Advertisement

Polymer Brushes by Anionic and Cationic Surface-Initiated Polymerization (SIP)

  • Rigoberto AdvinculaEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 197)

Abstract

The formation of homopolymer and block copolymer brushes grafted from flat and nanoparticle surfaces via surface-initiated anionic and cationic polymerization methods is reviewed. Unique properties of these chain addition polymerization methods distinguish them from free-radical and living-radical methods, i.e., primarily the formation of charged reactive propagating centers. This involves the use of methods that preserve the reactivity of the charged species, where the monomer, solvent quality, and lack of terminating species allow for grafting to surfaces and for the formation of homopolymer and block copolymers. While these initiators are analogous to solution and bulk methods and adapted to surfaces, their mechanisms do not necessarily follow their counterparts. Several systems for surface-initiated polymerization (SIP) will be reviewed including early attempts at “grafting onto” and “grafting from” particles. For initiation, alkylsilane or alkylthiol anionic initiators are grafted onto planar and particle surfaces by self-assembled monolayer (SAM) techniques. For the cationic (carbocationic) polymerization methods, methods of tethering Lewis acids to surfaces have been reported. The grafted polymer chains can be investigated in situ using a number of surface-sensitive spectroscopic and microscopic techniques. They can also be analyzed ex situ when the polymer chains are removed from the substrate surface. Activation of the grafted initiator, control of polymerization conditions, and removal of excess activators are emphasized. Interesting differences in particle properties, morphology, thickness, grafting density, and polymerization conditions contrast anionic and cationic charged species from other SIP mechanisms. The problems and potential of these techniques will also be discussed. The formation of block copolymer sequences highlights a unique utility of living anionic and cationic polymerization techniques on surfaces.

Anionic Cationic Initiator Nanoparticles Surface initiated polymerization 

Abbreviations

SIP

Surface-initiated polymerization

SAM

Self-assembled monolayers

MW

Molecular weight

Rg

Radius of gyration

LASIP

Living anionic surface-initiated polymerization

ATRP

Atom-transfer radical polymerization

ROMP

Ring-opening metathesis polymerization

TEMPO

2,2,6,6-tetramethyl-1-piperidyloxy

RAFT

Reversible addition fragmentation chain transfer

NMR

Nuclear magnetic resonance

GPC

Gel permeation chromatography

XPS

X-ray photoelectron spectroscopy

AFM

Atomic force microscopy

TEM

Transmission electron microscopy

PS

Polystyrene

PBd

Polybutadiene

PI

Polyisoprene

DPE

1,1-diphenylethylene

THF

Tetrahydrofuran

QCM

Quartz crystal microbalance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

I would like to acknowledge my collaborators in this research area: QingYe Zhou, Mi-Kyoung Park, Shuangxi Wang, Jimmy Mays, George Sakellariou, Stergios Pispas, and Nikos Hadjichristidis. I would like to acknowledge the Advincula research group and especially Derek Patton for help in preparing updated references. I would also like to acknowledge technical support from Molecular Imaging (Agilent technologies), Optrel GmBH, and Maxtec Inc.

