Skip to main content

Development of a Biodegradable Composite Scaffold for Bone Tissue Engineering: Physicochemical, Topographical, Mechanical, Degradation, and Biological Properties

  • Chapter
  • First Online:
Ordered Polymeric Nanostructures at Surfaces

Part of the book series: Advances in Polymer Science ((POLYMER,volume 200))

Abstract

The development of synthetic materials and their use in tissue engineering applications hasattracted much attention in recent years as an option for trabecular bone grafting. Bioabsorbablepolyesters of the poly(α-hydroxy acids) family, and specifically polylactic acid (PLA), are wellknown bioabsorbable materials and are currently used for numerous biomedical applications. The incorporationof an inorganic phase, such as a soluble calcium phosphate glass in the P2O5 − CaO − Na2O − TiO2system, into the polymeric matrix enhances the mechanical integrity of the material. In fact, theflexural elastic modulus increases from 3.2 to 10 GPa with 50 wt/wt % of glass particles.It also improves the biological behavior and modifies the degradation pattern of the polymer. Thepresence of glass particles accelerates the material degradation and induces the formation of calciumphosphate precipitates in the surface of the composite. Therefore, the combination of a bioabsorbablepolymer such as PLA with a soluble calcium phosphate glass leads to a fully degradable compositematerial with a high bone regenerative potential. The success of a 3D scaffold dependson several parameters that go from the macro- to the nanoscale. The solvent and casting technique,together with particulate leaching, allows the elaboration of 95 %-porosity scaffolds with a wellinterconnected macro- and microporosity. Factors such as surface chemistry, surface energy, and topographycan highly affect the cell-material response. Indeed, the addition of glass particles in the PLAmatrix modifies the material surface properties such as wettability AI (Area index or real-surface-area/nominal-arearatio) and roughness, improving the cell response and inducing morphological changes in the cytoskeletonof the osteoblasts. This study offers valuable insight into the parameters affecting cell-scaffoldbehavior, and discusses the special relevance that a comprehensive characterization and manufacturingcontrol of the composite surface can have for monitoring the biological–synthetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AI:

Area index or real-surface-area/nominal area ratio

CaP:

Calcium phosphate

E:

Young's modulus

ECM:

Extracellular matrix

FCS:

Fetal calf serum

G5:

44,5P2O5 − 44,5CaO − 6Na2O − 5TiO2glass (molar composition)

HV:

Vickers microhardness

ICP-MS:

Inductively coupled plasma-mass spectroscopy

MTT:

Tetrazolium-salt assay

Mw:

Molecular weight

PLA:

Polylactic acid

SBF:

Simulated body fluid

S a :

Average 3D roughness

Sku:

Kurtosis of the 3D surface texture

Ssk:

Skewness of the 3D surface texture

T g :

Glass transition temperature

Wa:

Work of adhesion

References

  1. Middleton JC, Tipton AJ (2000) Biomaterials 21:2335

    Article  CAS  Google Scholar 

  2. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Arthroscopy 14:726

    Article  CAS  Google Scholar 

  3. An Y, Woolf SFR (2000) Biomaterials 21:2635

    Article  CAS  Google Scholar 

  4. Rokkanen P (2000) Biomaterials 21:2607

    Article  CAS  Google Scholar 

  5. Burnie J, Gilchrist T (1981) Biomaterials 2:244

    Article  CAS  Google Scholar 

  6. Vogel P, Wange P, Hartmann P (1997) Glasstech Ber Glass Sci Tech 70:220

    CAS  Google Scholar 

  7. Franks K, Abrahams I, Knowles JC (2000) J Mater Sci-Mater Med 11:609

    CAS  Google Scholar 

  8. Boyan BD, Dean DD, Lohmann CH, Cochran DL, Sylvia VL, Schwartz Z (2001) The titanium bone-cell interface in vitro: the role of the surface in promoting osseointegration. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, p 561

