Advertisement

Spiro Compounds for Organic Electroluminescence and Related Applications

  • R. Pudzich
  • T. Fuhrmann-Lieker
  • J. SalbeckEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 199)

Abstract

A comprehensive review about functional spiro compounds, their synthesis, physical properties and applications in optoelectronic devices is given.

Amplified spontaneous emission Charge transport Field-effect transistors Molecular glasses Organic lasers Organic light-emitting diodes Solar cells Spiro compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Destriau G (1936) J Chem Phys 33:587 Google Scholar
  2. 2.
    Holonyak N, Bevacqua SF (1962) Appl Phys Lett 1:82 Google Scholar
  3. 3.
    Pope M, Kallmann HP, Magnante P (1963) J Chem Phys 38:2042 Google Scholar
  4. 4.
    Helferich W, Schneider WG (1965) Phys Rev Lett 14:229 Google Scholar
  5. 5.
    Tang CW, Van Slyke SA (1987) Appl Phys Lett 51:913 Google Scholar
  6. 6.
    Adachi C, Tsutsui T, Tokito S, Saito S (1988) Jpn J Appl Phys 28:L269 Google Scholar
  7. 7.
    Adachi C, Tsutsui T, Saito S (1990) Appl Phys Lett 56:799 Google Scholar
  8. 8.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:539 Google Scholar
  9. 9.
    Gustavson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Nature 357:477 Google Scholar
  10. 10.
    Kolosov D, English DS, Bulovic V, Barbara PF, Forrest SR, Thompson ME (2001) J Appl Phys 90:3242 Google Scholar
  11. 11.
    Ke L, Chen P, Chua SJ (2002) Appl Phys Lett 80:697 Google Scholar
  12. 12.
    McElvain J, Antoniadis H, Hueschen MR, Miller JN, Roitman DM, Scheats JR, Moon RL (1996) J Appl Phys 80:6002 Google Scholar
  13. 13.
    Naito K, Miura A (1993) J Phys Chem 97:6240 Google Scholar
  14. 14.
    Naito K (1994) Chem Mater 6:2343 Google Scholar
  15. 15.
    Shirota Y, Kuwabara Y, Okuda D, Okuda R, Ogawa H, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K (1997) J Lumin 72–74:985 Google Scholar
  16. 16.
    Wang S, Oldham WJ, Hudack RA, Bazan GC (2000) J Am Chem Soc 122:5695 Google Scholar
  17. 17.
    Salbeck J (1996) In: Mauch RH, Gumlich H-E (eds) Inorganic and organic electroluminescence (EL96). Wissenschaft & Technik, Berlin, p 243 Google Scholar
  18. 18.
    Clarkson RG, Gomberg M (1930) J Am Chem Soc 52:2881 Google Scholar
  19. 19.
    Tour JM, Wu R, Schumm JS, Pearson DL (1996) J Org Chem 61:6906 Google Scholar
  20. 20.
    Sutcliffe FK, Shahidi HM, Patterson D (1978) J Soc Dyers Colour 94:306 Google Scholar
  21. 21.
    Chou C-H, Reddy DS, Shu C-F (2002) J Polym Sci Part A Polym Chem 40:3615 Google Scholar
  22. 22.
    Poriel C, Ferrand Y, Juillard S, Le Maux P, Simonneaux G (2004) Tetrahedron 60:145 Google Scholar
  23. 23.
    Weisburger JH, Weisburger EK, Ray FE (1950) J Am Chem Soc 72:4253 Google Scholar
  24. 24.
    Prelog V, Bedekovic D (1979) Helv Chim Acta 62:2285 Google Scholar
  25. 25.
    Prelog V, Haas G (1969) Helv Chim Acta 52:1202 Google Scholar
  26. 26.
    Mattiello L, Fioravanti G (2001) Synth Commun 31:2645 Google Scholar
  27. 27.
    Yu W-L, Pei J, Huang W, Heeger AJ (2000) Adv Mater 12:828 Google Scholar
  28. 28.
