Advertisement

Magnetic Field-Responsive Smart Polymer Composites

  • Genovéva Filipcsei
  • Ildikó Csetneki
  • András Szilágyi
  • Miklós ZrínyiEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 206)

Abstract

The combination of polymers with nano- or microsized solid materials displays novel and often enhancedproperties compared to the traditional materials. They can open up possibilities for new technologicalapplications. Materials whose physical properties can be varied by application of magnetic fields belongto a specific class of smart materials. The broad family of magnetic field-controllable soft materialsincludes ferrofluids, magneto-rheological fluids, magnetic gels, and magnetic elastomers. The magneticgels and elastomers (magnetoelasts) represent a new type of composite and consist of small magneticparticles, usually in the nanometer to micron range, dispersed in a highly elastic polymeric matrix.The magnetic particles can be incorporated into the elastic body either randomly or in ordered structure.If a uniform magnetic field is applied to the reactive mixture during the cross-linking process, particlechains form and become locked into the elastomer. The resulting composites exhibit anisotropic properties.

Combination of magnetic and elastic properties leads to a number of striking phenomena that areexhibited in response to impressed magnetic fields. The magnetic particles couple the shape and the elasticmodulus with the external magnetic field. Giant deformational effects, high elasticity, anisotropic elasticand swelling properties, and quick response to magnetic fields open new opportunities for using such materialsfor various applications. Since the magnetic fields are convenient stimuli from the point of signal control,the magnetoelasts are promising smart materials in engineering due to their real-time controllable elasticproperties.

More recently, increasing interest has been devoted to exploration of multiresponsive magnetic polymers,which exhibit sensitivity to several external stimuli. Micro- and nanospheres that combine both magnetic,temperature, and pH sensitivity were also elaborated and studied. These new results provide novel possibilitiesfor preparation of more complex magnetic field-responsive materials like membranes with on/off switchingcontrol.

In this article, we review recent advances in mechanical and swelling behavior of magnetic field-responsivesoft materials, including flexible polymer networks and gels.

