Skip to main content

Silicone-Based Polymer Blends: An Overview of the Materials and Processes

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 209))

Abstract

Although extensive studies on copolymers have been carried out with a view to exploiting thecombined homopolymer properties, physical blends of polymers have warranted less attention. But as a resultof increased scientific and economic interest research in this challenging field has grown over the lasttwo decades. The unique properties of silicone polymers, due to their Si–O–Si backbone, includingtheir low Tg's, gives rise to some specific applications. However, it is their singular structure whichalso makes silicone polymers incompatible with most other macromolecules and limits their incorporationto low amounts. Bleeding and mechanical loss are observed at higher percentages. This overview is dividedinto three parts: the first covers silicone/polymer bicomponent blends with the silicone being either functionalizedor not. The second part describes the different ways to compatibilize the two phases of the silicon/polymerblend using copolymers which can be added as either preformed copolymers or synthesized in-situ. The efficiencyof the copolymers involved varies depending on their chemical structure and architecture. The final sectionis dedicated to the different methods of preparation of Interpenetrating Polymer Networks (IPNs) which arecommercially and industrially by far the most interesting. The relevant processes (extrusion, batch, casting,etc.) as well as the properties of the various resulting materials are also reviewed throughout the paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg EP (1961) Resinous mixtures of polysiloxanes and polymers from carbonates of dihydric phenols. US Patent 2999835

    Google Scholar 

  2. Bostick EE, Jaquiss DBG (1973) Compatible polycarbonate-siloxane composition. US Patent 3751519, General Electric, US, p 2

    Google Scholar 

  3. Meyer RV, Dhein R, Fahnler F (1979) Polyamide blends with high impact strength, DE Patent 2734693

    Google Scholar 

  4. Hill DJT et al. (1996) Development of wear-resistant thermoplastic polyurethane by blending with poly(dimethyl siloxane). I. Physical properties. J Appl Poly Sci 61(10):1757–1766

    CAS  Google Scholar 

  5. Bremner T et al. (1997) Development of wear-resistant thermoplastic polyurethanes by blending with poly(dimethyl siloxane). II. A packing model. J Appl Poly Sci 65(5):939–950

    CAS  Google Scholar 

  6. Damrongsakkul S, Sinweeruthai R, Higgins JS (2003) Processability and chemical resistance of the polymer blend of thermoplastic polyurethane and polydimethylsiloxane. Macromolecular Symposia. 7th Eur Symp Polymer Blends, Lyon-Villeurbanne, 27–29 May 2002, pp 411–419

    Google Scholar 

  7. Wu S (1987) Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. Poly Eng Sci 27(5):335–343

    CAS  Google Scholar 

  8. Maric M, Macosko CW (2002) Block copolymer compatibilizers for polystyrene/poly(dimethylsiloxane) blends. J Polym Sci Part B: Polym Phys 40(4):346–357

    CAS  Google Scholar 

  9. Chuai CZ et al. (2004) The effect of compatibilization and rheological properties of polystyrene and poly(dimethylsiloxane) on phase structure of polystyrene/poly(dimethylsiloxane) blends. J Polym Sci Part B: Polym Phys 42(5):898–913

    CAS  Google Scholar 

  10. Pötschke P, Paul DR (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci Part C: Poly Rev C43(1):87–141

    Google Scholar 

  11. Avgeropoulos GN et al. (1976) Heterogeneous blends of polymers. Rheology and morphology. Rubber Chem Technol 49:94

    Google Scholar 

  12. Miles IS, Zurek A (1988) Preparation, structure, and properties of two-phase co-continuous polymer blends. Poly Eng Sci 28:796

    CAS  Google Scholar 

  13. Jordhamo GM, Manson JA, Sperling LH (1986) Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Poly Eng Sci 26:517

    CAS  Google Scholar 

  14. Paul DR, Barlow JW (1980) J Macromol Sci Part C: Poly Rev C18:109

    CAS  Google Scholar 

  15. Utracki LA (1991) On the viscosity-concentration dependence of immiscible polymer blends. J Rheol 35(8):1615–1637

    CAS  Google Scholar 

  16. Anastasiadis SH, Gancarz I, Koberstein JT (1988) Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules 21(10):2980–2987

