Skip to main content

Equilibrium Adsorption of Surfactants at the Gas–Liquid Interface

  • Chapter
  • First Online:
Interfacial Processes and Molecular Aggregation of Surfactants

Part of the book series: Advances in Polymer Science ((POLYMER,volume 218))

Abstract

Theories on equilibrium adsorption of surfactants at the gas-liquid interface have been reviewed andvalidated. For the adsorption of nonionic surfactants, the thermodynamic approach of Butler has been used,in conjunction with the Lucassen-Reynders dividing surface, to describe the adsorption layer state and adsorptionisotherm as a function of partial molar area. Applying the Butler–Lucassen–Reynders modelingapproach provides the generalized adsorption isotherm and equation of state, which is capable of describingthe effect of the surfactant orientational states and aggregation at the interface. For Langmuirian andFrumkinian surfactant adsorption, the Butler–Lucassen–Reynders modeling approach produces thesame predictions for surface tension as described by the well-known Langmuir and Frumkin adsorption isotherms.The adsorption of ionic surfactants and ionic–nonionic surfactant mixtures has been described followingthe traditional approach with the Gibbs dividing surface and Gibbs adsorption isotherm, and the Gouy-Chapmanelectrical double layer electrostatics. The developed theories have been validated through comparison withthe experimental data on surface tension. Regression analysis by minimizing the reduced chi-square hasbeen used to best fit the models to the experimental data to obtain the model free parameters. For thesurfactant homologous series of octaethyleneglycol-n-alkyl ethers C n H2n+1O(CH2CH2)8H,the negative sign of the intermolecular interaction parameter obtained in the regression analysis of surfacetension has not been resolved by the model for the surfactant orientational state at the interface. Forthe surfactant series, the surface aggregation model gives physically consistent fitting and parameters.The models for adsorption of ionic surfactants have been validated using the surface tension of a seriesof sodium n-hexadecylsulfates with the sulfate group located at the differentpositions in the hydrocarbon chain, a homologue series of sodium alkyl sulfates, and a seriesof alkali dodecylsulfates. Improved adsorption models for ionic surfactants have been developed throughfundamental modeling of the adsorption processes and the molecular interactions in the adsorption layers.The improved predictions reduce the required number of free parameters and agree with the surface tensionand surface potential data better than the conventional models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shah DO (ed) (1998) Micelles, Microemulsions, and Monolayers. Marcel Dekker, New York

    Google Scholar 

  2. Levich VG (1962) Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  3. Adamson AW, Gast AP (1997) Physical Chemistry of Surfaces, 6th ed. John Wiley & Sons Inc., New York

    Google Scholar 

  4. Karakashev SI, Manev ED, Nguyen AV (2004) Adv Colloid Interface Sci 112:31–36

    Article  CAS  Google Scholar 

  5. Karakashev SI, Manev ED (2002) J Colloid Interface Sci 248:477

    Article  CAS  Google Scholar 

  6. Fainerman VB, Miller R, Wuestneck R (1997) J Phys Chem B 101:6479

    Article  CAS  Google Scholar 

  7. Lucassen-Reynders EH, Van den Tempel M (1967) Chem Phys Appl Surf Active Subst 2:779

    CAS  Google Scholar 

  8. Davies JT, Rideal EK (1963) Interfacial Phenomena. Academic Press, New York

    Google Scholar 

  9. Borwankar RP, Wasan DT (1988) Chem Eng Sci 43:1323

    Article  CAS  Google Scholar 

  10. Kralchevsky PA, Danov KD, Broze G, Mehreteab A (1999) Langmuir 15:2351

    Article  CAS  Google Scholar 

  11. Karakashev S, Tsekov R, Manev E (2001) Langmuir 17:5403

    Article  CAS  Google Scholar 

  12. Fainerman VB, Miller R, Aksenenko EV, Makievski AV, Kragel J, Loglio G, Liggieri L (2000) Adv Colloid Interface Sci 86:83