Anisotropic elastomers Ferrogels Magnetic composites Magnetic latexes Stress–strain dependence Temporary reinforcement Vibration and shock absorber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, UK Google Scholar
  2. 2.
    Okano T (ed) (1998) Biorelated polymers and gels. Academic, New York Google Scholar
  3. 3.
    Dusek K, Patterson D (1968) J Polym Sci A-2 6:1209 CrossRefGoogle Scholar
  4. 4.
    Dusek K, Prins W (1969) Adv Polym Sci 6:1 CrossRefGoogle Scholar
  5. 5.
    Hoffman AS (1995) Macromol Symp 98:645 CrossRefGoogle Scholar
  6. 6.
    Osada Y, Ross-Murphy SB (1993) Scientific American, May 1993, pp 82–87 Google Scholar
  7. 7.
    Rossi DE, Kawana K, Osada Y, Yamauchi A (eds) (1991) Polymer gels, fundamentals and biomedical applications. Plenum, New York Google Scholar
  8. 8.
    Verdaguer M (1996) Science 272:698 CrossRefGoogle Scholar
  9. 9.
    Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 272:704 CrossRefGoogle Scholar
  10. 10.
    Miller JS, Eptein AJ (1998) Chem Commun, p 1319 Google Scholar
  11. 11.
    Carlson JD, Jolly MR (2000) Mechatronics 10:555 CrossRefGoogle Scholar
  12. 12.
    Ginder JM, Davis LC (1994) Appl Phys Lett 65(26):3410 CrossRefGoogle Scholar
  13. 13.
    Ginder JM, Nichols ME, Elie LD, Tardiff JL (1999) Proc SPIE 3675:131 CrossRefGoogle Scholar
  14. 14.
    Ginder JM, Clark SM, Schlotter WF, Nichols E (2002) Int J Modern Phys B 16:17:18:2412 Google Scholar
  15. 15.
    Shiga T, Okada A, Karauchi T (1993) Macromolecules 26:6958 CrossRefGoogle Scholar
  16. 16.
    Shiga T, Okada A, Karauchi T (1995) J Appl Polym Sci 58:787 CrossRefGoogle Scholar
  17. 17.
    Jolly MR, Carlson JD, Munoz BC, Bullions TA (1996) J Int Mater Syst Struct 7:613 CrossRefGoogle Scholar
  18. 18.
    Bossis G, Coquelle E, Kuzhir P (2004) Ann Chim Sci Mat 29:43 CrossRefGoogle Scholar
  19. 19.
    Bellan C, Bossis G (2002) Int J Modern Phys B 16:2447 CrossRefGoogle Scholar
  20. 20.
    Hu Y, Wang YL, Gong XL, Gong XQ, Zhang XZ, Jiang WQ, Zhang PQ, Chen ZY (2005) Polym Test 24:324 CrossRefGoogle Scholar
  21. 21.
    Kaleta J, Lewandowski D, Zajac P (2005) Mater Sci Forum 482:403 CrossRefGoogle Scholar
  22. 22.
    Zhou GY, Jiang ZY (2004) Smart Mater Struct 13:309 CrossRefGoogle Scholar
  23. 23.
    Bernadek S (1997) J Magnet Magnet Mater 166:91 CrossRefGoogle Scholar
  24. 24.
    Bernadek S (1999) Appl Phys A 68:63 CrossRefGoogle Scholar
  25. 25.
    Dorfmann A, Ogden RW (2004) Q JI Mech Appl Math 57(4):599 CrossRefGoogle Scholar
  26. 26.
    Farshad M, Benine A (2004) Polym Test 23:343 CrossRefGoogle Scholar
  27. 27.
    Barsi L, Büki A, Szabó D, Zrínyi M (1996) Progr Colloid Polym Sci, p 102 Google Scholar
  28. 28.
    Zrínyi M, Barsi L, Büki A (1996) J Chem Phys 104(20):8750 CrossRefGoogle Scholar
  29. 29.
    Zrínyi M, Barsi L, Büki A (1997) Polym Gels Networks 5:415 CrossRefGoogle Scholar
  30. 30.
    Szabó D, Barsi L, Büki A, Zrínyi M (1997) Models Chem 134(2):155 Google Scholar
  31. 31.
    Zrinyi M (1997) Trends Polym Sci 5:280 Google Scholar
  32. 32.
    Zrínyi M,Barsi L, Szabó D, Kilian HG (1997) J Chem Phys 108(13):5685 CrossRefGoogle Scholar
  33. 33.
    Szabó D, Szeghy G, Zrinyi M (1998) Macromolecules 31:6541 CrossRefGoogle Scholar
  34. 34.
    Barsi L, Zrinyi M (1998) ACH-Models Chem 153(3):241 Google Scholar
  35. 35.
    Zrinyi M, Szabo D, Barsi L (1998) J Intell Mater Sys Struct 9:667 CrossRefGoogle Scholar
  36. 36.
    Zrinyi M, Szabo D, Kilian HG (1999) Polym Gel Networks 6:6:441 Google Scholar
  37. 37.