    Chapter  Google Scholar 

  9. Anselme K (2000) Biomaterials 21:667

    Article  CAS  Google Scholar 

  10. Iuliano DJ, Saavedra SS, Truskey GA (1993) J Biomed Mater Res 27:1103

    Article  CAS  Google Scholar 

  11. Albelda SM, Buck CA (1990) FASEB J 4:2068

    Google Scholar 

  12. Van Wazer JR (1958) Phosphorous and its compounds. Interscience, New York

    Google Scholar 

  13. Lin ST, Krebs SL, Kadiyala S, Leong KW, Lacourse WC, Kumar B (1994) Biomaterials 15:1057

    Article  CAS  Google Scholar 

  14. Clement J, Torres P, Gil FJ, Planell JA, Terradas R, Martinez S (1999) J Mater Sci-Mater Med 10:437

    CAS  Google Scholar 

  15. Clement J, Eckeberg L, Martínez S, Ginebra MP, Gil FJ, Planell JA (1998) Key Eng Mater 11:141

    CAS  Google Scholar 

  16. Clement J, Manero JM, Planell JA, Avila G, Martinez S (1999) J Mater Sci-Mater Med 10:729

    CAS  Google Scholar 

  17. Navarro M, Ginebra MP, Clement J, Martinez S, Avila G, Planell JA (2003) J Am Ceramic Soc 86:1345

    Article  CAS  Google Scholar 

  18. Clement J, Avila G, Navarro M, Martínez S, Ginebra MP, Planell JA (2001) Chemical durability and mechanical properties of calcium phosphate glasses with the addition of Fe2O3, TiO2and ZnO. Key Eng Mater 192–195:621

    Article  Google Scholar 

  19. Navarro M, Clement J, Ginebra MP, Martinez S, Avila G, Planell JA (2002) Key Eng Mater 218–220:275

    Article  Google Scholar 

  20. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721

    Article  CAS  Google Scholar 

  21. Navarro M, Ginebra MP, Clement J, Martinez S, Avila G, Planell JA (2003) J Am Ceramic Soc 86:1345

    Article  CAS  Google Scholar 

  22. Navarro M, Ginebra MP, Planell JA (2003) J Biomed Mater Res Part A 67A:1009

    Article  CAS  Google Scholar 

  23. Navarro M, Sanzana E, Planell JA, Ginebra MP, Torres P (2005) Key Eng Mater 284–286:893

    Article  Google Scholar 

  24. Raiha JE (1992) Clin Mater 10:35

    Article  CAS  Google Scholar 

  25. Vert M, Li SM, Spenlehauer G, Guerin P (1992) J Mater Sci-Mater Med 3:432

    CAS  Google Scholar 

  26. Huffman KR, Casey DJ (1985) J Polym Sci Part A-Polym Chem 23:1939

    CAS  Google Scholar 

  27. Garcia AJ, Keselowsky BG (2002) Crit Rev Eukaryotic Gene Expression 12:151

    Article  CAS  Google Scholar 

  28. Hench LL, Polak JM (2002) Science 295:1014

    Article  CAS  Google Scholar 

  29. Curtis ASG, Clark P (1992) Crit Rev Biocomp 5:343

    Google Scholar 

  30. Curtis ASG, Wilkinson C (1997) Biomaterials 18:1573

    Article  CAS  Google Scholar 

  31. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Biomaterials 25:2695

    Article  CAS  Google Scholar 

  32. Boyan BD, Schwartz Z (1999) Modulation of osteogenesis via implant surface design. In: Davies JE (ed) Bone engineering. Em squared, Toronto, p 232

    Google Scholar 

  33. Aparicio C (2004) PhD Thesis, Technical University of Catalonia

    Google Scholar 

  34. Vogler EA (1993) Interfacial chemistry in biomaterials science. In: Berg JC (ed) Wettability, surfactant science series. Dekker, New York, chap 4, p 183