    CAS  Google Scholar 

  17. LeGrand DG, Gaines GL Jr (1969) Molecular weight dependence of polymer surface tension. J Colloid Interf Sci 31(2):162–167

    CAS  Google Scholar 

  18. LeGrand DG, Gaines GL Jr (1973) Surface tension of homologous series of liquids. J Colloid Interf Sci 42(1):181–184

    CAS  Google Scholar 

  19. Lee MH et al. (2001) The effect of end groups on thermodynamics of immiscible polymer blends. 2. Cloud point curves. Polymer 42(21):9163–9172

    CAS  Google Scholar 

  20. Fleischer CA et al. (1993) The effect of end groups on thermodynamics of immiscible polymer blends. 1. Interfacial tension. Macromolecules 26(16):4172–4178

    CAS  Google Scholar 

  21. Patterson HT, Hu KH, Grindstaff TH (1971) Measurement of interfacial and surface tensions in polymer systems. J Poly Sci, Polymer Symposia 34:31–43

    Google Scholar 

  22. Fleischer CA, Koberstein JT (1990) The effect of polymer end groups on the compatibility of immiscible polymer blends. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 31(2):541–2

    CAS  Google Scholar 

  23. Furukawa H, Shirahata A (1994) Polyamide resin composition, EP Patent 581224

    Google Scholar 

  24. Li XG, S H, Lai YH, Wee ATS (2000) Miscibility of carboxyl-containing polysiloxane/poly(vinylpyridine) blends. Polymer 41:6563–6571

    CAS  Google Scholar 

  25. Belorgey G, Sauvet G (2000) Organosiloxane block and graft copolymers. In: Silicon-Containing Polymers. Kluwer, Rotterdam, pp 43–78

    Google Scholar 

  26. Yilgor I, McGrath JE (1988) Polysiloxane-containing copolymers: a survey of recent developments. In: Advances in Polymer Science 86 (Polysiloxane Copolm/Anionic Polym). Springer, Berlin Heidelberg New York, pp 1–86

    Google Scholar 

  27. Macosko CW et al. (1996) Compatibilizers for melt blending: Premade block copolymers. Macromolecules 29(17):5590–5598

    CAS  Google Scholar 

  28. Cho D et al. (2000) Segregation dynamics of block copolymers to immiscible polymer blend interfaces. Macromolecules 33(14):5245–5251

    CAS  Google Scholar 

  29. Biresaw G, Carriere CJ, Sammler RL (2003) Effect of temperature and molecular weight on the interfacial tension of PS/PDMS blends. Rheologica Acta 42(1–2):142–147

    CAS  Google Scholar 

  30. Leibler L (1988) Emulsifying effects of block copolymers in incompatible polymer blends. Makromol Chem, Marcomol Symp 16:1–17

    CAS  Google Scholar 

  31. Hu W et al. (1995) Interfacial tension reduction in polystyrene/poly(dimethylsiloxane) blends by the addition of poly(styrene-b-dimethylsiloxane). Macromolecules 28(15):5209–5214

    CAS  Google Scholar 

  32. Chuai C et al. (2004) Influence of diblock copolymer on the morphology and properties of polystyrene/poly(dimethylsiloxane) blends. J Appl Poly Sci 92(5):2747–2757

    CAS  Google Scholar 

  33. Munoz PMP et al. (2002) Blends of high-density polyethylene with solid silicone additive. J Appl Poly Sci 83(11):2347–2354

    Google Scholar 

  34. Wagner M, Wolf BA (1993) Effect of block copolymers on the interfacial tension between two immiscible homopolymers. Polymer 34:1460–1464

    CAS  Google Scholar 

  35. Jorzik U, Wolf BA (1997) Reduction of the interfacial tension between poly(dimethylsiloxane) and poly(ethylene oxide) by block copolymers: Effects of molecular architecture and chemical composition. Macromolecules 30(16):4713–4718