References

  1. 1.
    Advincula R, Ruehe J, Brittain W, Caster K (eds) (2004) Polymer Brushes. Wiley, Weinheim, p 483 Google Scholar
  2. 2.
    Advincula R (2003) J Dispersion Sci Tech 24:361 CrossRefGoogle Scholar
  3. 3.
    Advincula R (2004) Polymer Brushes. In: Kroschwitz J (ed) Encyclopedia of Polymer Science and Technology. Wiley, New York Google Scholar
  4. 4.
    Halperin A, Tirrell M, Lodge TP (1992) Adv Polym Sci 100:31 Google Scholar
  5. 5.
    Tadros T (1982) The Effect of Polymers on Dispersion Properties. Academic, London Google Scholar
  6. 6.
    Krishnamoorti R, Vaia R (2002) Polymer Nanocomposites. ACS Symposium Series 804. Oxford University Press, Cary, NC Google Scholar
  7. 7.
    Prücker O, Rühe J (1998) Langmuir 14:6893 Google Scholar
  8. 8.
    Zhao B, Brittain W (2000) Prog Polym Sci 25:677 CrossRefGoogle Scholar
  9. 9.
    Prücker O, Rühe J (1998) Macromolecules 31:592 Google Scholar
  10. 10.
    Jordan R, Ulman A (1998) J Am Chem Soc 120:243 CrossRefGoogle Scholar
  11. 11.
    Weck M, Jackiw J, Rossi R, Weiss P, Grubbs R (1999) J Am Chem Soc 121:4088 CrossRefGoogle Scholar
  12. 12.
    Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T (1998) Macromolecules 31:5934 CrossRefGoogle Scholar
  13. 13.
    Kong X, Kawai T, Abe J, Iyoda T (2001) Macromolecules 34:1837 CrossRefGoogle Scholar
  14. 14.
    Yamamoto S, Tsujii Y, Fukuda T (2000) Macromolecules 33:5995 Google Scholar
  15. 15.
    von Werne T, Patten T (2001) J Am Chem Soc 123:7497 Google Scholar
  16. 16.
    Jones D, Brown A, Huck W (2002) Langmuir 18:1265 Google Scholar
  17. 17.
    Husseman M, Malmstrom E, McNamara M, Mate M, Mecereyes D, Genoit G, Hedrick J, Mansky P, Huang E, Russell T, Hawker C (1999) Macromolecules 32:1424 Google Scholar
  18. 18.
    Zhou Q, Nakamura Y, Inaoka S, Park M, Wang Y, Mays J, Advincula R (2000) Poly Math Sci Eng Preprint (Am Chem Soc) 82:291 Google Scholar
  19. 19.
    Baum M, Brittain WJ (2002) Macromolecules 35:610 CrossRefGoogle Scholar
  20. 20.
    Sedjo RA, Mirous BK, Brittain WJ (2000) Macromolecules 33:1492 CrossRefGoogle Scholar
  21. 21.
    Odian G (2004) Principles of Polymerization, 4th edn. Wiley, New York Google Scholar
  22. 22.
    Pitsikalis M, Pispas S, Mays J, Hadjichristidis N (1998) Adv Polym Sci 135:1 Google Scholar
  23. 23.
    Zhou Q, Wang S, Fan X, Pispas S, Sakellariou G, Hadjichristides N, Mays J, Advincula R (2001) Polym Preprints 42:59 Google Scholar
  24. 24.
    Quirk R, Mathers R (2001) Polym Bull 6:471 Google Scholar
  25. 25.
    Ingall M, Honeyman C, Mercure J, Bianconi P, Kunz R (1999) J Am Chem Soc 121:3607 CrossRefGoogle Scholar
  26. 26.
    Jordan R, Ulman A, Kang J, Rafailovich M, Sokolov J (1999) J Am Chem Soc 121:1016 CrossRefGoogle Scholar
  27. 27.
    Zhou Q, Fan X, Xia C, Mays J, Advincula R (2001) Chem Mater 13:2465 Google Scholar
  28. 28.
    Zhou Q, Wang S, Fan X, Advincula R, Mays J (2002) Langmuir 18:3324 Google Scholar
  29. 29.
