Skip to main content

Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording

  • Chapter
  • First Online:
Photoresponsive Polymers I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 213))

Abstract

Optical techniques for three-dimensional micro- and nanostructuring of transparent and photo-sensitivematerials are reviewed with emphasis on methods of manipulation of the optical field, such as beam focusing,the use of ultrashort pulses, and plasmonic and near-field effects. The linear and nonlinear optical responseof materials to classical optical fields as well as exploitation of the advantages of quantum lithographyare discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  CAS  Google Scholar 

  2. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  CAS  Google Scholar 

  3. Strickler JH, Webb WW (1990) Two-photon excitation in laser scanning fluorescence microscopy. SPIE Proc 1398:107–118

    Google Scholar 

  4. Denk W, Strickler J, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  Google Scholar 

  5. Strickler JH, Webb WW (1991) Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt Lett 16:1780–1782

    Article  CAS  Google Scholar 

  6. Wu ES, Strickler JH, Harrell WR, Webb WW (1992) Two-photon lithography for microelectronic application. SPIE Proc 1674:776–782

    Article  CAS  Google Scholar 

  7. Masters BR (ed) (2003) Selected Papers on multiphoton excitation microscopy. SPIE, Bellingam

    Google Scholar 

  8. Bhawalkar J, He GS, Prasad PN (1996) Nonlinear multiphoton process in organic and polymeric materials. Rep Prog Phys 59:1041–1070

    Article  CAS  Google Scholar 

  9. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprün. Ann Phys Lpz 9:273–295

    Article  Google Scholar 

  10. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134

    Article  CAS  Google Scholar 

  11. Seet KK (2006) Fabrication of 3D spiral strucure photonic crystals by femtosecond laser and their optical characterization. PhD thesis, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan

    Google Scholar 

  12. MicroChem Corp (2007) SU-8 resist product line. http://www.microchem.com/products/su_eight.htm ; last visited 28 Sept 2007

  13. Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59:427–471

    Article  Google Scholar 

  14. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156–159

    Article  CAS  Google Scholar 

  15. Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 94(10):4853–4860

    Article  CAS  Google Scholar 

  16. Misawa H, Juodkazis S (1999) Photophysics and photochemistry of a laser manipulated microparticle. Prog Polym Sci 24:665–697

    Article  CAS  Google Scholar 

  17. Straub M, Gu M (2002) Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. Opt Lett 27:1824–1826

    Article  CAS  Google Scholar 

  18. Juodkazis S, Matsuo S, Misawa H, Mizeikis V, Sun AMB, Tokuda Y, Takahashi M, Yoko T, Nishii J (2002) Application of femtosecond laser pulses for microfabrication of transparent media. Appl Surf Sci 197–198:705–709

    Article  Google Scholar 

  19. Serbin J, Ovsianikov A, Chichkov B (2004) Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt Express 12:5221–5228

    Google Scholar 

  20. Takada K, Sun H-B, Kawata S (2005) Improved spatial resolution and surface roughness in photopolymerization based laser nanowriting. Appl Phys Lett 86:071122–071124

    Article  Google Scholar 

  21. Qi F, Li Y, Tan D, Yang H, Gong Q (2007) Polymerized nanotips via two-photon photopolymerization. Opt Express 15:971–977

    Article  CAS  Google Scholar 

  22. Mizeikis V, Seet KK, Juodkazis S, Misawa H (2004) Three-dimensional woodpile photonic crystal templates for infrared spectral range. Opt Lett 29(17):2061–2063

    Article  Google Scholar 

  23. Toader O, John S (2001) Proposed square spiral microfabrication architecture for large three-dimensional photonic band crystals. Science 292:1133–1135

    Article  CAS  Google Scholar 

  24. Seet KK, Mizeikis V, Juodkazis S, Misawa H (2006) Three-dimensional horizontal circular spirals photonic crystals with stopgaps below 1 μm. Appl Phys Lett 88(22):221101

    Article  Google Scholar 

  25. Seet KK, Mizeikis V, Juodkazis S, Misawa H (2005) Spiral three-dimensional photonic crystals for telecomunications spectral range. Appl Phys A 82(4):683–688. doi:10.1007/s00339–005-3459-y

    Google Scholar 

  26. Seet KK, Mizeikis V, Juodkazis S, Misawa H (2006) Three-dimentional circular spiral potonic crystal structures recorded by femtosecond pulses. Non-Crystal J Solids 352(23–25):2390–2394

    Article  CAS  Google Scholar 

  27. Sun H, Mizeikis V, Juodkazis S, Ye J-Y, Matsuo S, Misawa H (2001) Microcavities in polymeric photonic crystals. Appl Phys Lett 79(1):1–3

