Eng J 17:122

    CAS  Google Scholar 

  35. Hayes M, Bourrel M, El-Emary M, Schechter RS, Wade WH (1979) Interfacial tension and behavior of nonionic surfactants. Soc Petrol Eng J 19:349–356

    CAS  Google Scholar 

  36. Antón RE, Salager JL (1985) An Improved Graphic Method to Characterize a Surfactant. J Dispers Sci Technol 6:245–253

    Article  Google Scholar 

  37. Salager JL, Antón RE (1983) Physico-Chemical Characterization of a Surfactant – a quick and precise method. J Dispers Sci Technol 4:253–273

    Article  CAS  Google Scholar 

  38. Koukounis C, Wade WH, Schecheter RS (1983) Phase Partitioning of anionic and nonionic Surfactant Mixtures. Soc Petrol Eng J 23:301–310

    CAS  Google Scholar 

  39. Salager JL (1977) Physico-chemical properties of surfactant–oil–water mixture: phase behavior, microemulsion formation and interfacial tension. PhD Dissertation, University of Texas at Austin

    Google Scholar 

  40. Martinez G (1986) Existencia de Comportamiento trifásico en sistemas surfactante–agua–aceite. MSc Thesis, Universidad de Los Andes, Mérida Venezuela

    Google Scholar 

  41. Salager JL, Antón RE, Sabatini DA, Harwell JH, Acosta E, Tolosa L (2005) Enhancing Solubilization in Microemulsions – State of the Art and Current Trends. J Surfact Deterg 8(1):3–21

    Article  CAS  Google Scholar 

  42. Barton AF (1983) Handbook of Solubility Parameters and other Parameters. CRC Press, Boca Raton

    Google Scholar 

  43. Hansen CM (1967) The three-dimensional solubility parameter – Key to paint component affinities I. Solvents, polymers, and resins. J Paint Technol 39:104

    CAS  Google Scholar 

  44. Graciaa A, Lachaise J, Sayous JG, Grenier P, Yiv S, Schechter RS, Wade WH (1983) The partitioning of complex surfactant mixtures between oil–water–microemulsion phases at high surfactant concentration. J Colloid Interface Sci 93:474–486

    Article  CAS  Google Scholar 

  45. Graciaa A, Lachaise J, Bourrel M, Osborne-Lee I, Schechter RS, Wade WH (1987) Partitioning of nonionic and anionic surfactant mixtures between oil/microemulsion/water phases. SPE Reserv Eng 2:305–331

    CAS  Google Scholar 

  46. Graciaa A, Andérez JM, Bracho C, Lachaise J, Salager JL, Tolosa L, Ysambertt F (2006) The Selective Partitioning of the Oligomers of Polyethoxylated Surfactant Mixtures between Interface and Oil and Water bulk Phases. Adv Colloid Interface Sci 123–126:63–73

    Article  Google Scholar 

  47. Becher P (1977) Emulsions: Theory and Practice, reprint 2nd ed. Robert Krieger Publishing Co. Huntington NY

    Google Scholar 

  48. Wade WH, Morgan J, Schechter RS, Jacobson JK, Salager JL (1978) Interfacial tension and phase behavior of surfactant systems. Soc Petrol Eng J 18:242

    CAS  Google Scholar 

  49. Bourrel M, Chambu C, Schechter RS, Wade WH (1982) The Topology of Phase Boundaries for oil/brine/surfactant Systems and its Relationship to Oil Recovery. Soc Petrol Eng J 22:28–36

    CAS  Google Scholar 

  50. Bourrel M, Chambu C (1983) The Rules for Achieving High Solubilization of Brine and Oil by Amphiphilic Molecules. Soc Petrol Eng J 23:327–338

    CAS  Google Scholar 

  51. Kunieda H, Shinoda K (1985) Evaluation of the hydrophile–lipophile balance (HLB) of nonionic surfactants I. Multisurfactant systems. J Colloid Interface Sci 107:107–121

    Article  CAS  Google Scholar 

  52. Kahlweit M, Strey R, Firman P (1986) Search for tricritical points in ternary systems: Water–oil–nonionic amphiphile. J Phys Chem 90:671

    Article  CAS  Google Scholar 

  53. Kahlweit M, Strey R, Firman P, Hasse D, Jen J, Schomacker R (1988) General patterns of the phase behavior of mixtures of H2O, non polar solvents, amphiphiles and electrolytes. Langmuir 4:499