    CAS  Google Scholar 

  36. Khandpur AK et al. (1995) Compatibilizers for A/B blends: A-C-B triblock versus A-B diblock copolymers. Polyblends'95, SPE Regional Technical Conference on Polymer Alloys and Blends. Boucherville, Quebec, Oct 19–20, pp 88–96

    Google Scholar 

  37. Fayt R, Jerome R, Teyssie P (1989) Molecular design of multicomponent polymer systems. XIV Control of the mechanical properties of polyethylene-polystyrene blends by block copolymers. J Poly Sci Part B: Poly Phys 27(4):775–793

    CAS  Google Scholar 

  38. Epstein BN (1977) US Patent 4172859

    Google Scholar 

  39. Freluche M et al. (2006) Graft copolymers of poly(methyl methacrylate) and polyamide-6: Synthesis by reactive blending and characterization. Macromolecules 39:6905

    CAS  Google Scholar 

  40. Pernot H et al. (2002) Design and properties of co-continuous nanostructured polymers by reactive blending. Nat Mat 1:54

    CAS  Google Scholar 

  41. Charoensirisomboon P et al. (2000) Polymer 41:5977

    CAS  Google Scholar 

  42. Charoensirisomboon P et al. (1999) Polymer 40:6803

    CAS  Google Scholar 

  43. Charoensirisomboon P, Inoue T, Weber M (2000) Polymer 41:4483

    CAS  Google Scholar 

  44. Charoensirisomboon P, Inoue T, Weber M (2000) Polymer 41:6907

    CAS  Google Scholar 

  45. Orr CA et al. (1997) Flow-induced reactive self-assembly. Macromolecules 30(4):1243–1246

    CAS  Google Scholar 

  46. Yin Z et al. (2001) Macromolecules 34:5132

    CAS  Google Scholar 

  47. Fleischer CA, Morales AR, Koberstein JT (1994) Interfacial modification through end group complexation in polymer blends. Macromolecules 27(2):379–85

    CAS  Google Scholar 

  48. Moskala EJ et al. (1984) On the role of intermolecular hydrogen bonding in miscible polymer blends. Macromolecules 17(9):1671–1678

    CAS  Google Scholar 

  49. Maric M, Ashurov N, Macosko CW (2001) Reactive blending of poly(dimethyl siloxane) with nylon 6 and polystyrene: effect of reactivity on morphology. Poly Eng Sci 41(4):631–642

    CAS  Google Scholar 

  50. Boutevin B, Guida-Pietrasanta F, Ratsimihety A (2000) Side group modified polysiloxanes. In: Silicon-Containing Polymers. Kluwer, Rotterdam, pp 79–112

    Google Scholar 

  51. Mohanty S, Santra RN, Nando GB (1997) Reactive blending of ethylene-methyl acrylate copolymer and poly-dimethyl siloxane rubber: kinetics studies from infrared spectroscopy. Adv Poly Technol 16(4):323–329

    CAS  Google Scholar 

  52. Santra RN et al. (1993) Thermogravimetric studies on miscible blends of ethylene-methyl acrylate copolymer (EMA) and polydimethylsiloxane rubber (PDMS). Thermochim Acta 219(1–2):283–292

    CAS  Google Scholar 

  53. Bhattacharya AK et al. (1995) Studies on miscibility of blends of poly(ethylene-co-methyl acrylate) and poly(dimethyl siloxane) rubber by melt rheology. J Appl Poly Sci 55(13):1747–1755

    CAS  Google Scholar 

  54. Jana RN, Nando GB (2003) Chemorheological study of compatibilized blends of low-density polyethylene and polydimethyl siloxane rubber. J Appl Poly Sci 88(12):2810–2817

    CAS  Google Scholar 

  55. Jana RN, Nando GB (2003) Thermogravimetric analysis of blends of low-density polyethylene and poly(dimethyl siloxane) rubber: The effects of compatibilizers. J Appl Poly Sci 90(3):635–642

    CAS  Google Scholar 

  56. Santra RN et al. (1993) In-situ compatibilization of low-density polyethylene and polydimethylsiloxane rubber blends using ethylene-methyl acrylate copolymer as a chemical compatibilizer. J Appl Poly Sci 49(7):1145–1158