    Article  CAS  Google Scholar 

  28. Maznev AA, Crimmins TF, Nelson KA (1998) How to make femtosecond pulses overlap. Opt Lett 23:1378–1380

    Article  CAS  Google Scholar 

  29. Kondo T, Matsuo S, Juodkazis S, Mizeikis V, Misawa H (2003) Three-dimensional recording by femtosecond pulses in polymer materials. Photopolym J Sci Tech 16(3):427–432

    Article  CAS  Google Scholar 

  30. Kondo T, Juodkazis S, Mizeikis V, Matsuo S, Misawa H (2006) Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography. New Phys J 8(10):250. doi:10.1088/1367–2630/8/10/250

    Google Scholar 

  31. Pang YK, Lee JCW, Lee HF, Tam WY, Chan CT, Sheng P (2005) Chiral microstructures (spirals) fabrication by holographic lithography. Opt Express 13(19):7615–7620

    Article  CAS  Google Scholar 

  32. Seet KK, Jarutis V, Juodkazis S, Misawa H (2005) Nanofabrication by direct laser writing and holography (invited paper). Proc SPIE Int Soc Opt Eng 6050(60500S):1–9

    Google Scholar 

  33. Misawa H, Juodkazis S (2006) Light forms tiny 3D structures. SPIE newsroom. doi:10.1117/2.1200603.0181. Available from http://spie.org/x8778.xml , last visited: 28 Sept 2007

  34. Matsuo S, Kondo T, Juodkazis S, Mizeikis V, Misawa H (2002) Fabrication of three-dimensional photonic crystals by femtosecond laser interference. In: Adibi A, Scherer A, Lin S-Y (eds) Photonic bandgap materials and devices. SPIE Proc 4655:327–334

    Article  CAS  Google Scholar 

  35. Juodkazis S, Kondo T, Mizeikis V, Matsuo S, Misawa H, Vanagas E, Kudryashov I (2002) Microfabrication of three-dimensional structures in polymer and glass by femtosecond pulses. In: Proceedings ROC-Lithuania Bilateral Conf. Opoelectronics & Magnetic Materials, Taipei, May 25–26, 2002, pp 27–29. Available from http://arXiv.org/abs/physics/0205025 , last visited: 28 Sept 2007

  36. Juodkazis S, Kondo T, Dubikovski S, Mizeikis V, Misawa SMH (2003) Three-dimensional holographic recording in photo-thermo-refractive glass by femtosecond pulses. In: Weber HP, Konov VI, Graf T (eds) Int Conf Advanced Laser Technologies, ALT-2002. SPIE Proc 5147:226–235

    Google Scholar 

  37. Kondo T, Juodkazis S, Mizeikis V, Misawa H, Matsuo S (2006) Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8. Opt Express 14(17):7943–7953

    Article  CAS  Google Scholar 

  38. Sales TRM (1998) Smallest focal spot. Phys Rev Lett 81:3844–3847

    Article  CAS  Google Scholar 

  39. Friedman E, Miller JL (2003) Photonics rules of thumb: optics, elctro-optics, fiber optics and lasers. SPIE & McGraw-Hill, New York

    Google Scholar 

  40. Vogel A, Noack J, Hütman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047

    Article  CAS  Google Scholar 

  41. Sacks Z, Mourou G, Danielius R (2001) Adjusting pulse-front tilt and pulse duration by use of a single-shot autocorrelator. Opt Lett 26:462–464

    Article  CAS  Google Scholar 

  42. Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698

    Article  CAS  Google Scholar 

  43. Gu M (2000) Advanced optical imaging theory. Springer, Berlin

    Google Scholar 

  44. Juodkazis S, Okuno H, Kujime N, Matsuo S, Misawa H (2004) Hole drilling in stainless steel and silicon by femtosecond pulses at low pressure. Appl Phys A 79:1555–1559. doi:10.1007/s00339–004-2846–0

    Google Scholar 

  45. Trebino R, O'Shea P, Kimmel M, Gu X (2001) Measuring ultrashort laser pulses just got a lot easier. Opt Photon News, pp 23–25. Available from http://www.physics.gatech.edu/gcuo/OPN/GRENOUILLE6-01.pdf , last visited: 28 Sept 2007

  46. Akhmanov SA, Vyslouch VA, Chirkin AS (1988) Optics of femtosecond laser pulses. Nauka, Moscow (in Russian)

    Google Scholar 

  47. Shoji S, Kawata S, Sukhorukov AA, Kivshar YS (2002) Self-written waveguides in photopolymerizable resins. Opt Lett 27:185–187

