Skip to main content

Surface-Grafted Polymer Gradients: Formation, Characterization, and Applications

  • Chapter
  • First Online:
Surface-Initiated Polymerization II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 198))

Abstract

This review presents to-date progress in the formation of surface-tethered polymer assemblies with gradually varying physico-chemical properties. The typical characteristics of the grafted polymers that may change spatially along the specimen include molecular weight, grafting density on the substrate, and chemical composition. The concept of surface-anchored polymer assemblies is employed in several projects, including, study of the mushroom-to-brush transition in surface-tethered polymers, monitoring kinetics of controlled/“living” radical polymerization, synthesis of surface-anchored copolymers with tunable compositions, and analysis of macromolecular conformations in weakly charged grafted polyelectrolyte and polyampholyte systems. We also discuss the application of grafted polymer gradient systems in studying three-dimensional dispersions of nanosized guest objects. In the aforementioned examples, the use of gradient structures both enables methodical exploration of a system's behavior and facilitates expeditious data measurement and analysis. Furthermore, we outline methods leading to the formation of orthogonal gradients—structures in which two distinct gradients traverse in orthogonal directions. We illustrate the applicability of molecular weight/grafting density orthogonal gradients in organizing nanoparticles and controlling protein adsorption on polymer surfaces. Finally, we identify several areas of science and technology, which will benefit from further advances in the design and formation of gradient assemblies of surface-bound polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

3-D:

three-dimensional

ATRP:

atom transfer radical polymerization

BMPUS:

[11-(2-bromo-2-methyl)propionyloxy] undecyltrichlorosilane

CMPE:

1-trichlorosilyl-2-(m/p-chloromethylphenyl) ethane

DI:

deionized

[DS]:

degree of swelling

EGF:

epidermal growth factor

FTIR:

Fourier transform infrared spectroscopy

GPS:

3-glycidoxypropyl trimethoxysilane

h :

dry thickness of surface-anchored polymer

H :

wet thickness of surface-anchored polymer

[H +]:

proton concentration in bulk solution

H b :

height of a grafted polymer in a brush conformation

H DIW :

polymer wet thicknesses in “pure” water

H(IS):

polymer wet thicknesses evaluated at a given IS

H m :

height of a grafted polymer in a mushroom conformation

IEP:

isoelectric point

IS :

solution ionic strength

IS max :

solution ionic strength at the transition from OB to SB

K a :

equilibrium constant of the acid-base equilibrium

MMA:

methyl methacrylate

M n :

number average molecular weight of polymer

MW :

molecular weight

N :

degree of polymerization

N A :

Avogadro's number

NB:

neutral brush

NEXAFS:

near-edge X-ray absorption fine structure

OB:

osmotic brush

OTS:

n-octyltrichlorosilane

P2VP:

poly(2-vinyl pyridine)

PAA:

poly(acrylic acid)

PAAm:

poly(acryl amide)

PDMAEMA:

poly(dimethyl aminoethyl methacrylate)

PE:

polyethylene

PEG:

poly(ethylene glycol)

PEG-MA:

poly(ethylene glycol) methacrylate

PEO:

poly(ethylene oxide)

PEY:

partial electron yield

PGMA:

poly(glycidyl methacrylate)

PHEMA:

poly(2-hydroxylethyl methacrylate)

PMAA:

poly(methacrylic acid)

PMMA:

poly(methyl methacrylate)

PO:

paraffin oil

PS:

polystyrene

PtBA:

poly(tert-butyl acrylate)

R g :

radius of gyration of a polymer

R p :

rate of polymerization

SAM:

self-assembled monolayer

SB:

salted brush

SE:

spectroscopic ellipsometry

SFM:

scanning force microscopy

tBA:

tert-butyl acrylate

T g :

glass transition temperature of a polymer

XPS:

X-ray photoelectron spectroscopy

α:

degree of dissociation in bulk solution

αo :