    Mitsumata T, Ikeda K, Gong JP, Osada Y, Szabó D, Zrínyi M (1999) J Appl Phys 85:12:1 CrossRefGoogle Scholar
  38. 38.
    Zrínyi M (2000) Colloid Polym Sci 27:2:98 Google Scholar
  39. 39.
    Szabo D, Czako-Nagy I, Zrinyi M, Vertes A (2000) J Colloid Interface Sci 221:166 CrossRefGoogle Scholar
  40. 40.
    Török Gy, Lebedev VT, Cser L, Zrínyi M (2000) Physica B 396:276 Google Scholar
  41. 41.
    Zrínyi M, Szabó D, Barsi L (1999) In: Osada Y, Rossi DE (eds) Magnetic field sensitive polymeric actuators. Polymer sensors and actuators. Springer, Berlin Heidelberg New York, p 385 Google Scholar
  42. 42.
    Zrínyi M, Szabó D, Filipcsei G, Fehér J (2002) In: Osada Y, Khokhlov A, Dekker M (eds) Electric and magnetic field sensitive smart polymer gels. Polymer gels and networks. CHIPS, New York, p 309 Google Scholar
  43. 43.
    Raikher YL, Stolbov OV (2003) J Magnet Magnet Mater 477:258 Google Scholar
  44. 44.
    Farshad M, Roux ML (2005) Polym Test 24:163 CrossRefGoogle Scholar
  45. 45.
    Starodubtsev SG, Saenko EV, Dokukin ME, Aksenov VL, Klechkovskaya VV, Zanaveskina IS, Khokhlov AR (2005) J Phys: Condens Matter 17:1471 CrossRefGoogle Scholar
  46. 46.
    Hernández R, Sarafian A, López D, Mijangos C (2004) Polymer 46:5543 CrossRefGoogle Scholar
  47. 47.
    Raikher YL, Stolbov OV (2005) J Magnet Magnet Mater 289:62 CrossRefGoogle Scholar
  48. 48.
    Jarkova E, Vilgis TA (2004) Macromol Theory Simul 13:592 CrossRefGoogle Scholar
  49. 49.
    Mayer CR, Cabuil V, Lalot T, Thouvenot R (2000) Adv Mater 12(6):417 CrossRefGoogle Scholar
  50. 50.
    Teixeira AV, Morfin I, Ehrburger-Dolle F, Rochas C, Geissler E, Licinio P, Panine P (2003) Phys Rev E 67:021504 CrossRefGoogle Scholar
  51. 51.
    Bohlius S, Brand HR, Pleiner H (2004) Phys Rev E 70:061411 CrossRefGoogle Scholar
  52. 52.
    Raj K, Moskowitz R (1990) J Magnet Magnet Mater 85:233 CrossRefGoogle Scholar
  53. 53.
    Rosenweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge Google Scholar
  54. 54.
    Si S, Li C, Wang X, Yu D, Peng Q, Li Y (2005) Crystal Growth Des 5(2):391 CrossRefGoogle Scholar
  55. 55.
    Berkovsky BM, Bashtovoy V (eds) (1996) Magnetic fluids and applications handbook. Begell House, New York Google Scholar
  56. 56.
    Otaigbe JU, Barnes MD, Fukui K, Sumter BG, Noid DW (2001) Adv Polym Sci 154:1 CrossRefGoogle Scholar
  57. 57.
    Nakano M, Koyama K (eds) (1997) Electro-rheological fluids, magneto-rheological suspensions and their applications. World Scientific, Hackensack, NJ Google Scholar
  58. 58.
    Panhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:167 CrossRefGoogle Scholar
  59. 59.
    Wormuth K (2001) J Coll Inter Sci 241:366 CrossRefGoogle Scholar
  60. 60.
    Ramírez LP, Landfester K (2003) Macromol Chem Phys 204:22 CrossRefGoogle Scholar
  61. 61.
    Nishio Y, Yamada A, Ezaki K, Miyashita Y, Furukawa H, Horie K (2004) Polymer 45:7129 CrossRefGoogle Scholar
  62. 62.
    Chatterjee J, Haik Y, Chen CJ (2001) Colloid Polym Sci 279:1073 CrossRefGoogle Scholar
  63. 63.
    Ma Z, Guan Y, Liu H (2005) J Polym Sci A: Polym Chem 43:3433 CrossRefGoogle Scholar
  64. 64.
    Iacob GH, Rotariu O, Strachan NJC, Hafeli UO (2004) Biorheology 41:599 Google Scholar
  65. 65.
    Zhou SQ, Chu B (1998) J Phys Chem B 102:1364 CrossRefGoogle Scholar
  66. 66.
    Jones CD, Lyon LA (2000) Macromolecules 33:8301 CrossRefGoogle Scholar
  67. 67.
    Chatterjee J, Haik Y, Chen CJ (2003) J Appl Polym Sci 91:3337 CrossRefGoogle Scholar
  68. 68.
    Deng Y, Yang W, Wang C, Fu S (2003) Adv Mater 15:1729 CrossRefGoogle Scholar
  69. 69.