    Article  CAS  Google Scholar 

  48. Band YB (2006) Light and matter: electromagnetism, optics, spectroscopy and lasers. Wiley, UK

    Google Scholar 

  49. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich J, Erskine LL, Heikal AA, Kuebler SM, Lee IS, McCord-Maughon D, Qin J, Rockel H, Wu MR, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  CAS  Google Scholar 

  50. Kuebler SM, Braun KL, Zhou W, Cammack JK, Yu T, Ober CK, Marder SR, Perry JW (2003) Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. Photochem J Photobiol A: Chem 158(2–3):163–170

    Article  CAS  Google Scholar 

  51. Zhou W, Kuebler SM, Braun KL, Yu T, Ober JKC, Ober CK, Perry JW, Marder SR (2002) An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296:1106–1109

    Article  CAS  Google Scholar 

  52. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Domann RHG, Schulz J, Cronauer C, Frohlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt Lett 28:301–303

    Article  CAS  Google Scholar 

  53. Maruo S, Ikuta K (2000) Three-dimensional microfabrication by use of single-photon-absorbed polymerization. Appl Phys Lett 76:2656–2658

    Article  CAS  Google Scholar 

  54. Juodkazis S, Horyama M, Miwa M, Watanabe M, Mizeikis AMV, Matsuo S, Misawa H (2002) Stereolithography and 3D micro-structuring of transparent materials by femtosecond laser irradiation. In: Panchenko VY, Golubev VS (eds) Seventh international conference on laser and laser-information technologies. SPIE Proc 4644:27–38

    Article  CAS  Google Scholar 

  55. Witzgall G, Vrijen R, Yablonovitch E, Doan V, Schwartz B (1998) Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. Opt Lett 23:1745–1747

    Article  CAS  Google Scholar 

  56. Miwa M, Juodkazis S, Kawakami T, Matsuo S, Misawa H (2001) Femtosecond two-photon stereo-lithography. Appl Phys A 73(5):561–566

    Article  CAS  Google Scholar 

  57. Seet KK, Juodkazis S, Jarutis V, Misawa H (2006) Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8. Appl Phys Lett 89:024106

    Article  Google Scholar 

  58. Misawa H, Juodkazis S (eds) (2006) Three-dimensional laser microfabrication: fundamentals and applications. Wiley, UK

    Google Scholar 

  59. Iwase Y, Kamada K, Ohta K, Kondo K (2003) Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge. Mater J Chem 13:1575–1581

    Article  CAS  Google Scholar 

  60. Bhardwaj VR, Simova E, Rajeev PP, Hnatovsky C, Taylor RS, Rayner D, Corkum PB (2006) Optically produced arrays of planar nanostructures inside fused silica. Phys Rev Lett 96:057404

    Article  CAS  Google Scholar 

  61. Akcipetrov OA (2001) Gigantic optically nonlinear effects on the surface of metals. Soros Education J 7(7):109–116 (in Russian)

    Google Scholar 

  62. Juodkazis S, Misawa H, Vanagas E, Li M (2006) Thermal effects and breakdown in laser microfabrication. In: Online Proc LAMP2006: 4th int congress on laser advanced materials processing, Kyoto, 16–19 May, 2006. JLPS, Osaka, pp 06–60

    Google Scholar 

  63. Kazansky PG, Inouye H, Mitsuyu T, Miura K, Qiu J, Hirao K, Starrost F (1999) Anomalous anisotropic light scattering in Ge-doped silica glass. Phys Rev Lett 82:2199–2201

    Article  CAS  Google Scholar 

  64. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  65. Datsyuk VV, Juodkazis S, Misawa H (2005) Comparison of the classical and quantum rates of spontaneous light emission in a cavity. Phys Rev A 72:025803

    Article  Google Scholar 

  66. Datsyuk VV, Juodkazis S, Misawa H (2005) Properties of a laser based on evanescent-wave amplification. Opt J Soc Am B 22(7):1471–1478

    Article  Google Scholar 

  67. Datsyuk V (2007) Ultimate enhancement of the local density of electromagnetic states outside an absorbing sphere. Phys Rev A 75:43820

    Article  Google Scholar 

  68. Boto A, Kok P, Abrams D, Braunstein S, Williams C, Dowling J (2000) Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys Rev Lett 85:2733–2736