“internal” degree of dissociation

Δ, Ψ:

ellipsometric angles related to the change of amplitude and phase shift

θDIW :

contact angle of deionized water

λ:

wavelength of light

v :

excluded volume parameter

v e :

electrostatic excluded volume parameter

ρ:

polymer density

ρs,∞ :

salt concentration in bulk solution

σ:

polymer grafting density

φ:

polymer volume fraction

χ:

Flory–Huggins interaction parameter

References

  1. Granick S, Kumar SK, Amis EJ, Antonietti M, Balazs AC, Chakraborty AK, Grest GS, Hawker C, Janmey P, Kramer EJ, Nuzzo R, Russell TP, Safinya CR (2003) J Poly Sci Part B Poly Phys 41:2755

    Article  CAS  Google Scholar 

  2. Russell TP (2002) Science 297:5583

    Article  Google Scholar 

  3. Lin Q, Pearson R, Hedrick J (eds) (2004) Polymers for Microelectronics and Nanoelectronics. C.H.I.P.S, Weimar

    Google Scholar 

  4. Yerushalmi-Rozen R, Klein J, Fetters LJ (1994) Science 263:793

    Article  CAS  Google Scholar 

  5. Gupta SA, Cochran HD, Cummings PT (1997) J Chem Phys 107:10316

    Article  CAS  Google Scholar 

  6. Napper DH (1983) Steric Stabilization of Colloidal Particles. Academic Press, New York

    Google Scholar 

  7. Leckband D, Sheth S, Halperin A (1999) J Biomater Sci Polymer Edn 10:1125

    Article  CAS  Google Scholar 

  8. Halperin A (1999) Langmuir 15:2525

    Article  CAS  Google Scholar 

  9. Satulovsky J, Carignano MA, Szleifer I (2000) Proc Nat Acad Sci 97:9037

    Article  CAS  Google Scholar 

  10. Nath N, Chilkoti A (2003) Adv Mater 14:1243

    Article  Google Scholar 

  11. von Werne T, Patten TE (1999) J Am Chem Soc 121:7409

    Article  CAS  Google Scholar 

  12. von Werne T, Patten TE (2001) J Am Chem Soc 123:7497

    Article  CAS  Google Scholar 

  13. Zhao B, Brittain WJ (2000) Prog Polym Sci 25:677

    Article  CAS  Google Scholar 

  14. Douglas JF, Kent MS, Satija SK, Karim A (2001) Polymer Brushes: Structure and Dynamics. In: Buschow KHJ (ed) Encyclopedia of Materials: Science and Technology. Elsevier, Amsterdam

    Google Scholar 

  15. Alexander S (1977) J Phys France 38:983

    Article  CAS  Google Scholar 

  16. Halperin A, Tirrell M, Lodge TP (1991) Adv Polym Sci 100:31

    Article  Google Scholar 

  17. Singh C, Picket GT, Balazs AC (1996) Macromolecules 29:7559

    Article  CAS  Google Scholar 

  18. Currie EPK, Norde W, Cohen Stuart MA (2003) Adv Colloid Inter Sci 100–102:205

    Article  CAS  Google Scholar 

  19. Meredith JC, Karim A, Amis EJ (2002) MRS Bull 27:330

    Article  CAS  Google Scholar 

  20. Hoogenboom R, Meir MAR, Schubert US (2003) Macromol Rapid Commun 24:15

    Article  CAS  Google Scholar 

  21. Genzer J (2002) Molecular gradients: Formation and applications in soft condensed matter science. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of Materials Science. Elsevier, Amsterdam