    CAS  Google Scholar 

  57. Santra RN et al. (1995) In-situ compatibilization of thermoplastic polyurethane and polydimethyl siloxane rubber by using ethylene methyl acrylate copolymer as a reactive polymeric compatibilizer. Adv Poly Technol 14(1):59–66

    CAS  Google Scholar 

  58. Jana RN, Mukunda PG, Nando GB (2003) Thermogravimetric analysis of compatibilized blends of low density polyethylene and poly(dimethyl siloxane) rubber. Poly Degrad Stabil 80(1):75–82

    CAS  Google Scholar 

  59. Munoz PMP et al. (2001) High-density polyethylene modified by polydimethyl siloxane. J Appl Poly Sci 82(14):3460–3467

    Google Scholar 

  60. Shih W-C et al. (1999) Polydimethylsiloxane containing isocyanate group-modified epoxy resin: curing, characterization, and properties. J Appl Poly Sci 73(13):2739–2747

    CAS  Google Scholar 

  61. Scott HG (1972) Crosslinking of olefinic polymers and copolymers. US Patent 3646155

    Google Scholar 

  62. Shieh Y-T, Tsai T-H (1998) Silane grafting reactions of low-density polyethylene. J Appl Poly Sci 69(2):255–261

    CAS  Google Scholar 

  63. Swarbrick PGWJ, Maillefer C (1978) Manufacture of extruded products. US Patent 4117195

    Google Scholar 

  64. Chorvath I et al. (2002) Polyolefin thermoplastic silicone elastomers employing radical cure. WO Patent 2002088247

    Google Scholar 

  65. Jana RN, Bhunia HP, Nando GB (1997) An investigation into the mechanical properties and curing kinetics of blends of low-density polyethylene and poly(dimethylsiloxane) rubber. Thermochim Acta 302(1–2):1–9

    CAS  Google Scholar 

  66. Kole S, Roy S, Bhowmick AK (1994) Interaction between silicone and EPDM rubbers through functionalization and its effect on properties of the blend. Polymer 35(16):3423–3246

    CAS  Google Scholar 

  67. Kole S, Roy S, Bhowmick AK (1995) Influence of chemical interaction on the properties of silicone-EPDM rubber blend. Polymer 36(17):3273–3277

    CAS  Google Scholar 

  68. Badesha SS et al. (2000) Compatibilized blend of fluoroelastomer and polysiloxane useful for printing machine component. Xerox, Stamford, CT, USA, p 6

    Google Scholar 

  69. Chorvath I et al. (2004) Fluoroplastic silicone vulcanizates. WO Patent 2004108822

    Google Scholar 

  70. Furukawa H, Nakamura A, Shirahata A (1996) Preparation of siloxane-thermoplastic resin compositions with reduced surface siloxane bleed. US Patent 5604288

    Google Scholar 

  71. Jalali-Arani A, Katbab AA, Nazockdast H (2003) Preparation of thermoplastic elastomers based on silicone rubber and polyethylene by thermomechanical reactive blending: Effects of polyethylene structural parameters. J Appl Poly Sci 90(12):3402–3408

    CAS  Google Scholar 

  72. Shen J, Ye N (2001) Study on reaction kinetics of silane grafted HDPE and LLDP. Hecheng E Shuzhi Ji Suliao 18(3):9–12

    CAS  Google Scholar 

  73. Kole S et al. (1995) Grafting of silicone rubber onto polypropylene or polyethylene. Polym Networks Blend 5(3):117–122

    CAS  Google Scholar 

  74. Brook MA (2000) Silicones. In: Matison BMJ (ed) Silicon in Organic Organometallic and Polymer Chemistry. Wiley, New York, pp 256–308

    Google Scholar 

  75. Hamurcu EE, Baysal BM (1993) Interpenetrating polymer networks of poly(dimethylsiloxane): 1. Preparation and characterization. Polymer 34(24):5163–5167