    Article  CAS  Google Scholar 

  69. Boyd R, Bentley S (2006) Recent progress in quantum and nonlinear optical lithography. Mod J Opt 53:713–718

    Article  CAS  Google Scholar 

  70. D'Angelo M, Chekhova MV, Shih Y (2001) Two-photon diffraction and quantum lithography. Phys Rev Lett 87:13602

    Article  Google Scholar 

  71. Javanainen J, Gould PL (1988) Linear intensity dependence of a two-photon transition rate. Phys Rev A 41:5088–5091

    Article  Google Scholar 

  72. Fei H-B, Jost B, Popescu S, Saleh B, Teich M (1997) Entanglement-induced two-photon transparency. Phys Rev Lett 78:1679–1682

    Article  CAS  Google Scholar 

  73. Lissandrin F, Saleh B, Sergienko A, Teich M (2004) Quantum theory of entangled-photon photoemission. Phys Rev B 69:165317

    Article  Google Scholar 

  74. Jarutis V, Juodkazis S, Mizeikis V, Sasaki K, Misawa H (2004) Ultrabright femtosecond source of biphotons based on a spatial mode inverter. Opt Lett 30:317–319

    Article  Google Scholar 

  75. Gaudet M, Camart J-C, Buchaillot L, Arscott S (2005) Variation of absorption coefficient and determination of critical dose of su-8 at 365 nm. Appl Phys Lett 88:24107

    Article  Google Scholar 

  76. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  77. Kondo T, Juodkazis S, Misawa H (2005) Reduction of capillary force for high-aspect ratio nanofabrication. Appl Phys A 81(8):1583–1586. doi: 10.1007/s00339–005–3337–7

    Google Scholar 

  78. Israelachvili JN (1992) Intermolecular and surface forces, 2nd ed. Academic, London

    Google Scholar 

  79. Namatsu H, Kurihara K, Nagase M, Iwadate K, Murase K (1995) Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water. Appl Phys Lett 66(20):2655–2657

    Article  CAS  Google Scholar 

  80. Ashby MF, Gibson LJ, Wegst U, Olive R (1995) The mechanical properties of natural naterials: material I property charts. Proc Soc R Lond A 450:123–140

    Article  Google Scholar 

  81. Tanaka T, Morigami M, Atoda N (1993) Mechanism of resist pattern collapse during development process. Jpn Appl J Phys 32:6059

    Article  CAS  Google Scholar 

  82. Miwa M, Douoka K, Yoneyama S, Tuchitani S, Kaneko YK (2005) Young's module control of the micro cantilever made by micro-stereolithography. In: El-Fatatry A (ed) MOEMS and miniaturized systems V. SPIE, Bellingham, pp 6–13. doi:10.1117/12.589197

    Google Scholar 

  83. McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  84. Eckert CA, Knutson BL, Debendetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318

    Article  CAS  Google Scholar 

  85. Weissberger A (ed) (1986) Organic solvents. Physical properties and methods of purification, 4th edn. Wiley, New York

    Google Scholar 

  86. Juodkazis S, Mizeikis V, Seet KK, Miwa M, Misawa H (2005) Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnol 16:846–849

    Article  CAS  Google Scholar 

  87. Haske W, Chen V, Hales JM, Dong W, Barlow S, Perry SJW (2007) 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Express 15:3426–3436

    Article  CAS  Google Scholar 

  88. Sun H, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. Adv Polym Sci 170:169–273

    CAS  Google Scholar 

  89. Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447

    Article  CAS  Google Scholar 

  90. Takasone T, Juodkazis S, Kawagishi Y, Yamaguchi A, Sakakibara SM, Nakayama H, Misawa H (2002) Flexural rigidity of a single microtubule. Jpn Appl J Phys 41(5A):3015–3019

    Article  CAS  Google Scholar 

  91. Young WC, Budynas RG (2002) Roark's formulas for stress and strain, 7th edn. McGraw-Hill, Boston

    Google Scholar 

  92. Elmore WC, Heald MA (1985) Physics of waves. Dover, New York

    Google Scholar 

  93. Seet KK, Mizeikis V, Matsuo S, Juodkazis S, Misawa H (2005) Three-dimensional spiral – architecture photonic crystals obtained by direct laser writing. Adv Mat 17(5):541–545. doi:10.1002/adma.200401527

    Google Scholar 

  94. Sun H, Takada K, Kawata S (2001) Elastic force analysis of functional polymer submicron oscillators. Appl Phys Lett 79:3173–3175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saulius Juodkazis , Vygantas Mizeikis or Hiroaki Misawa .

Editor information

Seth R. Marder Kwang-Sup Lee

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Juodkazis, S., Mizeikis, V., Misawa, H. (2007). Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording. In: Marder, S.R., Lee, KS. (eds) Photoresponsive Polymers I. Advances in Polymer Science, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2007_122

Download citation

Publish with us

Policies and ethics