    Google Scholar 

  22. Lee JH, Khang G, Lee JW, Lee HB (1998) J Biomed Mater Res 40:180

    Article  CAS  Google Scholar 

  23. Lee JH, Lee JW, Khang G, Lee HB (1997) Biomaterials 18:351

    Article  CAS  Google Scholar 

  24. Jeong BJ, Lee JH, Lee HB (1996) J Colloid Inter Sci 178:757

    Article  CAS  Google Scholar 

  25. Lee JH, Jeong BJ, Lee HB (1997) J Biomed Mater Res 34:105

    Article  CAS  Google Scholar 

  26. Ionov L, Zdyrko B, Sidorenko A, Minko S, Klep V, Luzinov I, Stamm M (2004) Macromol Rapid Commun 25:360

    Article  CAS  Google Scholar 

  27. Ionov L, Houbenov N, Sidorenko A, Minko S, Stamm M (2004) Polym Mater Sci Eng 90:104

    CAS  Google Scholar 

  28. Edmondson S, Osborne VL, Huck WTS (2004) Chem Soc Rev 33:14

    Article  CAS  Google Scholar 

  29. Jordan R, Ulman A, Rafailovich M, Sokolov J (1999) J Am Chem Soc 121:1016

    Article  CAS  Google Scholar 

  30. Advincula RC, Zhou QG, Park M, Wang SG, Mays J, Sakellariou G, Pispas S, Hadjichristidis N (2002) Langmuir 18:8672

    Article  CAS  Google Scholar 

  31. Zhao B, Brittain WJ (2000) Macromolecules 33:342

    Article  CAS  Google Scholar 

  32. Jordan R, Ulman A (1998) J Am Chem Soc 120:243

    Article  CAS  Google Scholar 

  33. Husseman M, Mecerreyes D, Hawker CJ, Hedrick JL, Shah R, Abbott NL (1999) Angew Chem Int Ed 38:647

    Article  Google Scholar 

  34. Choi IS, Langer R (2001) Macromolecules 34:5361

    Article  CAS  Google Scholar 

  35. Kim NY, Jeon NL, Choi IS, Takami S, Harada Y, Finnie KR, Girolami GS, Nuzzo RG, Whitesides GM, Laibinis PE (2000) Macromolecules 33:2793

    Article  CAS  Google Scholar 

  36. Juang A, Scherman OA, Grubbs RH, Lewis NS (2001) Langmuir 17:1321

    Article  CAS  Google Scholar 

  37. Husseman M, Malmstrom EE, McNamara M, Mate M, Mecerreyes D, Benoit DG, Hedrick JL, Mansky P, Huang E, Russell TP, Hawker CJ (1999) Macromolecules 32:1424

    Article  CAS  Google Scholar 

  38. Baum M, Brittain WJ (2002) Macromolecules 35:610

    Article  CAS  Google Scholar 

  39. Pyun J, Kowalewski T, Matyjaszewski K (2003) Macromol Rapid Commun 24:1043

    Article  CAS  Google Scholar 

  40. Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T (1998) Macromolecules 31:5934

    Article  CAS  Google Scholar 

  41. Coessens V, Pintauer T, Matyjaszewski K (2001) Prog Polym Sci 26:337

    Article  CAS  Google Scholar 

  42. Matyjaszewski K, Xia J (2001) Chem Rev 101:2921

    Article  CAS  Google Scholar 

  43. Jones DM, Huck WTS (2001) Adv Mater 13:1256

    Article  CAS  Google Scholar 

  44. Juang W, Kin JB, Bruening ML, Baker GL (2002) Macromolecules 25:1175

    Google Scholar 

  45. Wang XS, Laxcelles SF, Jackson RA, Armes SP (1999) Chem Commun 1817

    Google Scholar 

  46. Robinson KL, Khan MA, de Par Banez MV, Wang XS, Armes SP (2001) Macromolecules 34:3155

    Article  CAS  Google Scholar 

  47. Chen G, Ito Y (2001) Biomaterials 22:2453

    Article  CAS  Google Scholar 

  48. Liu H, Ito Y (2003) J Biomed Mater Res 67A:1424

    Article  CAS  Google Scholar 

  49. Hypolite CL, McLernon TL, Adams DN, Chapman KE, Herbert CB, Huang CC, Distefano MD, Hu WS (1997) Bioconjugate Chem 8:658