    Pei J, Ni J, Zhou XH, Cao XY, Lai YH (2002) J Org Chem 67:4924 Google Scholar
  29. 29.
    Wu F-I, Rajasekhar D, Reddy DS, Shu C-F (2002) J Mater Chem 12:2893 Google Scholar
  30. 30.
    Moore JS, Weinstein EJ, Wu Z (1991) Tetrahedron Lett 32:2465 Google Scholar
  31. 31.
    Tour JM, Wu R, Schumm JS (1990) J Am Chem Soc 112:5662 Google Scholar
  32. 32.
    Weissörtel F (1999) Synthese und Charakterisierung spiroverknüpfter niedermolekularer Gläser für optoelektronische Anwendungen. Universität Regensburg Google Scholar
  33. 33.
    Lützen A, Thiemann F, Meyer S (2002) Synthesis 2771 Google Scholar
  34. 34.
    Wu X-m, Chen X-c, Cao X-p, Pan X-f (2001) Ganguang Kexue Yu Guang Huaxue 19:161 Google Scholar
  35. 35.
    Merkushev EB (1988) Synthesis 923 Google Scholar
  36. 36.
    Lee H, Oh J, Chu HY, Lee J-I, Kim SH, Yang YS, Kim GH, Do L-M, Zyung T, Lee J, Park Y (2003) Tetrahedron 59:2773 Google Scholar
  37. 37.
    Kim Y-H, Shin D-C, Kim S-H, Ko C-H, Yu H-S, Chae Y-S, Kwon S-K (2001) Adv Mater 13:1690 Google Scholar
  38. 38.
    Treacher K, Becker H, Stoessel P, Spreitzer H, Falcou A, Parham A, Buesing A (2002) PCT Int Appl (Covion Organic Semiconductors GmbH, Germany), WO 02077060 Google Scholar
  39. 39.
    Stoessel P, Spreitzer H, Becker H, Drott J (2002) PCT Int Appl (Covion Organic Semiconductors GmbH, Germany), WO 02051850 Google Scholar
  40. 40.
    Hung LS, Tang CW, Mason MG (1997) Appl Phys Lett 71:1762 Google Scholar
  41. 41.
    Shaheen SE, Jabbour GE, Morrell MM, Kawabe Y, Kippelen B, Peyghambarian N, Nabor MF, Schlaf R, Mash EA, Armstrong NR (1998) J Appl Phys 84:2324 Google Scholar
  42. 42.
    Brown TM, Friend RH, Millard IS, Lacey DJ, Burroughes JH, Cacialli F (2000) Appl Phys Lett 77:3096 Google Scholar
  43. 43.
    Furukawa K, Terasaka Y, Ueda H, Matsumura M (1997) Synth Met 91:99 Google Scholar
  44. 44.
    Nuesch F, Forsythe EW, Lee QT, Gao Y, Rothberg LJ (2000) J Appl Phys 87:7973 Google Scholar
  45. 45.
    Van Slyke SA, Chen CH, Tang CW (1996) Appl Phys Lett 69:2160 Google Scholar
  46. 46.
    Carter SA, Angelopoulos M (1997) Appl Phys Lett 70:2067 Google Scholar
  47. 47.
    Aminaka E, Tsutsui T, Saito S (1996) J Appl Phys 79:8808 Google Scholar
  48. 48.
    Yeh P (1988) Optical waves in layered media. Wiley, New York Google Scholar
  49. 49.
    McGehee MD, Gupta R, Veenstra S, Miller EK, Diaz-Garcia MA, Heeger AJ (1998) Phys Rev B 58:7035 Google Scholar
  50. 50.
    Salbeck J, Schörner M, Fuhrmann T (2002) Thin Solid Films 417:20 Google Scholar
  51. 51.
    Heinze J (1984) Angew Chem 96:823 Google Scholar
  52. 52.
