Advertisement

Photoiniferter-Driven Precision Surface Graft Microarchitectures for Biomedical Applications

  • Takehisa MatsudaEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 197)

Abstract

The photoiniferter polymerization method proposed by Otsu et al. was utilized to generate well-controlled graft polymer chains on a surface. The “livingness” of graft chains, coupled with the inherent nature of photochemical processing, enables the development of complex graft-polymerized surface designs with controlled graft-chain length and composition, regiospecific addressability and high-dimensional precision. As an extension of the advantageous features of the “quasi-living” nature of polymerization, precise control technology for surface graft-chain architectures, which show multibranching, a fractal hierarchy and a gradient segmental density, was elaborated. The logical programmed morphogenesis approach was discussed, and a high degree of graft-chain architectures was demonstrated as if these resemble the spatiogeometric analogue models of growing trees with diverse morphologies. The confocal laser scanning microscopic measurement for dye-stained grafted surfaces and the force–distance curves of atomic force microscopy provided some physicochemical and structural insights into graft architectures. Under appropriate conditions, the cross-recommendation reaction of two different dithiocarbamate derivatives enabled the development of a novel surface derivatization method. Microprocessed surfaces with multigraft polymers in different regions and with different chain lengths enabled differentiation of regiospecific cell adhesion and proliferation potentials and cellular functions in one sample, which provides high-throughput screening for the biocompatibility of designed medical devices.

Biomedical application Iniferter Living polymerization Surface graft architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This review article is dedicated to Dr. Takayuki Ohtsu (Professor Emeritus, Osaka City University) who pioneered photoiniferter polymerization. A large number of studies by his research group stimulated and directed me to conduct a series of surface microarchitecture studies focusing on biomedical applications. The author also appreciates Professor Rainer Jordan, volume editor of this special issue, who carefully edited this article with patience.