    Article  CAS  Google Scholar 

  50. Matyjaszewski K, Ziegler MJ, Arehart SV, Greszta D, Pakula T (2000) J Phys Org Chem 12:775

    Article  Google Scholar 

  51. Matyjaszewski K, Greszta D, Pakula T (1997) Poly Prepr 38:709

    Google Scholar 

  52. Lee SB, Russell AJ, Matyjaszewski K (2003) Biomacromolecules 4:1386

    Article  CAS  Google Scholar 

  53. Davis KA, Matyjaszewski K (2002) Adv Poly Sci 159:1

    Article  Google Scholar 

  54. Patten TE, Matyjaszewski K (1998) Adv Mater 10:901

    Article  CAS  Google Scholar 

  55. Börner HG, Duran D, Matyjaszewski K, da Silva M, Sheiko SS (2003) Macromolecules 35:3387

    Article  CAS  Google Scholar 

  56. Noy A, Vezenov DV, Lieber CM (1997) Ann Rev Mater Sci 27:381

    Article  CAS  Google Scholar 

  57. Ulman A (1991) An Introduction to Ultrathin Organic Films from Langmuir–Blodgett to Self Assembly. Academic Press, New York

    Google Scholar 

  58. Ruardy TG, Schakenraad JM, van der Mei HC, Busscher HJ (1997) Surf Sci Rep 29:1

    Article  CAS  Google Scholar 

  59. Chou NJ (1990) In: Tong H-M, Nguyen LT (eds) New Characterization Techniques for Thin Polymer Films. Wiley, New York, p 289

    Google Scholar 

  60. Stöhr J (1992) NEXAFS Spectroscopy. Springer, Berlin Heidelberg New York

    Google Scholar 

  61. Genzer J, Fischer DA, Efimenko K (2003) Appl Phys Lett 82:266

    Article  CAS  Google Scholar 

  62. Fischer DA, Efimenko K, Bhat RR, Sambasivan S, Genzer J (2004) Macromol Rapid Commun 25:141

    Article  CAS  Google Scholar 

  63. Pohl DW (1990) In: Sheppard CJR, Mulvey T (eds) Advances in Optical and Electron Microscopy. Academic Press, London

    Google Scholar 

  64. Jin G, Jansson R, Arwin H (1996) Rev Sci Instr 67:2930

    Article  CAS  Google Scholar 

  65. Anders S, Padmore HA, Duarte RM, Renner T, Stammler T, Scholl A, Scheinfein MR, Stohr J, Seve L, Sinkovic B (1999) Rev Sci Instr 70:3973

    Article  CAS  Google Scholar 

  66. Wu T, Efimenko K, Genzer J (2002) J Am Chem Soc 124:9394

    Article  CAS  Google Scholar 

  67. Chaudhury MK, Whitesides GM (1992) Science 256:1539

    Article  CAS  Google Scholar 

  68. The NEXAFS experiments were carried out on the U7A NIST/Dow Materials Soft X-rayMaterials Characterization Facility at the National Synchrotron Light Source at Brookhaven National Laboratory (NSLS BNL)