    Article  CAS  Google Scholar 

  54. Andérez JM, Bracho CL, Sereno S, Salager JL (1993) Effect of surfactant concentration on the properties of anionic–nonionic mixed surfactant–oil–brine systems. Colloid Surface A 76:249–256

    Article  Google Scholar 

  55. Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfatant. J Colloid Interface Sci 26:70–74

    Article  CAS  Google Scholar 

  56. Salager JL, Miñana-Perez M, Perez-Sanchez M, Ramirez-Gouveia M, Rojas CI (1983) Surfactant–oil–water systems near the affinity inversion. Part III: The two kinds of emulsion inversion. J Dispers Sci Technol 4:313

    Article  CAS  Google Scholar 

  57. Antón RE, Castillo P, Salager JL (1986) Surfactant–oil–water systems near the affinity inversion. Part IV: Emulsion inversion temperature. J Dispers Sci Technol 7:319

    Article  Google Scholar 

  58. Miñana-Perez M, Jarry P, Perez-Sanchez M, Ramirez-Gouveia M, Salager JL (1986) Surfactant–oil–water systems near the affinity inversion. Part V: Properties of emulsions. J Dispers Sci Technol 7:331

    Article  Google Scholar 

  59. Shinoda K, Arai H (1967) The effect of phase volume on the phase inversion temperature of emulsions stabilized with nonionic surfacatnts. J Colloid Interface Sci 25:429

    Article  CAS  Google Scholar 

  60. Salager JL, Márquez N, Antón RE, Graciaa A, Lachaise J (1995) Retrograde Transition in the Phase Behavior of Surfactant–oil–water systems produced by an alcohol scan. Langmuir 11:37–41

    Article  CAS  Google Scholar 

  61. Cash L, Cayias JL, Fournier G, MacAllister D, Shares T, Schechter RS, Wade WH (1977) The application of low interfacial tension scaling rules to binary hydrocarbon mixtures. J Colloid Interface Sci 59:39–44

    Article  CAS  Google Scholar 

  62. Queste S, Salager JL, Strey R, Aubry JM (2007) The EACN scale for oil classification revisited thanks to fish diagrams. J Colloid Interface Sci 312:98–107

    Article  CAS  Google Scholar 

  63. Cayias JL, Schechter RS, Wade WH (1976) Modeling Crude Oils for Low Interfacial tension. Soc Petrol Eng J 16:351–357

    CAS  Google Scholar 

  64. Graciaa A, Lachaise J, Cucuphat C, Bourrel M, Salager JL (1993) Interfacial segregation of ethyl oleate/hexadecane oil mixture in microemulsion systems. Langmuir 9:1473–1478

    Article  CAS  Google Scholar 

  65. Graciaa A, Lachaise J, Cucuphat C, Bourrel M, Salager JL (1993) Improving Solubilization in microemulsion with aditives – Part 1: The Lipophilic Linker role. Langmuir 9:3371–3374

    Article  CAS  Google Scholar 

  66. Graciaa A, Lachaise J, Cucuphat C, Bourrel M, Salager JL (1993) Improving Solubilization in microemulsion with aditives – Part 2: Long chain alcohols as lipophilic linkers. Langmuir 9:669–672

    Article  CAS  Google Scholar 

  67. Acosta E, Uchiyama H, Sabatini D, Harwell JH (2002) The Role of Hydrophilic Linker. J Surfact Deterg 5:151–157

    Article  CAS  Google Scholar 

  68. Acosta E, Mai PD, Harwell JH, Sabatini DA (2003) Linker-modified microemulsions for a variety of oils and surfactants. J Surfact Deterg 6:353–363

    Article  CAS  Google Scholar 

  69. Binks BP, Fletcher PDI, Taylor DJF (1998) Microemulsions Stabilized by Ionic/Nonionic Surfactant Mixtures. Effect of Partitioning of the Nonionic Surfactant into the Oil. Langmuir 14:5324–5326

    Article  CAS  Google Scholar 

  70. Antón RE, Salager JL, Graciaa A, Lachaise J (1992) Surfactant–oil–water systems near the affinity inversion – Part VIII: Optimum Formulation and phase behavior of mixed anionic-nonionic systems versus temperature. J Dispers Sci Technol 13:565

    Article  Google Scholar 

  71. Antón RE, Mosquera F, Oduber M (1995) Anionic–nonionic surfactant mixture to attain emulsion insensitivity to temperature. Prog Colloid Polym Sci 98:85