    Ishii H, Sugiyama K, Ito E, Seki K (1999) Adv Mater 11:605 Google Scholar
  53. 53.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York Google Scholar
  54. 54.
    Pommerehne J, Westweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J (1995) Adv Mater 7:551 Google Scholar
  55. 55.
    Horowitz G (2000) In: Hadziioannou G, van Hutten PF (eds) Semiconducting polymers. Chemistry, Physics and Engineering. Wiley, Weinheim, p 463 Google Scholar
  56. 56.
    Nelson SF, Lin Y-Y, Gundlach J, Jackson TN (1998) Appl Phys Lett 72:1854 Google Scholar
  57. 57.
    Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin Y-Y, Dodabalapur A (2000) Nature 404:478 Google Scholar
  58. 58.
    Adam D, Schumacher P, Simmerer J, Häußling L, Siemensmeyer K, Etzbach K-H, Ringsdorf H, Haarer D (1994) Nature 371:141 Google Scholar
  59. 59.
    Bässler H (1993) Phys Stat Sol (b) 175:15 Google Scholar
  60. 60.
    Facci JS, Stolka M (1986) Philos Mag B 54:1 Google Scholar
  61. 61.
    Stephan J, Schrader S, Brehmer L (2000) Synth Met 111:353 Google Scholar
  62. 62.
    Brown AR, Jarrett CP, de Leeuw DM, Matters M (1997) Synth Met 88:37 Google Scholar
  63. 63.
    Borsenberger PM, Weiss DS (1993) Organic photoreceptors for imaging systems. Marcel Dekker, New York Google Scholar
  64. 64.
    Forrest SR, Bradley DDC, Thompson ME (2003) Adv Mater 15:1043 Google Scholar
  65. 65.
    American Society for Testing and Materials (1998) G159–198 Google Scholar
  66. 66.
    Brabec CJ, Sariciftci NS (2000) In: Hadzioannou G, van Hutten PF (eds) Semiconducting polymers. Wiley, Weinheim, p 528 Google Scholar
  67. 67.
    Wirth HO (1961) In: Proceedings of the International Conference on Luminescence of organic and inorganic materials. New York, p 226 Google Scholar
  68. 68.
    Wirth HO, Herrmann FU, Herrmann G, Kern W (1968) Mol Cryst 4:321 Google Scholar
  69. 69.
    Ried W, Freitag D (1968) Angew Chem 80:932 Google Scholar
  70. 70.
    Salbeck J (1996) Ber Bunsen-Ges Phys Chem Chem Phys 100:1667 Google Scholar
  71. 71.
    Salbeck J, Weissortel F, Bauer J (1997) Macromol Symp 125:121 Google Scholar
  72. 72.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457 Google Scholar
  73. 73.
    Salbeck J, Weinfurthner K-H, Weissörtel F, Harmgarth G (1998) Proc SPIE 3476:40 Google Scholar
  74. 74.
    Minato A, Tamao K, Hayashi T, Suzuki K, Kumada M (1980) Tetrahedron Lett 21:845 Google Scholar
  75. 75.
    Shen W-J, Dodda R, Wu C-C, Wu F-I, Liu T-H, Chen H-H, Chen CH, Shu C-F (2004) Chem Mater 16:930 Google Scholar
  76. 76.
    Wu C-C, Liu T-L, Hung W-Y, Lin Y-T, Wong K-T, Chen R-T, Chen Y-M, Chien Y-Y (2003) J Am Chem Soc 125:3710 Google Scholar
  77. 77.
    Wong K-T, Chien Y-Y, Chen R-T, Wang C-F, Lin Y-T, Chiang H-H, Hsieh P-Y, Wu C-C, Chou HC, Yuhlong OS, Lee G-H, Peng S-M (2002) J Am Chem Soc 124:11576 Google Scholar
  78. 78.
    Davydov AS (1948) 18:515 Google Scholar
  79. 79.
    Berlman IB (1968) Mol Cryst 4:157 Google Scholar
  80. 80.