    Fan X, Zhou Q, Xia C, Cristofoli W, Mays J, Advincula R (2002) Langmuir 18:4511 CrossRefGoogle Scholar
  30. 30.
    Hsieh H (1965) J Polym Sci A3:163 Google Scholar
  31. 31.
    Fetters LJ, Morton M (1974) Macromolecules 7:552 CrossRefGoogle Scholar
  32. 32.
    Bhattacharyya DN, Lee CL, Smid J, Szwarc M (1965) J Phys Chem 69:612 Google Scholar
  33. 33.
    Wakefield BJ (1974) The Chemistry of Organolithium Compounds. Pergamon, Oxford Google Scholar
  34. 34.
    Papirer E, Nguyen VT (1972) J Polym Sci Polym Lett Ed 10(3):167 Google Scholar
  35. 35.
    Horn J, Hoene R, Hamann K (1975) Macromol Chem Suppl 1:329 CrossRefGoogle Scholar
  36. 36.
    Donnet JB, Papirer E (1975) Colloques Internationaux du Centre National de la Recherche Scientifique 231:117 Google Scholar
  37. 37.
    Tsubokawa N, Yoshihara T, Sone Y (1991) Colloid Polym Sci 269:324 CrossRefGoogle Scholar
  38. 38.
    Tsubokawa N, Funaki A, Hada Y, Sone Y (1982) J Polym Sci Polym Chem Ed 20(12):3297 Google Scholar
  39. 39.
    Tsubokawa N, Funaki A, Sone Y (1983) J Appl Polym Sci 28(7):2381 CrossRefGoogle Scholar
  40. 40.
    Tsubokawa N, Kobayashi K, Sone Y (1987) Polym J 19(10):1147 CrossRefGoogle Scholar
  41. 41.
    Tsubokawa N, Hamada H, Sone Y (1989) Polym-Plast Technol Eng 28(2):201 Google Scholar
  42. 42.
    Tsubokawa N, Kogure A, Sone Y (1990) J Polym Sci Part A Polym Chem 28(7):1923–1933 Google Scholar
  43. 43.
    Tsubokawa N, Hamada H, Fujiki K (1994) Polymer 35(5):1084 CrossRefGoogle Scholar
  44. 44.
    Tsubokawa N, Hamada H, Sone Y (1990) J Macromol Sci Chem A27(6):779 Google Scholar
  45. 45.
    Tsubokawa N, Yoshihara T, Sone Y (1991) Colloid Polym Sci 269(4):324 CrossRefGoogle Scholar
  46. 46.
    Tsubokawa N, Yoshihara T, Sone Y (1992) J Polym Sci Part A Polym Chem 30(4):561 Google Scholar
  47. 47.
    Raghavendran VK, Drzal LT (2002) Composite Interfaces 9(1):1 Google Scholar
  48. 48.
    Schomaker E, Zwarteveen AJ, Challa G, Capka M (1988) Polym Commun 29:158 Google Scholar
  49. 49.
    Husemann M, Morrison M, Benoit D, Frommer J, Mate M, Hinsberg W, Hedrick J, Hawker C (2000) J Am Chem Soc 122:1844 CrossRefGoogle Scholar
  50. 50.
    Milner ST (1991) Science 252:905 Google Scholar
  51. 51.
    Milner ST, Witten TA, Cates ME (1988) Macromolecules 21:2610 CrossRefGoogle Scholar
  52. 52.
    Minko S, Gafijchuk G, Sidorenko A, Voronov S (1999) Macromolecules 32:4525 Google Scholar
  53. 53.
    Alexander S (1977) J Phys 38:977 Google Scholar
  54. 54.
    Rockford L, Mochrie S, Russell T (2001) Macromolecules 34:1487 CrossRefGoogle Scholar
  55. 55.
    Russell T, Thurn-Albrecht T, Tuominen M, Huang E, Hawker C (2000) Macromolecular Symp 159:77 Google Scholar
  56. 56.
    Rockford L, Liu Y, Mansky P, Russell T, Yoon M, Mochrie S (1999) J Phys Rev Lett 82:2602 CrossRefGoogle Scholar
  57. 57.
    Zhulina EB, Balazs AC (1996) Macromolecules 29:6338 Google Scholar
  58. 58.