    Article  CAS  Google Scholar 

  13. Ruckenstein E, Bhakta A (1994) Langmuir 10:2694

    Article  CAS  Google Scholar 

  14. Butler J (1932) Proc R Soc Ser A 138:348

    Article  Google Scholar 

  15. Lucassen-Reynders EH (1964) J Coll Sci 19:584

    Article  CAS  Google Scholar 

  16. Gibbs JW (1961) The Scientific Papers of J. Willard Gibbs. Dover, New York

    Google Scholar 

  17. Fainerman VB, Lucassen-Reynders EH, Miller R (1998) Colloids Surfaces A 143:141

    Article  CAS  Google Scholar 

  18. Prigogine I (1968) The molecular theory of solutions. North-Holland, Amsterdam

    Google Scholar 

  19. Guggenheim EA (1952) Mixtures. Clarendon Press, Oxford

    Google Scholar 

  20. Read RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids, 3rd ed. McGraw-Hill, New York

    Google Scholar 

  21. Lucassen-Reynders EH (1994) Colloids Surfaces A 91:79

    Article  CAS  Google Scholar 

  22. Frumkin AZ (1925) Physik Chem 116:501

    CAS  Google Scholar 

  23. Helfand E, Fish H, Lebowitz J (1961) J Chem Phys 34:1037

    Article  CAS  Google Scholar 

  24. Parsons R (1964) J Electroanal Chem 7:136

    CAS  Google Scholar 

  25. Lucassen-Reynders EH (1966) J Phys Chem 70:1777

    Article  CAS  Google Scholar 

  26. Lucassen-Reynders EH (1981) Anionic Surfactants. In: Lucassen-Reynders EH (ed) Physical Chemistry of Surfactant Action. Marcel Dekker, New York

    Google Scholar 

  27. Joos P (1967) Bull Soc Chim Belg 76:591

    Article  CAS  Google Scholar 

  28. Damaskin BB, Frumkin AN, Dyatkina SL (1967) Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, p 2171

    Google Scholar 

  29. Karolczak M, Mohilner DM (1982) J Phys Chem 86:2845

    Article  CAS  Google Scholar 

  30. Hua XY, Rosen MJ (1982) J Colloid Interface Sci 90:212

    Article  CAS  Google Scholar 

  31. Fainerman VB, Lylyk SV (1983) Kolloidnyi Zhurnal 45:500

    CAS  Google Scholar 

  32. Rodakiewitz-Nowak J (1982) J Colloid Interface Sci 85:586

    Article  Google Scholar 

  33. Krotov VV (1985) Kolloidnyi Zhurnal 47:1075

    CAS  Google Scholar 

  34. Hamdi M, Schuhmann D, Vanel P, Tronel-Peyroz E (1986) Langmuir 2:342

    Article  CAS  Google Scholar 

  35. Karakashev SI, Manev ED (2003) J Colloid Interface Sci 259:171

    Article  CAS  Google Scholar 

  36. Bevington PR, Robinson DK (2003) Data reduction and error analysis for the physical sciences. McGraw Hill, Boston

    Google Scholar 

  37. Maldonado-Valderrama J, Martin-Molina A, Martin-Rodriguez A, Cabrerizo-Vilchez MA, Galvez-Ruiz MJ, Langevin D (2007) J Phys Chem C 111(6):2715–2723

    Article  CAS  Google Scholar 

  38. Alahverdjieva VS, Grigoriev DO, Fainerman VB, Aksenenko EV, Miller R, Moehwald H (2008) J Phys Chem B 112(7):2148–2155