    Article  Google Scholar 

  72. Antón RE, Rivas H, Salager JL (1996) Surfactant–oil–water systems near the affinity inversion – Part X: Emulsions made with anionic–nonioic surfactant mixtures. J Dispers Sci Technol 17:553

    Article  Google Scholar 

  73. Kunieda H, Solans C (1997) How to prepare microemulsions: Temperature-insensitive microemulsions. In: Kunieda H, Solans C (eds) Industrial Applications of Microemulsions. Marcel Dekker, New York

    Google Scholar 

  74. Cratin PD (1969) A quantitative characterization of pH dependent systems. Ind Eng Chem 61:35–45

    Article  Google Scholar 

  75. Antón RE, Graciaa A, Lachaise J, Salager JL (1996) Phase behavior of pH-dependent systems containing oil-water and fatty acid, fatty amine or both. 4th World Surfactants Congress, Barcelona, Spain June 3–7, 1996. Proceedings Vol 2, 244–256, Edited for A.E.P.S.A.T. by Roger de Llúria, Barcelona, Spain

    Google Scholar 

  76. Mendez Z, Antón RE, Salager JL (1999) Surfactant–oil–water systems near the affinity inversion. Part XI: pH sensitive emulsions containing carboxylic acids. J Dispers Sci Technol 20:883–892

    Article  CAS  Google Scholar 

  77. Bravo B, Marquez N, Ysambertt F, Chavez G, Caceres A, Bauza R, Graciaa A, Lachaise J, Salager JL (2006) Phase behavior of fatty acid/oil/water systems: Effect of the acid chain length. J Surfact Deterg 9:141–146

    Article  CAS  Google Scholar 

  78. Rivas H, Gutierrez X, Ziritt JL, Antón RE, Salager JL (1997) Microemulsion and optimum formulation occurrence in pH-dependent systems as found in alkaline enhanced oil recovery. In: Solans C, Kunieda H (eds) Industrial Applications of Microemulsions, Chap 15. Marcel Dekker, New York, pp 305–329

    Google Scholar 

  79. Deng S, Yu G, Jiang Z, Zhang R, Ting YP (2005) Destabilization of droplets in produced water from ASP flooding. Colloids Surf A 252:113–119

    Article  CAS  Google Scholar 

  80. Acevedo S, Ranaudo MA, Gutierrez LB, Escobar G (1996) Adsorption of high and low molecular weight natural surfactants at the crude water–oil interface and their influence on γ-pH and γ-time behavior. In: Chattopadhay AK, Mittal KL (eds) Surfactants in Solutions. Marcel Dekker, New York, pp 221–231

    Google Scholar 

  81. Acevedo S, Gutierrez X, Rivas H (2001) Bitumen-in-water emulsion stabilized with natural surfactants. J Colloid Interface Sci 242:230–238

    Article  CAS  Google Scholar 

  82. Liu Q, Dong M, Ma S, Tu Y (2007) Surfactant enhanced alkaline flooding for western canadan heavy oil recovery. Colloids Surf A 293:63–71

    Article  CAS  Google Scholar 

  83. Bourrel M, Bernard D, Graciaa A (1984) Properties of binary mixtures of anionic and cationic surfactants: Micellization and Microemulsions. Tenside Deterg 21:311–318

    CAS  Google Scholar 

  84. Antón RE, Gómez D, Graciaa A, Lachaise J, Salager JL (1993) Surfactant–oil–water systems near the affinity inversion, Part IX. Optimum Formulation and Phase behavior of mixed anionic–cationic systems. J Dispers Sci Technol 14:401–416

    Article  Google Scholar 

  85. Upadhyaya A, Acosta EJ, Scamehorn JF, Sabatini DA (2006) Microemulsion phase behavior of anionic–cationic surfactant mixtures: Effet of tail branching. J Surfact Deterg 9:169–179

    Article  CAS  Google Scholar 

  86. Antón RE (1992) Contribution to the study of the phase behavior of systems containing a surfactant mixture, oil and water (in French). Doctoral dissertation, University of Pau, France

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Salager .

Editor information

Ranga Narayanan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antón, R.E., Andérez, J.M., Bracho, C., Vejar, F., Salager, JL. (2008). Practical Surfactant Mixing Rules Based on the Attainment of Microemulsion–Oil–Water Three-Phase Behavior Systems. In: Narayanan, R. (eds) Interfacial Processes and Molecular Aggregation of Surfactants. Advances in Polymer Science, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2008_163

Download citation

Publish with us

Policies and ethics