    Brackmann U (2000) Lambdachrome Laser Dyes. Lambda Physik, Goettingen Google Scholar
  81. 81.
    Johansson N, dos Santos DA, Guo S, Cornil J, Fahlman M, Salbeck J, Schenk H, Arwin H, Bredas JL, Salanek WR (1997) J Chem Phys 107:2542 Google Scholar
  82. 82.
    Milota F (1999) Master Thesis, University of Vienna Google Scholar
  83. 83.
    Milota F, Warmuth C, Tortschanoff A, Sperling J, Fuhrmann T, Salbeck J, Kauffmann HF (2001) Synth Met 121:1497 Google Scholar
  84. 84.
    Birks JB (1970) Photophysics of aromatic molecules. Wiley, London Google Scholar
  85. 85.
    Berlman IA (1971) Handbook of fluorescence spectra of aromatic molecules. Academic, New York Google Scholar
  86. 86.
    Geng Y, Katsis D, Culligan SW, Ou JJ, Chen SH, Rothberg LJ (2002) Chem Mater 14:463 Google Scholar
  87. 87.
    Katsis D, Geng YH, Ou JJ, Culligan SW, Trajkovska A, Chen SH, Rothberg LJ (2002) Chem Mater 14:463 Google Scholar
  88. 88.
    Schartel B, Damerau T, Hennecke M (2000) Phys Chem Chem Phys 2:4690 Google Scholar
  89. 89.
    Schörner M (2000) Master's thesis, Kassel University, Germany Google Scholar
  90. 90.
    Johansson N, Salbeck J, Bauer J, Weissortel F, Broms P, Andersson A, Salaneck WR (1998) Adv Mater 10:1136 Google Scholar
  91. 91.
    Spehr T, Pudzich R, Fuhrmann T, Salbeck J (2003) Org Electron 4:61 Google Scholar
  92. 92.
    Benstem T (2002) Lumineszenz-Dynamik und stimulierte Emission von organischen Dünnschichten. Cuvillier, Göttingen Google Scholar
  93. 93.
    Wong K-T, Chien Y-Y, Chen R-T, Wang C-F, Lin Y-T, Chiang H-H, Hsieh P-Y, Wu C-C, Chou HC, Yuhlong OS, Lee G-H, Peng S-M (2002) J Am Chem Soc 124:11576 Google Scholar
  94. 94.
    Crispin A, Crispin X, Fahlman M, dos Santos DA, Cornil J, Johansson N, Bauer J, Weissortel F, Salbeck J, Bredas JL, Salaneck WR (2002) J Chem Phys 116:8159 Google Scholar
  95. 95.
    Salbeck J, Yu N, Bauer J, Weissortel F, Bestgen H (1997) Synth Met 91:209 Google Scholar
  96. 96.
    Steuber F, Staudigel J, Stossel M, Simmerer J, Winnacker A, Spreitzer H, Weissortel F, Salbeck J (2000) Adv Mater 12:130 Google Scholar
  97. 97.
    Salbeck J, Spreitzer H, Schenk H, Weissortel F, Riel H, Riess W (1999) Proc SPIE 3797:316 Google Scholar
  98. 98.
    Chun C, Kim M-J, Vak D, Kim DY (2003) J Mater Chem 13:2904 Google Scholar
  99. 99.
    Fuhrmann T, Tsutsui T (1999) Chem Mater 11:2226 Google Scholar
  100. 100.
    Hosokawa C, Higashi H, Nakamura H, Kusumoto T (1995) Appl Phys Lett 67:3853 Google Scholar
  101. 101.
    Rochon P, Batalla E, Natansohn A (1995) Appl Phys Lett 66:136 Google Scholar
  102. 102.
    Kim DY, Li L, Kumar J, Tripathy SK (1995) Appl Phys Lett 66:1166 Google Scholar
  103. 103.
    Hartwig JF (1998) Angew Chem 110:2154 Google Scholar
  104. 104.