    Fasolka M, Banerjee P, Mayes A, Pickett G, Balazs A (2000) Macromolecules 33:5702 CrossRefGoogle Scholar
  59. 59.
    Pereira G, Williams D (1999) Macromolecules 32:758 Google Scholar
  60. 60.
    Ulman A (1991) An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembled Monolayers. Academic, Boston Google Scholar
  61. 61.
    Oosterling M, Sein A, Schouten A (1992) Polymer 33(20):4394 CrossRefGoogle Scholar
  62. 62.
    Morton M, Fetters L (1975) J Rubber Chem Technol 48:359 Google Scholar
  63. 63.
    Quirk RP, Mathers RT (2001) Polym Mater Sci Eng 84:873 Google Scholar
  64. 64.
    Quirk RP, Mathers RT (2001) Polym Mater Sci Eng 85:198 Google Scholar
  65. 65.
    Zhou Q, Nakamura Y, Inaoka S, Park M, Wang Y, Mays J, Advincula R (2000) Polym Mater Sci Eng 82:290 Google Scholar
  66. 66.
    Advincula R, Zhou Q, Mays J (2001) Polym Mater Sci Eng 84:875 Google Scholar
  67. 67.
    Zhou Q, Fan X, Xia C, Mays J, Advincula R (2001) Polym Mater Sci Eng 84:835 Google Scholar
  68. 68.
    Quirk RP, Yoo T, Lee Y, Kim J, Lee B (2000) Adv Polym Sci 153:67 Google Scholar
  69. 69.
    Zhou Q, Nakamura Y, Inaoka S, Park M, Wang Y, Mays J, Advincula R (2002) In: Polymer Nanocomposites, Krishnamoorti R, Vaia R (eds) ACS Symposium Series 804. Oxford University Press, Cary, NC Google Scholar
  70. 70.
    Glasse MD (1983) Prog Polym Sci 9:133 CrossRefGoogle Scholar
  71. 71.
    Quirk R, Mathers R, Cregger T, Foster M (2002) Macromolecules 35:9964 Google Scholar
  72. 72.
    Advincula R, Zhou Q, Park MK, Wang S, Mays J, Sakellariou G, Pispas S, Hadjichristidis N (2002) Langmuir 18:8672 CrossRefGoogle Scholar
  73. 73.
    Förster S, Krämer E (1999) Macromolecules 32:2783 Google Scholar
  74. 74.
    Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) J Polym Sci A Polym Chem 38:3211 CrossRefGoogle Scholar
  75. 75.
    Wirth M, Fairbank R, Fatunmbi H (1997) Science 275:44 CrossRefGoogle Scholar
  76. 76.
    Fadeev AY, McCarthy TJ (1999) Langmuir 15:3759 Google Scholar
  77. 77.
    Prucker O, Ruhe J (1998) Langmuir 14:6893 CrossRefGoogle Scholar
  78. 78.
    Szwarc M (1956) Nature 178:1168 Google Scholar
  79. 79.
    Wittmer J, Cates M, Jhoner A, Turner M (1996) Europhys Lett 33:397 CrossRefGoogle Scholar
  80. 80.
    Knoll W (1998) Annu Rev Phys Chem 49:569 CrossRefGoogle Scholar
  81. 81.
    Buzdugan E, Ghioca P, Badea E, Serban S, Stribeck N (1997) Eur Polym J 33:1713 Google Scholar
  82. 82.
    Galuska A (1999) Surf Interface Anal 27:889 CrossRefGoogle Scholar
  83. 83.
    Iwata H, Hirata I, Ikada Y (1997) Langmuir 13:3063 CrossRefGoogle Scholar
  84. 84.
    Zhao B, Brittain WJ (2000) Macromolecules 33:342 Google Scholar
  85. 85.
    Zhao B, Brittain WJ (2000) Macromolecules 33:8813 Google Scholar
  86. 86.
    Zhao B, Brittain WJ, Zhou W, Cheng SZD (2000) J Am Chem Soc 122:2407 Google Scholar
  87. 87.
    Sidorenko A, Minko S, Schenk-Meuser K, Duschner H, Stamm M (1999) Langmuir 15:8349 CrossRefGoogle Scholar
  88. 88.