    CAS  Google Scholar 

  76. Turner J, Cheng Y-L (2001) Process for preparing interpenetrating polymer networks of controlled morphology. US Patent 6331578

    Google Scholar 

  77. Turner JS, Cheng YL (2000) Preparation of PDMS-PMAA Interpenetrating polymer network membranes using the monomer immersion method. Macromolecules 33(10):3714–3718

    CAS  Google Scholar 

  78. Turner JS, Cheng YL (2004) pH dependence of PDMS-PMAA IPN morphology and transport properties. J Membr Sci 240(1–2):19–24

    CAS  Google Scholar 

  79. Turner JS, Cheng YL (2003) Morphology of PDMS-PMAA IPN membranes. Macromolecules 36(6):1962–1966

    CAS  Google Scholar 

  80. Robert C, Bunel C, Vairon J-P (1995) Hydrophilic, transparent material with high oxygen permeability containing interpenetrating polymer networks for use in soft contact lenses. EP Patent 643083

    Google Scholar 

  81. Abbasi F, Mirzadeh H, Katbab AA (2002) Sequential interpenetrating polymer networks of poly(2-hydroxyethyl methacrylate) and polydimethylsiloxane. J Appl Poly Sci 85(9):1825–1831

    CAS  Google Scholar 

  82. Hron P et al. (1997) Silicone rubber-hydrogel composites as polymeric biomaterials. IX Composites containing powdery polyacrylamide hydrogel. Biomaterials 18(15):1069–1073

    CAS  Google Scholar 

  83. Lopour P, Janatova V (1995) Silicone rubber-hydrogel composites as polymeric biomaterials. VI Transport properties in the water-swollen state. Biomaterials 16(8):633–640

    CAS  Google Scholar 

  84. Duckova K et al. (1993) Silicone rubber-hydrogel composites as polymeric biomaterials. Part 5. Transdermal therapeutic systems based on hydrogel-filled silicone rubber. Eur J Pharm Biopharm 39(5):208–211

    CAS  Google Scholar 

  85. Lopour P et al. (1993) Silicone rubber-hydrogel composites as polymeric biomaterials. IV Silicone matrix-hydrogel filler interaction and mechanical properties. Biomaterials 14(14):1051–1055

    CAS  Google Scholar 

  86. Lednicky F et al. (1991) Silicone rubber-hydrogel composites as polymeric biomaterials. III An investigation of phase distribution by scanning electron microscopy. Biomaterials 12(9):848–852

    CAS  Google Scholar 

  87. Cifkova I et al. (1990) Silicone rubber-hydrogel composites as polymeric biomaterials. I Biological properties of the silicone rubber-p(HEMA) composite. Biomaterials 11(6):393–396

    CAS  Google Scholar 

  88. Lopour P et al. (1990) Silicone rubber-hydrogel composites as polymeric biomaterials. II Hydrophilicity, permeability to water-soluble low-molecular-weight compounds. Biomaterials 11(6):397–402

    CAS  Google Scholar 

  89. Sulc J, Vondracek P, Lopour P (1986) Hydrophilic silicone composites. DE Patent 3616883

    Google Scholar 

  90. Abbasi F, Mirzadeh H, Katbab AA (2002) Comparison of viscoelastic properties of polydimethylsiloxane/poly(2-hydroxyethyl methacrylate) IPNs with their physical blends. J Appl Poly Sci 86(14):3480–3485

    CAS  Google Scholar 

  91. Falcetta JJ, Friends GD, Niu GCC (1975) Molding from an interpenetrating network polymer. DE Patent 2518904

    Google Scholar 

  92. Huang G-S, Li Q, Jiang L-X (2002) Structure and damping properties of polydimethylsiloxane and polymethacrylate sequential interpenetrating polymer networks. J Appl Poly Sci 85(3):545–551

    CAS  Google Scholar 

  93. He X et al. (1995) Preparation of interpenetrating acrylic polymer-siloxane networks. US Patent 5424375

    Google Scholar 

  94. He XW et al. (1989) Poly(dimethylsiloxane)/poly(methyl methacrylate) interpenetrating polymer networks: 1. Efficiency of stannous octoate as catalyst in the formation of poly(dimethylsiloxane) networks in methyl methacrylate. Polymer 30(2):364–368