    Google Scholar 

  69. Chaudhury MK, Owen MJ (1993) J Phys Chem 97:5722

    Article  CAS  Google Scholar 

  70. Allara DL, Parikh AN, Judge E (1994) J Chem Phys 100:1761

    Article  CAS  Google Scholar 

  71. Huang X, Doneski LJ, Wirth MJ (1998) Anal Chem 70:4023

    Article  CAS  Google Scholar 

  72. Huang X, Wirth MJ (1999) Macromolecules 32:1694

    Article  CAS  Google Scholar 

  73. Wu T, Efimenko K, Genzer J (2001) Macromolecules 34:684

    Article  CAS  Google Scholar 

  74. Yamamoto S, Ejaz M, Ohno K, Tsujii Y, Fukuda T (2000) Macromolecules 33:5608

    Article  CAS  Google Scholar 

  75. Jones DM, Brown AA, Huck WTS (2002) Langmuir 18:1265

    Article  CAS  Google Scholar 

  76. Wu T, Efimenko K, Vlček P, Šubr V, Genzer J (2003) Macromolecules 36:2448

    Article  CAS  Google Scholar 

  77. In order to measure the contact angle of DI water on pure PAAm, we have first grown PAAm from a substrate covered homogeneously with the CMPE initiator. The polymerization conditions were the same as for the sample described in the text. The contact angle was determined using the technique described in the text

    Google Scholar 

  78. Kent MS (2000) Macromol Rapid Commun 21:243 and references therein

    Article  CAS  Google Scholar 

  79. Carignano MA, Szleifer I (1995) Macromolecules 28:3197

    Article  CAS  Google Scholar 

  80. Szleifer I (1996) Curr Opin Colloid Interface Sci 1:416

    Article  CAS  Google Scholar 

  81. Szleifer I, Carignano MA (1996) Adv Chem Phys XCIV:165

    Google Scholar 

  82. Pincus P (1991) Macromolecules 24:2912

    Article  CAS  Google Scholar 

  83. Zhulina EB, Birshtein TM, Borisov OV (1995) Macromolecules 28:1491

    Article  CAS  Google Scholar 

  84. Zhulina EB, Borisov OV (1997) J Chem Phys 107:5952

    Article  CAS  Google Scholar 

  85. Israëls R, Scheutjens JMHM, Fleer GJ (1994) Macromolecules 27:3087

    Article  Google Scholar 

  86. Israëls R, Leermakers FAM, Fleer GJ, Zhulina EB (1994) Macromolecules 27:3249

    Article  Google Scholar 

  87. Fleer GJ (1996) Ber Bunsenges Phys Chem 100:936

    CAS  Google Scholar 

  88. Israëls R, Leermakers FAM, Fleer GJ (1995) Macromolecules 28:1626

    Article  Google Scholar 

  89. Wu T, Genzer J, Gong P, Szleifer I, Vlček P, Šubr V (2004) In: Advincula RC, Brittain WJ, Rühe J, Caster K (ed) Polymer Brush. Wiley, New York