    Article  Google Scholar 

  39. Robinson RA, Stokes RH (1959) Electrolyte Solutions, 2nd ed. Butterworths Scientific Publications, London

    Google Scholar 

  40. Hachisu S (1970) J Colloid Interface Sci 33:445

    Article  CAS  Google Scholar 

  41. Hunter RJ (1981) Zeta Potential in Colloid Science. Academic Press, London

    Google Scholar 

  42. Ivanov IB, Ananthapadmanabhan KP, Lips A (2006) Adv Colloid Interface Sci 123–126:189-212

    Google Scholar 

  43. Para G, Warszynski P (2007) Colloids Surface A 300(3):346–352

    Article  CAS  Google Scholar 

  44. Jarek E, Wydro P, Warszynski P, Paluch M (2006) J Colloid Interface Sci 293(1):194–202

    Article  CAS  Google Scholar 

  45. Ueno M, Takasawa Y, Miyashige H, Tabata Y, Meguro K (1981) Colloid Polym Sci 259:761

    Article  CAS  Google Scholar 

  46. Vargaftik NB, Volkov BN (1983) J Phys Chem Ref. Data 12(3):817–820

    Article  CAS  Google Scholar 

  47. Hill TL (1960) An Introduction to Statistical Thermodynamics. Addison-Wesley, Reading, MA

    Google Scholar 

  48. Adamson AW (1982) Physical Chemistry of Surfaces, 4th ed. John Wiley and Sons Inc., New York

    Google Scholar 

  49. Pethica BA, Glasser ML, Mingins J (1981) J Colloid Interface Sci 81:41

    Article  CAS  Google Scholar 

  50. Gurkov TD, Kralchevsky PA, Nagayama K (1996) Colloid Polym Sci 274:227

    Article  CAS  Google Scholar 

  51. Fainerman VB, Miller R, Aksenenko EV, Makievski AV, Kragel J, Loglio G, Liggieri L (2000) Adv Colloid Interface Sci 86:83

    Article  CAS  Google Scholar 

  52. Barneveld PA, Scheutjens JMHM, Lyklema J (1991) Colloids Surfaces 52:107

    Article  CAS  Google Scholar 

  53. Pushel F (1966) Tenside 3:71

    Google Scholar 

  54. Tajima K (1973) Nippon Kagaku Kaishi, 883

    Google Scholar 

  55. Lu JR, Marrocco A, Su T, Thomas RK, Penfold J (1993) J Colloid Interface Sci 158:303

    Article  CAS  Google Scholar 

  56. Ingram BT (1980) Colloid Polym Sci 258:191

    Article  CAS  Google Scholar 

  57. Savchik J, Chang B, Rabitz J (1983) J Phys Chem 87:1990

    Article  CAS  Google Scholar 

  58. Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, London

    Google Scholar 

  59. Yoon RH, Yordan JL (1986) J Colloid Interface Sci 113:430

    Article  CAS  Google Scholar 

  60. Okada K, Akagi Y, Kogure M, Yoshioka N (1990) Can J Chem Eng 68:393

    Article  CAS  Google Scholar 

  61. Paruchuri VK, Nguyen AV, Miller JD (2004) Colloids Surfaces A 250:519

    Article  CAS  Google Scholar 

  62. Ivanov IB, Marinova KG, Danov KD, Dimitrova D, Ananthapadmanabhan KP, Lips A (2007) Adv Colloid Interface Sci 134–135:105–124

    Article  Google Scholar 

  63. Vacha R, Jungwirth P, Chen J, Valsaraj K (2006) Phys Chem Chem Phys 8(38):4461–4467

    Article  CAS  Google Scholar 

  64. Howes AJ, Radke CJ (2007) Langmuir 23(4):1835–1844

    Article  CAS  Google Scholar 

  65. Howes AJ, Radke CJ (2007) Langmuir 23(23):11580–11586

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan D. Miller .

Editor information

Ranga Narayanan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karakashev, S.I., Nguyen, A.V., Miller, J.D. (2008). Equilibrium Adsorption of Surfactants at the Gas–Liquid Interface. In: Narayanan, R. (eds) Interfacial Processes and Molecular Aggregation of Surfactants. Advances in Polymer Science, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2008_161

Download citation

Publish with us

Policies and ethics