    Sauzedde F, Elaissari A, Pichot C (1999) Colloid Polym Sci 277:846 CrossRefGoogle Scholar
  70. 70.
    Xulu M, Filipcsei G, Zrínyi M (2000) Macromolecules 33(5):1716 CrossRefGoogle Scholar
  71. 71.
    Gilányi T, Varga I, Mészáros R, Filipcsei G, Zrínyi M (2001) Langmuir 17(16):4764 CrossRefGoogle Scholar
  72. 72.
    Gilányi T, Varga I, Mészáros R, Filipcsei G, Zrínyi M (2001) J Phys Chem B 105(38):971 Google Scholar
  73. 73.
    Kondo A, Fukuda H (1999) Colloids Surf A: Physicochem Eng Aspects 153:435 CrossRefGoogle Scholar
  74. 74.
    Mark JE (1985) British Polym J 17:144 CrossRefGoogle Scholar
  75. 75.
    Haas W, Zrínyi M, Kilian HG, Heise B (1993) Colloid Polym Sci 271:1024 CrossRefGoogle Scholar
  76. 76.
    Filipcsei G, Szilágyi A, Csetneki I, Zrínyi M (2006) Polym Adv Technol 239:130 Google Scholar
  77. 77.
    Varga Z, Filipcsei G, Szilágyi A, Zrínyi M (2005) Macromol Symp 227:123 CrossRefGoogle Scholar
  78. 78.
    Varga Z, Filipcsei G, Zrínyi M (2006) Polymer 47(1):227 CrossRefGoogle Scholar
  79. 79.
    Landfester K, Willert M, Antonietti M (2000) Macromolecules 33:2370 CrossRefGoogle Scholar
  80. 80.
    Csetneki I, Kabai Faix M, Szilágyi A, Kovács AL, Németh Z, Zrínyi M (2004) J Polym Sci A: Polym Chem 42:482 CrossRefGoogle Scholar
  81. 81.
    Park TG, Choi HK (1998) Macromol Rapid Commun 19:167 CrossRefGoogle Scholar
  82. 82.
    Csetneki I, Filipcsei G, Zrínyi M (2005) Macromolecules 39:1942 Google Scholar
  83. 83.
    Neél L (1949) Geophys A 5:99 Google Scholar
  84. 84.
    Mark JE, Erman B (1988) Rubberlike elasticity, a molecular primer. Wiley, NY Google Scholar
  85. 85.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, NY Google Scholar
  86. 86.
    Treloar LRG (1949) The physics of rubber elasticity. Oxford, Clarendon Press Google Scholar
  87. 87.
    Rothon R (1995) Particulate-filled polymer composites. Longman Sci Techn, Harlow, UK Google Scholar
  88. 88.
    Odgen RW (1984) Non-linear elastic deformations. Ellis Horwood, Chichester Google Scholar
  89. 89.
    Tanaka T, Fillmore D (1979) J Chem Phys 70:1214 CrossRefGoogle Scholar
  90. 90.
    Tanaka T, Nishio I, Sun ST, Uenonishio S (1982) Science 218:467 CrossRefGoogle Scholar
  91. 91.
    Hirotsu S (1993) Adv Polym Sci 110:1 CrossRefGoogle Scholar
  92. 92.
    Tanaka T, Fillmore D (1979) J Chem Phys 70:1214 CrossRefGoogle Scholar
  93. 93.
    Peters A, Candau SJ (1986) Macromolecules 19:1952 CrossRefGoogle Scholar
  94. 94.
    Peters A, Candau SJ (1988) Macromolecules 21:2278 CrossRefGoogle Scholar
  95. 95.
    Onuki A (1988) Phys Rev A 38:2192 CrossRefGoogle Scholar
  96. 96.
    Li Y, Tanaka T (1990) J Chem Phys 92:1365 CrossRefGoogle Scholar
  97. 97.
    Varga Z, Filipcsei G, Zrínyi M (2005) Polymer 46:7779 CrossRefGoogle Scholar
  98. 98.
    Nikitin L, Stepanov G, Mironova L, Samus A (2003) J Mag Mag Mater 258–259:468 CrossRefGoogle Scholar
  99. 99.
    Nikitin L, Mironova L, Kornev K, Stepanov G (2004) Polym Sci A 46(3):301 Google Scholar
  100. 100.
    Nikitin L, Stepanov G, Mironova L, Gorbunov A (2004) J Mag Mag Mater 272–276:2072 CrossRefGoogle Scholar
  101. 101.
    Abramchuk S, Grishin D, Kramarenko E, Stepanov G, Khokhlov A (2006) Polym Sci A (in press) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Genovéva Filipcsei
    • 1
  • Ildikó Csetneki
    • 1
  • András Szilágyi
    • 1
  • Miklós Zrínyi
    • 1
    Email author
  1. 1.Department of Physical ChemistryBudapest University of Technology and Economics, MTA-BME Laboratory of Soft MattersBudapestHungary

Personalised recommendations