    Google Scholar 

  90. Currie EPK, Sieval AB, Fleer GJ, Cohen Stuart MA (1999) Langmuir 15:7116

    Article  CAS  Google Scholar 

  91. Currie EPK, Sieval AB, Fleer GJ, Cohen Stuart MA (2000) Langmuir 16:8324

    Article  CAS  Google Scholar 

  92. Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Macromolecules 32:8716

    Article  CAS  Google Scholar 

  93. Davis KA, Matyjaszewski K (2000) Macromolecules 33:4039

    Article  CAS  Google Scholar 

  94. Tomlinson MR, Genzer J (2003) Macromolecules 36:3449

    Article  CAS  Google Scholar 

  95. Matyjaszewski K, Patten TE, Xia JH (1997) J Am Chem Soc 119:674

    Article  CAS  Google Scholar 

  96. Kim JB, Huang WX, Bruening ML, Baker GL (2002) Macromolecules 35:5410

    Article  CAS  Google Scholar 

  97. Osborne VL, Jones DM, Huck WTS (2002) Chem Commun 1838

    Google Scholar 

  98. Tomlinson MR, Genzer J (2003) Chem Commun 1350

    Google Scholar 

  99. Dautzenberg H, Jaeger W, Kotz J, Philipp B, Seidel C (1994) Polyelectrolytes. Hanser Publishers, Munich

    Google Scholar 

  100. Everaers R, Johner A, Joanny JF (1997) Europhys Lett 37:275

    Article  CAS  Google Scholar 

  101. Harada A, Kataoka K (1999) Science 283:65

    Article  CAS  Google Scholar 

  102. Walter H, Harrats C, Muller-Buschbaum P, Jerome R, Stamm M (1999) Langmuir 15:1260

    Article  CAS  Google Scholar 

  103. Mahltig B, Jerome R, Stamm M (1999) Phys Chem Chem Phys 1:3853

    Article  CAS  Google Scholar 

  104. Gohy JF, Creutz S, Garcia M, Mahltig B, Stamm M, Jerome R (2000) Macromolecules 33:6378

    Article  CAS  Google Scholar 

  105. Bruining MJ, Blaauwgeers HGT, Kuijer R, Pels E, Nuijts RMMA, Koole LH (2000) Biomaterials 21:595

    Article  CAS  Google Scholar 

  106. Hilborn J, Gupta B, Garamszegi L, Laurent A, Plummer CJG, Bisson I, Frey P, Hedrick JL (2000) Mat Res Soc Symp Proc 629:FF4.1.1

    Google Scholar 

  107. Chun MK, Cho CS, Choi HK (2000) J Appl Poly Sci 79:1525

    Article  Google Scholar 

  108. We note that charge dissociation behavior of surface-grafted molecules can be very different from that of free molecules [Bain CD, Whitesides GM (1989) Langmuir 5:1370; van der Vegte EW, Hadziioannou H (1997) J Phys Chem B 101:9563]. However, the bulk values can still be used to obtain a good estimate of behavior in grafted polyelectrolyte systems

    Google Scholar 

  109. Zhang X, Xia J, Matyjaszewki K (1998) Macromolecules 31:5167

    Article  CAS  Google Scholar 

  110. Zhang X, Matyjaszewki K (1999) Macromolecules 32:1763

    Article  CAS  Google Scholar 

  111. Wu T (2003) PhD Thesis. NC State University

    Google Scholar 

  112. Tomkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry: A user's guide. Wiley, New York

    Google Scholar 

  113. http://www.woollam.com (see tutorials)

  114. Prucker O, Rühe J (1998) Langmuir 14:6893

    Article  CAS  Google Scholar 

  115. Prucker O, Rühe J (1998) Macromolecules 31:592

    Article  CAS  Google Scholar 

  116. Biesalski M, Rühe J (2002) Macromolecules 35:499

    Article  CAS  Google Scholar 

  117. Bhat RR, Tomlinson MR, Genzer J (2004) Macromol Rapid Commun 25:270

    Article  CAS  Google Scholar 

  118. Bhat RR, Tomlinson MR, Genzer J (2005) J Poly Sci Poly Phys 43:3384

    Article  CAS  Google Scholar 

  119. (1991) Special issue in Science 254:1277

    Google Scholar 

  120. Rao CNR, Cheetham AK (2001) J Mater Chem 11:2887

    Article  CAS  Google Scholar 

  121. Wohltjen H, Snow AW (1998) Anal Chem 70:2856

    Article  CAS  Google Scholar 

  122. Oregan B, Gratzel M (1991) Nature 353:737

    Article  CAS  Google Scholar 

  123. Nie S, Emory SR (1997) Science 275:1102

    Article  CAS  Google Scholar 

  124. Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354

    Article  CAS  Google Scholar 

  125. Shipway AN, Katz E, Willner I (2000) Chem Phys Chem 1:18

    CAS  Google Scholar 

  126. Link S, El-Sayed MA (2000) Inter Rev Phys Chem 19:409

    Article  CAS  Google Scholar 

  127. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  128. Godovski DY (1995) Adv Pol Sci 119:79

    Article  CAS  Google Scholar 

  129. Brus L (1997) Curr Opin Colloid Interface Sci 1:197

    Article  Google Scholar 

  130. Weller H (1993) Angew Chem Int Ed Engl 105:43

    CAS  Google Scholar 

  131. Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ (1996) J Am Chem Soc 118:1148