    Google Scholar 

  35. Lampin M, WarocquierClerout R, Legris C, Degrange M, SigotLuizard MF (1997) J Biomed Mater Res 36:99

    Article  CAS  Google Scholar 

  36. Keselowsky BG, Collard DM, Garcia AJ (2004) Biomaterials 25:5947

    Article  CAS  Google Scholar 

  37. Vogler EA (1998) Adv Colloid Interface Sci 74:69

    Article  CAS  Google Scholar 

  38. Shibuichi S, Onda T, Satoh K, Tsujii J (1996) Phys Chem 100:19512

    Article  CAS  Google Scholar 

  39. Bico J, Thiuele U, Quéré D (2002) Coll Surf A: Physicochem Eng Aspects 206:41

    Article  CAS  Google Scholar 

  40. Meyer AE, Beyer RE, Naatiella JR, Meenaghan MA (1988) J Oral Implantol 14:363

    CAS  Google Scholar 

  41. Lüthen F, Lange R, Becker P, Rychly J, Beck U, Nebe B (2005) Biomaterials 26:2423

    Article  Google Scholar 

  42. Horbett TA (1996) Proteins: structure, properties, and adsorption to surfaces. In: Ratner BD, Hoffman AS, Choen FJ, Leomns JE (eds) Biomaterials science. Academic, San Diego, p 133

    Chapter  Google Scholar 

  43. Navarro M, Ginebra MP, Planell JA (2003) J Biomed Mater Res Part A 67A:1009

    Article  CAS  Google Scholar 

  44. Griffith LG, Naughton G (2002) Science 295:1009

    Article  CAS  Google Scholar 

  45. Hutmacher DW (2000) Biomaterials 21:2529

    Article  CAS  Google Scholar 

  46. Sipe JD (2002) Ann NY Acad Sci 961:1

    Article  CAS  Google Scholar 

  47. Liu X, Ma PX (2004) Ann Biomed Eng 32:477

    Article  Google Scholar 

  48. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Polymer 35:1068

    Article  CAS  Google Scholar 

  49. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1998) Biomaterials 19:1935

    Article  CAS  Google Scholar 

  50. Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999) J Biomed Mater Res 47:324

    Article  CAS  Google Scholar 

  51. Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M (2003) Biomaterials 24:3247

    Article  CAS  Google Scholar 

  52. Liu Q, de Wijn JR, van Blitterswijk CA (1998) J Biomed Mater Res 40:490

    Article  CAS  Google Scholar 

  53. Nam YS, Park TG (1999) J Biomed Mater Res 47:8

    Article  CAS  Google Scholar 

  54. Ma PX, Choi J (2003) Tissue Eng 7:23

    Article  Google Scholar 

  55. Spaans CJ, Belgraver VW, Rienstra O, de Groot JH, Veth RPH, Pennings AJ (2000) Biomaterials 21:2453

    Article  CAS  Google Scholar 

  56. Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) J Biomed Mater Res 30:449

    Article  CAS  Google Scholar 

  57. Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) Polymer 37:1027

    Article  CAS  Google Scholar 

  58. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérôme R (2002) Biomaterials 23:3871

    Article  CAS  Google Scholar 

  59. Zhang Y, Zhang M (2001) J Biomed Mater Res 55:304

    Article  CAS  Google Scholar 

  60. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, Pagani S, Guizzardi S, Causa F, Giunti A (2003) Biomaterials 24:3815

    Article  CAS  Google Scholar 

  61. Zhang R, Ma PX (1999) J Biomed Mater Res 44:446

    Article  CAS  Google Scholar 

  62. Cai Q, Yang J, Bei J, Wang S (2002) Biomaterials 23:4483

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Planell .

Editor information

G. Julius Vancso

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Navarro, M., Aparicio, C., Charles-Harris, M., Ginebra, M.P., Engel, E., Planell, J.A. (2006). Development of a Biodegradable Composite Scaffold for Bone Tissue Engineering: Physicochemical, Topographical, Mechanical, Degradation, and Biological Properties. In: Vancso, G.J. (eds) Ordered Polymeric Nanostructures at Surfaces. Advances in Polymer Science, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_068

Download citation

Publish with us

Policies and ethics