Skip to main content

A Proton-Conducting Polymer Membrane as Solid Electrolyte – Function and Required Properties

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 215))

Abstract

Fuel cells are considered as a major energy conversion technology of the future, due to certain inherent advantages of electrochemical conversion processes as compared to thermal combustion processes. Polymer electrolyte fuel cells (PEFCs), operating with hydrogen and air or oxygen at temperatures of around 100 °C, utilize a proton-conducting polymer membrane as solid electrolyte. In this configuration, the proton-conducting polymer membrane has to fulfill several functions: (i) the electrolyte function for surface and bulk ion conduction and (ii) the separator function for gas (reactant) separation. Furthermore, the membrane is part of the gasket system, requiring certain specific mechanical properties. This ensemble of required specifications asks for a comprehensive approach in membrane development for this application. In this short introductory chapter, we summarize some of the general aspects of membrane development for polymer electrolyte fuel cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vielstich W, Gasteiger HA, Lamm A (eds) (2003) Handbook of Fuel Cells – Fundamentals, Technology and Application. John Wiley & Sons, Chichester

    Google Scholar 

  2. Grove WR (1839) Philos Mag Ser 3 14:127

    Google Scholar 

  3. Grove WR (1842) Philos Mag Ser 3 21:417

    Google Scholar 

  4. Bacon FT (1954) BEAMA J 6:122

    Google Scholar 

  5. Grubb WT (1959) US Patent 2913511

    Google Scholar 

  6. Fickett AP (1970) Proc Symp Battery Separators, Columbus Section of the Electrochemical Society, p 354

    Google Scholar 

  7. Grot WR (1972) Chem Ing Technol 44:167

    Article  CAS  Google Scholar 

  8. Grot WR (1975) Chem Ing Technol 47:617

    Article  CAS  Google Scholar 

  9. Scherer GG (1990) Ber Bunsenges Phys Chem 94:1008

    CAS  Google Scholar 

  10. Chernyshov SF (1982) J Res Inst Catal Hokkaido Univ 30:179

    CAS  Google Scholar 

  11. Grot WR (1982) European Patent 0066369

    Google Scholar 

  12. Srinivasan S, Ticianelli EA, Derouin CR, Redondo A (1988) J Power Source 22:359

    Article  CAS  Google Scholar 

  13. Raistrick ID (1989) US Patent 4876115

    Google Scholar 

  14. Xie Z, Navessin T, Shi Z, Chow R, Wang Q, Song D, Andreaus B, Eikerling M, Liu Z (2005) J Electrochem Soc 152:A1171

    Article  CAS  Google Scholar 

  15. Wilson M, Gottesfeld S (1992) J Appl Electrochem 22:1

    Article  CAS  Google Scholar 

  16. Debe M (2003) Novel Catalysts, Catalyst Supports and Catalysts Coated Membrane Methods. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of Fuel Cells – Fundamentals, Technology and Application, Part 3. John Wiley & Sons, Chichester, p 576

    Google Scholar 

  17. Büchi FN, Wakizoe M, Srinivasan S (1996) J Electrochem Soc 143:927

    Article  Google Scholar 

  18. Xie Z, Holdcroft S (2004) J Electroanal Chem 568C:247

    Article  CAS  Google Scholar 

  19. Kreuer KD (1992) Conduction mechanisms in materials with volatile molecules. In: Colomban P (ed) Proton Conductors. Cambridge University Press, Cambridge, p 474

    Google Scholar 

  20. Schmidt TJ, Baurmeister J (2006) ECS Trans 3 1:861

    Article  Google Scholar 

  21. Scharfenberger G, Meyer WH, Wegner G, Schuster M, Kreuer KD, Maier J (2006) Fuel Cells 6:237

    Article  CAS  Google Scholar 

  22. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637

    Article  CAS  Google Scholar 

  23. Boillat P, Kramer D, Seyfang BC, Frei G, Lehmann E, Scherer GG, Wokaun A, Ichikawa Y, Tasaki Y, Shinohara K (2008) Electrochem Commun 10:546

    Article  CAS  Google Scholar 

  24. Mittal VO, Kunz HR, Fenton JM (2006) Electrochem Soc Trans 3:507

    CAS  Google Scholar 

  25. Makharia R, Kocha SS, Yu PT, Gittleman C, Miller D, Lewis C, Wagner RT, Gasteiger HA (2005) Meeting Abstracts 208th Meeting of The Electrochemical Society, Los Angeles, USA, Oct 16–21, Abstract #1165

    Google Scholar 

  26. Gasteiger HA (2005) Durability of Polymer Electrolyte Membrane Fuel Cell Materials. Int Conf Solid State Ionics (SSI-15), Baden-Baden, Germany, July 17–22, Oral Contribution #72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Gubler .

Editor information

Günther G. Scherer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gubler, L., Scherer, G.G. (2008). A Proton-Conducting Polymer Membrane as Solid Electrolyte – Function and Required Properties. In: Scherer, G.G. (eds) Fuel Cells I. Advances in Polymer Science, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2008_156

Download citation

Publish with us

Policies and ethics