References

  1. 1.
    Ratner BD, Hoffman AF, Schoen FJ, Lemons JE (1996) Biomaterials Science: an Introduction to Materials in Medicine. Academic, New York, p 193 Google Scholar
  2. 2.
    Andrade JD (1985) Polymer Surface Dynamics, Vol. 1.Plenum, New York Google Scholar
  3. 3.
    Kim SW, Jacobs H (1996) Blood Purif 14:357–362 Google Scholar
  4. 4.
    Ishihara K, Ueda T, Nakabayashi N (1990) Polym J 22:355–368 CrossRefGoogle Scholar
  5. 5.
    Ikada Y (1994) Biomaterials 15:725–733 CrossRefGoogle Scholar
  6. 6.
    Otsu T, Matsumoto A (1998) Adv Polym Sci 136:75–137 CrossRefGoogle Scholar
  7. 7.
    Otsu T, Yoshida M, Tazaki T (1982) Rapid Commun 3:133–40 Google Scholar
  8. 8.
    Otsu T, Yaoshida M (1982) Rapid Commun 3:127–32 Google Scholar
  9. 9.
    Ishizu K, Khan RA, Ohya Y, Furo M (2004) J Polym Sci A Polym Chem 42:76–82 CrossRefGoogle Scholar
  10. 10.
    Ishizu K, Katsuhara H, Kawauchi S, Furo M (2004) J Appl Polym Sci 95:413–418 CrossRefGoogle Scholar
  11. 11.
    Ishizu K, Katsuhara H, Itoya K (2005) J Polym Sci A Polym Chem 43:230–233 CrossRefGoogle Scholar
  12. 12.
    Bowman NC, Anseth SK, Luo N, Lovell GL, Lu H (2001) Polym Mater Eng 85–156 Google Scholar
  13. 13.
    Luov N, Hutchison BJ, Anseth SK, Bowman NC (2002) J Polym Sci A Polym Chem 40:1885–1891 CrossRefGoogle Scholar
  14. 14.
    Luo N, Hutchison BJ, Anseth SK, Bowman NC (2002) Macromolecules 35:2487–2493 CrossRefGoogle Scholar
  15. 15.
    Ward HJ, Bashir R, Peppas AN (2001) J Biomed Mater Res 56:351–360 CrossRefGoogle Scholar
  16. 16.
    Kitano H, Ohhori K (2001) Langmuir 17:1878–1884 CrossRefGoogle Scholar
  17. 17.
    de Boer B, Simon KH, Werts LPM, van der Vegte WE, Hadziioannou G (2000) Macromolecules 33:349–356 CrossRefGoogle Scholar
  18. 18.
    Zaremski YM, Chernikova VE, Izmailov GL, Garina SE, Olenin VA (1996) Macromol Rep A 33:237–242 Google Scholar
  19. 19.
    Zarenskii YM, Olenin VA (1991) Zh Prikl Khim 64:2145–2149 Google Scholar
  20. 20.
    Nakayama Y, Matsuda T (1999) Macromolecules 32:5405–5410 CrossRefGoogle Scholar
  21. 21.
    Nakayama Y, Matsuda T (1996) Macromolecules 29:8622–8630 CrossRefGoogle Scholar
  22. 22.
    Nakayama Y, Matsuda T (1999) Langmuir 15:5560–5566 CrossRefGoogle Scholar
  23. 23.
    Higashi J, Nakayama Y, Marchant RE, Matsuda T (1999) Langmuir 15:2080–2088 CrossRefGoogle Scholar
  24. 24.
    Lee J, Nakayama Y, Matsuda T (1999) Macromolecules 32:6989–6995 CrossRefGoogle Scholar
  25. 25.
    Nakayama Y, Sudo M, Uchida K, Matsuda T (2002) Langmuir 18:2601–2606 CrossRefGoogle Scholar
  26. 26.
    Lee HJ, Matsuda T (1999) J Biomed Mater Res 47:564–567 CrossRefGoogle Scholar
  27. 27.
    Nakayama Y, Anderson JM, Matsuda T (2000) J Biomed Mater Res 53:584–591 CrossRefGoogle Scholar
  28. 28.
    Kidoaki S, Nakayama Y, Matsuda T (2001) Langmuir 17:10870–10872 Google Scholar
  29. 29.
    Kidoaki S, Ohya S, Nakayama Y, Matsuda T (2001) Langmuir 17:2402–240 CrossRefGoogle Scholar
  30. 30.
    Matsuda T, Kaneko M, Ge S (2003) Biomaterials 24:4507–4515 CrossRefGoogle Scholar
  31. 31.
    Matsuda T, Nagase J, Hirano A, Kidoaki S, Nakayama Y (2003) Biomaterials 24:4517–4527 CrossRefGoogle Scholar
  32. 32.
    Matsuda T, Ohya S (2005) Langmuir 21:9160–9665 CrossRefGoogle Scholar
  33. 33.
    Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP, Anderson JM (2002) Proc Natl Acad Sci USA 99:10287–10292 CrossRefGoogle Scholar
  34. 34.
    Idiris A, Kidoaki S, Usui K, Maki T, Suzuki H, Ito M, Aoki M, Hayashizaki Y, Matsuda T (2005) Biomacromolecules 6:2776–2784 CrossRefGoogle Scholar
  35. 35.
    Nakayama Y, Anderson JM, Matsuda T (2000) J Biomed Mater Res 53:584–591 CrossRefGoogle Scholar
  36. 36.
    DeFite KM, Colton E, Nakayama Y, Matsuda T, Anderson JM (1999) J Biomed Mater Res 45:148–154 CrossRefGoogle Scholar
  37. 37.
    Brodbeck WG, Shive MS, Colton E, Nakayama Y, Matsuda T, Anderson JM (2001) J Biomed Mater Res 55:661–668 CrossRefGoogle Scholar
  38. 38.
    Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM (2002) Cytokine 18:311–319 CrossRefGoogle Scholar
  39. 39.
    Brodbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda T, Anderson JM (2003) J Biomed Mater Res 64A:320–329 CrossRefGoogle Scholar
  40. 40.
    Nakamata K (1998) MS Dissertation, Osaka Institute of Technology. Matsuda T, Nakamata K, Hirano J, Nakayama Y (in contribution) Google Scholar

Authors and Affiliations

  1. 1.Division of Biomedical EngineeringGraduate School of Medicine, Kyushu UniversityHigashi-ku, FukuokaJapan

Personalised recommendations