    CAS  Google Scholar 

  95. He XW et al. (1992) Poly(dimethylsiloxane)/poly(methyl methacrylate) interpenetrating polymer networks. 2. Synthesis and properties. Polymer 33(4):866–871

    CAS  Google Scholar 

  96. Caille JR (2000) Macromol Symp 153:161–166

    CAS  Google Scholar 

  97. Brachais L et al. (2002) Solid-state organization of poly(methyl methacrylate)-poly(methylphenylsiloxane) based interpenetrating networks. Polymer 43(6):1829–1834

    CAS  Google Scholar 

  98. Bischoff RA et al. (1998) Interpenetrating polysiloxane-polymethacrylate networks. FR Patent 2757528

    Google Scholar 

  99. Miyata T et al. (1996) Preparation of polydimethylsiloxane/polystyrene interpenetrating polymer network membranes and permeation of aqueous ethanol solutions through the membranes by pervaporation. J Appl Poly Sci 61(8):1315–1324

    CAS  Google Scholar 

  100. Tsumura M, Iwahara T (2000) Silicon-based materials prepared by IPN formation and their properties. J Appl Poly Sci 78(4):724–731

    CAS  Google Scholar 

  101. Fichet O et al. (2005) Polydimethylsiloxane-cellulose acetate butyrate IPN synthesis and kinetic study, Part I. Polymer 46:37–47

    CAS  Google Scholar 

  102. Darras V et al. (2004) Novel single and interpenetrating networks based on fluorinated polysiloxanes. Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, March 28–April 1 2004, p POLY-513

    Google Scholar 

  103. Frisch HL, Gebreyes K, Frisch KC (1988) Synthesis and characterization of semi- and full-interpenetrating polymer networks of poly(2,6-dimethyl-1,4-phenylene oxide) and polydimethylsiloxane. J Poly Sci Part A: Poly Chem 26(9):2589–2596

    CAS  Google Scholar 

  104. Gebreyes K, Frisch HL (1988) Improved synthesis and characterization of interpenetrating polymer networks of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(dimethylsiloxane) (PDMS). J Poly Sci Part A: Poly Chem 26(12):3391–3395

    CAS  Google Scholar 

  105. Frisch HLHMW (1991) Birefringence in Interpenetrating Polymer Networks of Poly(2,6-Dimethyl-1,4-Phenylene Dioxide)/Polydimethylsiloxane. J Poly Sci Part A: Poly Chem 29:131–133

    CAS  Google Scholar 

  106. Ebdon JR, Hourston DJ, Klein PG (1984) Polyurethane-polysiloxane interpenetrating polymer networks. 1. A polyether urethane-poly(dimethylsiloxane) system. Polymer 25(11):1633–1639

    CAS  Google Scholar 

  107. Ebdon JR, Hourston DJ, Klein PG (1986) Polyurethane-polysiloxane interpenetrating polymer networks: 2. Morphological and dynamic mechanical studies. Polymer 27(11):1807–1814

    CAS  Google Scholar 

  108. Klein PG, Ebdon JR, Hourston DJ (1988) Polyurethane-polysiloxane interpenetrating networks: 3. Polyetherurethane-poly(phenylmethylsiloxane) systems. Polymer 29(6):1079–1085

    CAS  Google Scholar 

  109. Zhou P, Xu Q, Frisch HL (1994) Kinetics of simultaneous interpenetrating polymer networks of poly(dimethylsiloxane-urethane)/poly(methyl methacrylate) formation and studies of their phase morphology. Macromolecules 27(4):938–946

    CAS  Google Scholar 

  110. Zhou P et al. (1993) J Poly Sci Part A: Poly Chem 31:2481

    CAS  Google Scholar 

  111. Frisch KC, Frisch HL, Klempner D (1972) Reseaux de polymères entremêlés. FR Patent 2110159

    Google Scholar 

  112. Dobkowski Z, Zielecka M (2002) Thermal analysis of the poly(siloxane)-poly(tetrafluoroethylene) coating system. J Therm Analy Calorim 68(1):147–158