    Article  CAS  Google Scholar 

  132. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735

    Article  CAS  Google Scholar 

  133. Kotov NA, Dekany I, Fendler JH (1995) J Phys Chem 99:13065

    Article  CAS  Google Scholar 

  134. Bhat RR, Fischer DA, Genzer J (2002) Langmuir 18:3404

    Article  CAS  Google Scholar 

  135. Sohn BH, Cohen RE (1997) Chem Mater 9:264

    Article  CAS  Google Scholar 

  136. Hashimoto T, Harada M, Sakamoto N (1999) Macromolecules 32:6867

    Article  CAS  Google Scholar 

  137. Gage RA, Currie EPK, Stuart MAC (2001) Macromolecules 34:5078

    Article  CAS  Google Scholar 

  138. Bhat RR, Genzer J (2005) Appl Surf Sci, in press

    Google Scholar 

  139. Liu Z, Pappacena K, Cerise J, Kim JU, Durning CJ, O'Shaughnessy B, Levicky R (2002) Nano Lett 2:219

    Article  CAS  Google Scholar 

  140. Bhat RR, Genzer J, Chaney BN, Sugg HW, Liebmann-Vinson A (2003) Nanotechnology 14:1145

    Article  CAS  Google Scholar 

  141. Bhat RR, Genzer J (2005) Surf Sci 596:187

    CAS  Google Scholar 

  142. Frens G (1973) Nature Phys Sci 241:20

    CAS  Google Scholar 

  143. Xiao D, Wirth MJ (2002) Macromolecules 35:2919

    Article  CAS  Google Scholar 

  144. Kim JU, O'Shaughnessy B (2002) Phys Rev Lett 89:238301

    Article  CAS  Google Scholar 

  145. Musick MD, Keating CD, Keefe MH, Natan MJ (1997) Chem Mater 16:7825

    Google Scholar 

  146. Chandrasekharan N, Kamat PV (2001) Nano Lett 1:67

    Article  CAS  Google Scholar 

  147. Jana NR, Gearheart L, Murphy CJ (2001) Langmuir 17:6782

    Article  CAS  Google Scholar 

  148. Currie EPK, Van der Gucht J, Borisov OV, Stuart MAC (1999) Pure Appl Chem 71:1227

    Article  CAS  Google Scholar 

  149. Currie EPK, Cohen Stuart MA, Fleer GJ, Borisov OV (2000) Eur Phys J E 1:27

    Article  CAS  Google Scholar 

  150. McPherson T, Kidane A, Szleifer I, Park K (1998) Langmuir 14:176

    Article  CAS  Google Scholar 

  151. Carignano MA, Szleifer I (2000) Biointerfaces 18:169

    Article  CAS  Google Scholar 

  152. Szleifer I (1997) Physica A 244:370

    Article  CAS  Google Scholar 

  153. Szleifer I (1997) Biophys J 72:595

    Article  CAS  Google Scholar 

  154. Fang F, Szleifer I (2001) Biophys J 80:2568

    Article  CAS  Google Scholar 

  155. Fang F, Szleifer I (2002) Langmuir 18:5497

    Article  CAS  Google Scholar 

  156. Halperin A, Leckband DE (2000) C R Acad Sci Paris t 1 Série IV:1171

    Google Scholar 

  157. Efremova NV, Sheth SR, Leckband DE (2001) Langmuir 17:7628

    Article  CAS  Google Scholar 

  158. Zhu B, Eurell T, Gunawan R, Leckband D (2001) J Biomed Mater Res 56:406

    Article  CAS  Google Scholar 

  159. Sheth SR, Efremova N, Leckband DE (2000) J Phys Chem B 104:7652

    Article  CAS  Google Scholar 

  160. Gombotz WR, Guanghui W, Horbett TA, Hoffman AS (1991) J Biomed Mater Res 25:1546

    Article  Google Scholar 

  161. Rouce FR Jr, Ratner BD, Horbett TA (1982) In: Cooper SL, Peppas NA (eds) Biomaterials: Interfacial Phenomena and Applications. American Chemical Society, Washington, DC