    Gauthier S, Fréchet JM (1987) Synthesis 383 Google Scholar
  105. 105.
    Fujikawa H, Tokito S, Taga Y (1997) Synth Met 91:161 Google Scholar
  106. 106.
    Anderson JD, McDonald EM, Lee PA, Anderson ML, Ritchie EL, Hall HK, Hopkins T, Mash EA, Wang J, Padias A, Tayumanavan S, Barlow S, Marder SR, Jabbour GE, Shaheen S, Kippelen B, Peyghambarian N, Whightman RM, Armstrong NR (1998) J Am Chem Soc 120:9646 Google Scholar
  107. 107.
    Shirota Y (2000) J Mater Chem 10:1 Google Scholar
  108. 108.
    Kanai H, Ichinosawa S, Sato Y (1997) Synth Met 91:195 Google Scholar
  109. 109.
    Heun S, Borsenberger PM (1995) Chem Phys 200:245 Google Scholar
  110. 110.
    Bach U, De Cloedt K, Spreitzer H, Grätzel M (2000) Adv Mater 12:1060 Google Scholar
  111. 111.
    Poplavskyy D, Nelson J (2003) J Appl Phys 93:341 Google Scholar
  112. 112.
    Saragi TPI, Pudzich R, Fuhrmann T, Salbeck J (2002) MRS Proc 725:85 Google Scholar
  113. 113.
    Saragi TPI, Fuhrmann-Lieker T, Salbeck J (2005) Synth Met 148:267 Google Scholar
  114. 114.
    Huang J, Pfeiffer M, Blochwitz J, Werner A, Salbeck J, Liu S, Leo K (2001) Jpn J Appl Phys 40:6630 Google Scholar
  115. 115.
    O'Regan B, Grätzel M (1991) Nature 353:737 Google Scholar
  116. 116.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Nature 395:583 Google Scholar
  117. 117.
    Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M (2001) Appl Phys Lett 79:2085 Google Scholar
  118. 118.
    Stanforth SP (1998) Tetrahedron 54:263 Google Scholar
  119. 119.
    Tour JM (1994) Adv Mater 6:190 Google Scholar
  120. 120.
    Aviram A (1988) J Am Chem Soc 110:5687 Google Scholar
  121. 121.
    Pei J, Ni J, Zhou X-H, Cao X-Y, Lai Y-H (2002) J Org Chem 67:8104 Google Scholar
  122. 122.
    Mitschke U, Bäuerle P (2001) J Chem Soc Perkin Trans 1:740 Google Scholar
  123. 123.
    Ong T-T, Ng S-C, Chan HSO, Vardhanan RV, Kumura K, Mazaki Y, Kobayashi K (2003) J Mater Chem 13:2185 Google Scholar
  124. 124.
    van Pham C, Burckhardt A, Shabana R et al. (1989) Phosphor Sulfur Silicon 46:153 Google Scholar
  125. 125.
    Becker RS, Melo JSD, Macanita AL, Elisei F (1995) Pure Appl Chem 67:9 Google Scholar
  126. 126.
    Bäuerle P, Mitschke U, Mena-Osteritz E, Sokolowski M, Müller D, Groß M, Meerholz K (1998) Proc SPIE 3476:32 Google Scholar
  127. 127.
    Huisgen R (1963) Angew Chem 75:604 Google Scholar
  128. 128.
    Huisgen R, Seidl H (1965) Chem Ber 98:2966 Google Scholar
  129. 129.
    Brown HC, Kassal RJ (1967) J Org Chem 32:1871 Google Scholar
  130. 130.
    Wu CC, Lin YT, Chiang HH, Cho TY, Chen CW, Wong KT, Liao YL, Lee GH, Peng SM (2002) Appl Phys Lett 81:577 Google Scholar
  131. 131.
    Wu F, Riesgo EC, Thummel RP, Juris A, Hissler M, El-ghayoury A, Ziessel R (1999) Tetrahedron Lett 40:7311 Google Scholar
  132. 132.