    CAS  Google Scholar 

  113. Jones AS et al. (2000) Amide-type polymer/silicone polymer blends and processes of making the same. WO Patent 2000078842

    Google Scholar 

  114. Murray DL, Hale WR, Jones AS (2000) Nylon 6-silicone blends. WO Patent 2000078845

    Google Scholar 

  115. Liao J, Shearer G, Gross C (2003) Silicone TPV offers high performance solutions. Rubber World 227(5):40–43

    CAS  Google Scholar 

  116. Arkles B, Carreno C (1984) Filler-free models for the role of organofunctional silanes in composites. Polymeric Mat Sci Eng 50:440–443

    CAS  Google Scholar 

  117. Marciniec B (1992) Comprehensive Handbook on Hydrosilylation. Pergamon Press, Oxford, UK

    Google Scholar 

  118. Arkles B, Crosby J (1990) Polysiloxane-thermoplastic interpenetrating polymer networks. Advances in Chemistry Series 224(Silicon-Based Polym Sci), pp 181–199

    Google Scholar 

  119. Arkles BC (1983) Thermoplastic-curable silicone blends. US Patent 4500688

    Google Scholar 

  120. Arkles B (1983) A reactive processing method for IPN thermoplastics. Polymeric Mat Sci Eng 49:6–9

    CAS  Google Scholar 

  121. Gornowicz G et al. (2003) Thermoplastic elastomers containing polyurethanes and silicone. WO Patent 2003035757

    Google Scholar 

  122. Gornowicz GA et al. (2000) Thermoplastic silicone elastomers and their preparation. US Patent 6013715

    Google Scholar 

  123. Zolotnitsky M (1997) Composition and method for impact modification of thermoplastics. US Patent 5648426

    Google Scholar 

  124. Brewer C et al. (2003) Thermoplastic silicone elastomers from compatibilized polyamide resins. WO Patent 2003035759

    Google Scholar 

  125. Brewer CM et al. (2002) Thermoplastic silicone elastomers from compatibilized polyamide resins. US Patent 2002091205

    Google Scholar 

  126. Chorvath I et al. (2002) Thermoplastic elastomer compositions containing silicone rubber and nylon resins and the dynamically vulcanizing method. US Patent 2002086937

    Google Scholar 

  127. Chorvath I et al. (2001) Vulcanized thermoplastic silicone elastomers from nylon resins and polysiloxanes. WO Patent 2001072903

    Google Scholar 

  128. Chorvath I et al. (2001) Silicone rubber-toughened thermoplastic resin composition. WO Patent 2001018116

    Google Scholar 

  129. Crosby JM, Hutchins MK (1986) Fiber-reinforced thermoplastics containing silicone interpenetrating polymer networks. EP Patent 194350

    Google Scholar 

  130. Fournier FM, Rabe RL (2004) Polyamide based thermoplastic silicone elastomers. US Patent 2004014888

    Google Scholar 

  131. Chorvath I et al. (2002) Polysiloxane-based thermoplastic rubber containing polyester resins. WO Patent 2002046310

    Google Scholar 

  132. Ward SK, O'Brien (1989) Enhanced GS melt extrusion of thermoplastics containing silicone interpenetrating polymer networks. EP Patent 308836

    Google Scholar 

  133. Gross C, Lee M, Liao J (2003) Thermoplastic silicone elastomers from compatibilized polyester resins. WO Patent 2003035764

    Google Scholar 

  134. Romenesko DJ, Mullan SP (1993) Poly(phenylene ether) resin modified with silicone rubber powder. EP Patent 543597

    Google Scholar 

  135. Gornowicz GA (2000) Thermoplastic elastomers based on fluorocarbon resins and silicones. US Patent 6015858

    Google Scholar 

  136. Chung JYJ, Mason JP (1996) Toughened aromatic polycarbonate containing silicone rubber powder as molding composition. US Patent 5556908