    Google Scholar 

  162. Bohnert JL, Horbett TA, Ratner BD, Royce FH (1988) Investig Opth Vis Sci 29:362

    CAS  Google Scholar 

  163. Morra M, Cassinelli C (1999) Langmuir 15:4658

    Article  CAS  Google Scholar 

  164. Bhat RR, Genzer J (2004) Mat Res Soc Symp Proc 804:J5.8.1

    Google Scholar 

  165. Bhat RR, Chaney BN, Rowley J, Liebmann-Vinson A, Genzer J (2005) Adv Mater 17:2802

    Google Scholar 

  166. (2003) Special issue of Macromol Rapid Commun, Volume 24, Issue 1

    Google Scholar 

  167. (2004) Special issue of Macromol Rapid Commun, Volume 25, Issue 1

    Google Scholar 

  168. Zhao H, Beysens D (1995) Langmuir 11:627

    Article  CAS  Google Scholar 

  169. Genzer J, Kramer EJ (1998) Erophys Lett 44:180

    Article  CAS  Google Scholar 

  170. Smith AP, Douglas JF, Meredith JC, Amis EJ, Karim A (2001) Phys Rev Lett 87:Art No 015503

    Google Scholar 

  171. Smith AP, Sehgal A, Douglas JF, Karim A, Amis EJ (2003) Macromol Rapid Commun 21:131

    Article  Google Scholar 

  172. Meredith JC, Sormana JL, Keselowsky BG, Garcia AJ, Tona A, Karim A, Amis EJ (2003) J Biomed Mat Res 66A:483

    Article  CAS  Google Scholar 

  173. Lord SJ, Sheiko SS, LaRue I, Lee H-I, Matyjaszewski K (2004) Macromolecules 37:4235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Science Foundation (Grants CTS-0209403, CTS-0403535, and EEC-0403903) and The Camille & Henry Dreyfus Foundation. The NEXAFS experiments were carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy. The SE was purchased with funds awarded to JG through the NSF's Instrumentation for Materials Research Program (Grant No. DMR-9975780). The work reviewed here would not have been possible without numerous collaborative efforts with several researchers. We thank Dr. Kirill Efimenko (NCSU) and Dr. Daniel Fischer (NIST) for their assistance during the course of the NEXAFS experiments, Dr. Igal Szleifer and Mr. Peng Gong (Purdue University) for the theoretical work involving surface-tethered charged systems, Dr. Andrea Liebmann-Vinson, Mr. Bryce N. Chaney, and Mr. Harry W. Sugg (Becton Dickinson Technologies) for the XPS work and experiments involving protein adsorption on gradient polymer surfaces. Dr. Petr Vlček and Dr. Vladimír Šubr (Institute of Macromolecular Chemistry, Prague, Czech Republic) are thanked for their numerous contributions in characterizing polyelectrolyte macromolecules. We also thank Professor Michael Rubinstein (University of North Carolina at Chapel Hill) for many fruitful discussions about polyampholytes. We also thank Professor Gregory N. Parsons and Professor Stefan Franzen (NCSU) for allowing us to use their SFM and FTIR set-ups. The authors would like to thank Ms. Jan Singhass (NCSU glass shop) for her assistance in building the polymerization apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Genzer .

Editor information

Rainer Jordan

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bhat, R.R., Tomlinson, M.R., Wu, T., Genzer, J. Surface-Grafted Polymer Gradients: Formation, Characterization, and Applications. In: Jordan, R. (eds) Surface-Initiated Polymerization II. Advances in Polymer Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_060

Download citation

Publish with us

Policies and ethics