    Juris A, Prodi L, Harriman A, Ziessel R, Hissler M, El-ghayoury A, Wu F, Riesgo EC, Thummel RP (2000) Inorg Chem 39:3590 Google Scholar
  133. 133.
    Poriel C, Ferrand Y, Le Maux P, Raul-Berthelot J, Simonneaux G (2003) Chem Commun 1104 Google Scholar
  134. 134.
    Poriel C, Ferrand Y, Le Maux P, Rault-Berthelot J, Simonneaux G (2003) Tetrahedron Lett 44:1759 Google Scholar
  135. 135.
    Maeda M (1984) Laser Dyes. Academic, Orlando, FL Google Scholar
  136. 136.
    Pudzich R, Salbeck J (2003) Synth Met 138:21 Google Scholar
  137. 137.
    Diederich F, Alcazar V, Moran JR (1992) Isr J Chem 32:69 Google Scholar
  138. 138.
    Hetzheim A (1994) Houben-Weyl, Methoden der organischen Chemie (Houben-Weyl, Methoden der organischen Chemie), vol E8c. Georg Thieme, Stuttgart, p 525 Google Scholar
  139. 139.
    Hartwig JF (1998) Angew Chem-Int Edit Engl 37:2046 Google Scholar
  140. 140.
    Pudzich R (2002) Synthese und Charakterisierung spiroverknüpfter Emitter- und Ladungstransportmaterialien mit kombinierten Funktionalitäten. PhD thesis, Universität Kassel, Germany Google Scholar
  141. 141.
    Chien Y-Y, Wong K-T, Chou P-T, Cheng Y-M (2002) Chem Commun 2874 Google Scholar
  142. 142.
    Maslak P, Chopra A, Moylan CR, Wortmann R, Lebus S, Rheingold AL, Yap GPA (1996) J Am Chem Soc 118:1471 Google Scholar
  143. 143.
    Maslak P (1994) Adv Mater 6:405 Google Scholar
  144. 144.
    Maslak P, Chopra A (1993) J Am Chem Soc 115:9331 Google Scholar
  145. 145.
    Maslak P, Augustine MP, Burkey JD (1990) J Am Chem Soc 112:5359 Google Scholar
  146. 146.
    Saragi TPI, Pudzich R, Fuhrmann T, Salbeck J (2004) Appl Phys Lett 84:2334 Google Scholar
  147. 147.
    Harada N, Ono H, Nishiwaki T, Uda H (1991) J Chem Soc Chem Commun 1753 Google Scholar
  148. 148.
    Alcazar V, Diederich F (1992) Angew Chem 104:1503 Google Scholar
  149. 149.
    Cuntze J, Diederich F (1997) Helv Chim Acta 80:897 Google Scholar
  150. 150.
    Dantzig NA, Levy DH, Vigo C, Piotrowiak P (1995) J Chem Phys 103:4894 Google Scholar
  151. 151.
    Shain AL, Ackerman JP, Teague MW (1969) Chem Phys Lett 3:550 Google Scholar
  152. 152.
    Schweig A, Weidner U, Hellwinkel D, Krapp W (1973) Angew Chem 85:360 Google Scholar
  153. 153.
    Kreuder W, Lupo D, Salbeck J, Schenk H, Stehlin T (1997) US Patent, US5621131 Google Scholar
  154. 154.
    Wu S-C, Shu C-F (2003) J Polym Sci Part A Polym Chem 41:1160 Google Scholar
  155. 155.
    Chiang C-L, Shu C-F (2002) Chem Mater 14:682 Google Scholar
  156. 156.
    Müller CD, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K (2003) Nature 421:829 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2006

Authors and Affiliations

  1. 1.Macromolecular Chemistry and Molecular Materials (mmCmm), Institute of Chemistry, and Center of Interdisciplinary Nanostructure Science and Technology (CINSaT)University of KasselKasselGermany

Personalised recommendations