    Google Scholar 

  137. Mason JP et al. (1997) Impact-modified polyamide-based molding composition. US Patent 5610223

    Google Scholar 

  138. Bilgrien CJ et al. (1992) Storage-stable flowable organosiloxane composition powders and their preparation. US Patent 5153238

    Google Scholar 

  139. Romenesko DJ, Buch RR (1995) Silicone resin powder for improving fire retardancy of organic resins. US Patent 5391594

    Google Scholar 

  140. Fustin CA et al. (2002) Reactive blending of functional polysiloxanes with poly(butylene terephthalate): clarification of reaction mechanisms and kinetics from a model compound study. J Poly Sci Part A: Poly Chem 40(12):1952–1961

    CAS  Google Scholar 

  141. Itoh K, Fukuda T (1978) Thermally curable silicone rubber compositions. US Patent 4164491

    Google Scholar 

  142. Chorvath I et al. (2002) Thermoplastic silicone elastomers employing radical cure. US Patent 6465552

    Google Scholar 

  143. Fu FS, Mark JE (1988) Elastomer reinforcement from a glassy polymer polymerized in-situ. J Poly Sci Part B: Poly Phys 26(11):2229–2235

    CAS  Google Scholar 

  144. Liang YF (1987) Arylene sulfide polymers of improved impact strength. US Patent 4708983

    Google Scholar 

  145. Liang YF, Beever WH (1985) Rubbery compounds as modifiers for poly(arylene sulfide). US Patent 4888390

    Google Scholar 

  146. Fujiki M, Furuta D, Naito M (2004) Manufacture of semi-IPN (interpenetrating polymer network) composite and the composite made of crosslinkable siloxane and radically polymerized polymer. JP Patent 2004263062

    Google Scholar 

  147. Arkles BC, Smith RA (1990) Secondary crosslinked siloxane semiinterpenetrating polymer networks and methods of making them. US Patent 4970263

    Google Scholar 

  148. Gilmer TC et al. (1996) Synthesis, characterization, and mechanical properties of PMMA/poly(aromatic/aliphatic siloxane) semi-interpenetrating polymer networks. J Poly Sci Part A: Poly Chem 34(6):1025–1037

    CAS  Google Scholar 

  149. Gornowicz GA, Chang HS (2000) Thermoplastic silicone vulcanizates prepared by condensation cure. US Patent 6153691

    Google Scholar 

  150. Knaub P, Camberlin Y (1988) Gerard JF, New reactive polymer blends based on poly(urethane ureas) (PUR) and polydisperse poly(dimethylsiloxane) (PDMS): control of morphology using a PUR-b-PDMS block copolymer. Polymer 29(8):1365–1377

    CAS  Google Scholar 

  151. Vlad S, Vlad A, Oprea S (2002) Interpenetrating polymer networks based on polyurethane and polysiloxane. Eur Poly J 38(4):829–835

    CAS  Google Scholar 

  152. Xiao H et al. (1990) The synthesis and morphology of semi-interpenetrating polymer networks based on polyurethane-poly(dimethylsiloxane) system. J Poly Sci Part A: Poly Chem 28(3):585–594

    CAS  Google Scholar 

  153. Morin A (1990) Thermoplastic polycondensate-silicone blends and their preparation. FR Patent 2640632

    Google Scholar 

  154. Arkles BC (1987) Manufacture of curable silicone semi-interpenetrating networks. US Patent 4714739

    Google Scholar 

  155. Kohara S et al. (1999) Thermoplastic olefin elastomer compositions with low compression set, no oil bleeding, and good weather resistance. JP Patent 11181172

    Google Scholar 

  156. Sibahara S, Sugisaki A, Iwasa T (2000) Thermoplastic olefin rubber compositions for oil- and weather-resistant moldings. WO Patent 2000043447

    Google Scholar 

  157. Medsker RE et al. (2000) Process for silicon hydride curing of thermoplastic vulcanizates. US Patent 6150464

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Robin .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucas, P., Robin, JJ. (2007). Silicone-Based Polymer Blends: An Overview of the Materials and Processes. In: Functional Materials and Biomaterials. Advances in Polymer Science, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2007_115

Download citation

Publish with us

Policies and ethics