    Tsubokawa N, Takeda N, Iwasa T (1981) Polym J 13(12):1093 Google Scholar
  89. 89.
    Tsubokawa N (1980) J Polym Sci Polym Lett Ed 18(6):461 Google Scholar
  90. 90.
    Tsubokawa N, Maruyama H, Sone Y (1988) J Macromol Sci Chem A25(2):171 Google Scholar
  91. 91.
    Tsubokawa N, Yoshihara T (1991) Polym J 23(3):177 CrossRefGoogle Scholar
  92. 92.
    Tsubokawa N, Maruyama H, Sone Y (1986) Polym Bull 15(3):209 CrossRefGoogle Scholar
  93. 93.
    Tsubokawa N, Takeda N, Kanamaru A (1980) J Polym Sci Polym Lett Ed 18(9):625 Google Scholar
  94. 94.
    Tsubokawa N, Handa S (1993) J Macromol Sci Pure Appl Chem A30(4):277 Google Scholar
  95. 95.
    Tsubokawa N, Yoshihara T (1993) Polym Bull 30(4):421 CrossRefGoogle Scholar
  96. 96.
    Tsubokawa N, Yoshihara T (1993) J Macromol Sci Pure Appl Chem A30(8):517 Google Scholar
  97. 97.
    Tsubokawa N, Kogure A (1993) Polym J 25(1):83 CrossRefGoogle Scholar
  98. 98.
    Tsubokawa N, Saitoh K, Shirai Y (1995) Polym Bull 35(4):399 CrossRefGoogle Scholar
  99. 99.
    Tsubokawa N, Kimoto T, Endo T (1994) Polym Bull 33(2):187 CrossRefGoogle Scholar
  100. 100.
    Tsubokawa N, Oyanagi K, Yoshikawa S (2000) J Macromol Sci Pure Appl Chem A37(6):529–548 Google Scholar
  101. 101.
    Yoshikawa S, Nishizaka R, Oyanagi K, Tsubokawa N (1995) J Polym Sci Part A Polym Chem 33(13):2251 Google Scholar
  102. 102.
    Hoehne S, Seifert A, Friedrich M, Holze R, Spange S (2004) Macromol Chem Phys 205(12):1667 Google Scholar
  103. 103.
    Hoehne S, Spange S (2003) Macromol Chem Phys 204(5/6):841 Google Scholar
  104. 104.
    Spange S, Eismann U, Hoehne S, Langhammer E (1998) Macromolecular Symposia (6th Dresden Polymer Discussion Surface Modification, 1997) 126:223 Google Scholar
  105. 105.
    Jordan R, West N, Ulman A, Chou YM, Nuyken O (2001) Macromolecules 34(6):1606 CrossRefGoogle Scholar
  106. 106.
    Kim IJ, Faust RJ (2003) Macromol Sci Pure A40(10):991 Google Scholar
  107. 107.
    Kim IJ, Angelopoulos A, Faust R (2001) Polym Preprints 42(2):481 Google Scholar
  108. 108.
    Wang WP, Pan CY (2004) Polymer 45(12):3987 CrossRefGoogle Scholar
  109. 109.
    Jordan R, Ulman A (1998) J Am Chem Soc 120(2):243 CrossRefGoogle Scholar
  110. 110.
    Leonard-Stibbe E, Lecayon G, Deniau G, Viel P, Defranceschi M, Legeay G, Delhalle J (1994) J Polym Sci Part A Polym Chem 32(8):1551 Google Scholar
  111. 111.
    MacDonald S, Hult A, Allen R, Wilson CG (1985) Proceedings of the International Conference on Organic Coatings, Science and Technology, New Paltz, NY, p 203 Google Scholar
  112. 112.
    MacDonald S, Hult A, Wilson CG (1985) Macromolecules 18(10):1804 Google Scholar
  113. 113.
    MacDonald S, Hult A, Allen R, Wilson CG (1985) Polym Mater Sci Eng 52:339 Google Scholar
  114. 114.
    Zhao B, Brittain WJ (2000) Macromolecules 33(2):342 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Chemistry and Department of Chemical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations