Surface-Grafted Polymer Gradients: Formation, Characterization, and Applications

  • Rajendra R. Bhat
  • Michael R. Tomlinson
  • Tao Wu
  • Jan GenzerEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 198)


This review presents to-date progress in the formation of surface-tethered polymer assemblies with gradually varying physico-chemical properties. The typical characteristics of the grafted polymers that may change spatially along the specimen include molecular weight, grafting density on the substrate, and chemical composition. The concept of surface-anchored polymer assemblies is employed in several projects, including, study of the mushroom-to-brush transition in surface-tethered polymers, monitoring kinetics of controlled/“living” radical polymerization, synthesis of surface-anchored copolymers with tunable compositions, and analysis of macromolecular conformations in weakly charged grafted polyelectrolyte and polyampholyte systems. We also discuss the application of grafted polymer gradient systems in studying three-dimensional dispersions of nanosized guest objects. In the aforementioned examples, the use of gradient structures both enables methodical exploration of a system's behavior and facilitates expeditious data measurement and analysis. Furthermore, we outline methods leading to the formation of orthogonal gradients—structures in which two distinct gradients traverse in orthogonal directions. We illustrate the applicability of molecular weight/grafting density orthogonal gradients in organizing nanoparticles and controlling protein adsorption on polymer surfaces. Finally, we identify several areas of science and technology, which will benefit from further advances in the design and formation of gradient assemblies of surface-bound polymers.

Gradient Polymer brush Self-assembly Nanoparticles Protein adsorption 





atom transfer radical polymerization


[11-(2-bromo-2-methyl)propionyloxy] undecyltrichlorosilane


1-trichlorosilyl-2-(m/p-chloromethylphenyl) ethane




degree of swelling


epidermal growth factor


Fourier transform infrared spectroscopy


3-glycidoxypropyl trimethoxysilane


dry thickness of surface-anchored polymer


wet thickness of surface-anchored polymer


proton concentration in bulk solution


height of a grafted polymer in a brush conformation


polymer wet thicknesses in “pure” water


polymer wet thicknesses evaluated at a given IS


height of a grafted polymer in a mushroom conformation


isoelectric point


solution ionic strength


solution ionic strength at the transition from OB to SB


equilibrium constant of the acid-base equilibrium


methyl methacrylate


number average molecular weight of polymer


molecular weight


degree of polymerization


Avogadro's number


neutral brush


near-edge X-ray absorption fine structure


osmotic brush




poly(2-vinyl pyridine)


poly(acrylic acid)


poly(acryl amide)


poly(dimethyl aminoethyl methacrylate)




poly(ethylene glycol)


poly(ethylene glycol) methacrylate


poly(ethylene oxide)


partial electron yield


poly(glycidyl methacrylate)


poly(2-hydroxylethyl methacrylate)


poly(methacrylic acid)


poly(methyl methacrylate)


paraffin oil




poly(tert-butyl acrylate)


radius of gyration of a polymer


rate of polymerization


self-assembled monolayer


salted brush


spectroscopic ellipsometry


scanning force microscopy


tert-butyl acrylate


glass transition temperature of a polymer


X-ray photoelectron spectroscopy


degree of dissociation in bulk solution


“internal” degree of dissociation

Δ, Ψ

ellipsometric angles related to the change of amplitude and phase shift


contact angle of deionized water


wavelength of light


excluded volume parameter


electrostatic excluded volume parameter


polymer density


salt concentration in bulk solution


polymer grafting density


polymer volume fraction


Flory–Huggins interaction parameter


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge financial support from the National Science Foundation (Grants CTS-0209403, CTS-0403535, and EEC-0403903) and The Camille & Henry Dreyfus Foundation. The NEXAFS experiments were carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy. The SE was purchased with funds awarded to JG through the NSF's Instrumentation for Materials Research Program (Grant No. DMR-9975780). The work reviewed here would not have been possible without numerous collaborative efforts with several researchers. We thank Dr. Kirill Efimenko (NCSU) and Dr. Daniel Fischer (NIST) for their assistance during the course of the NEXAFS experiments, Dr. Igal Szleifer and Mr. Peng Gong (Purdue University) for the theoretical work involving surface-tethered charged systems, Dr. Andrea Liebmann-Vinson, Mr. Bryce N. Chaney, and Mr. Harry W. Sugg (Becton Dickinson Technologies) for the XPS work and experiments involving protein adsorption on gradient polymer surfaces. Dr. Petr Vlček and Dr. Vladimír Šubr (Institute of Macromolecular Chemistry, Prague, Czech Republic) are thanked for their numerous contributions in characterizing polyelectrolyte macromolecules. We also thank Professor Michael Rubinstein (University of North Carolina at Chapel Hill) for many fruitful discussions about polyampholytes. We also thank Professor Gregory N. Parsons and Professor Stefan Franzen (NCSU) for allowing us to use their SFM and FTIR set-ups. The authors would like to thank Ms. Jan Singhass (NCSU glass shop) for her assistance in building the polymerization apparatus.


  1. 1.
    Granick S, Kumar SK, Amis EJ, Antonietti M, Balazs AC, Chakraborty AK, Grest GS, Hawker C, Janmey P, Kramer EJ, Nuzzo R, Russell TP, Safinya CR (2003) J Poly Sci Part B Poly Phys 41:2755 CrossRefGoogle Scholar
  2. 2.
    Russell TP (2002) Science 297:5583 CrossRefGoogle Scholar
  3. 3.
    Lin Q, Pearson R, Hedrick J (eds) (2004) Polymers for Microelectronics and Nanoelectronics. C.H.I.P.S, Weimar Google Scholar
  4. 4.
    Yerushalmi-Rozen R, Klein J, Fetters LJ (1994) Science 263:793 CrossRefGoogle Scholar
  5. 5.
    Gupta SA, Cochran HD, Cummings PT (1997) J Chem Phys 107:10316 CrossRefGoogle Scholar
  6. 6.
    Napper DH (1983) Steric Stabilization of Colloidal Particles. Academic Press, New York Google Scholar
  7. 7.
    Leckband D, Sheth S, Halperin A (1999) J Biomater Sci Polymer Edn 10:1125 CrossRefGoogle Scholar
  8. 8.
    Halperin A (1999) Langmuir 15:2525 CrossRefGoogle Scholar
  9. 9.
    Satulovsky J, Carignano MA, Szleifer I (2000) Proc Nat Acad Sci 97:9037 CrossRefGoogle Scholar
  10. 10.
    Nath N, Chilkoti A (2003) Adv Mater 14:1243 CrossRefGoogle Scholar
  11. 11.
    von Werne T, Patten TE (1999) J Am Chem Soc 121:7409 CrossRefGoogle Scholar
  12. 12.
    von Werne T, Patten TE (2001) J Am Chem Soc 123:7497 CrossRefGoogle Scholar
  13. 13.
    Zhao B, Brittain WJ (2000) Prog Polym Sci 25:677 CrossRefGoogle Scholar
  14. 14.
    Douglas JF, Kent MS, Satija SK, Karim A (2001) Polymer Brushes: Structure and Dynamics. In: Buschow KHJ (ed) Encyclopedia of Materials: Science and Technology. Elsevier, Amsterdam Google Scholar
  15. 15.
    Alexander S (1977) J Phys France 38:983 CrossRefGoogle Scholar
  16. 16.
    Halperin A, Tirrell M, Lodge TP (1991) Adv Polym Sci 100:31 CrossRefGoogle Scholar
  17. 17.
    Singh C, Picket GT, Balazs AC (1996) Macromolecules 29:7559 CrossRefGoogle Scholar
  18. 18.
    Currie EPK, Norde W, Cohen Stuart MA (2003) Adv Colloid Inter Sci 100–102:205 CrossRefGoogle Scholar
  19. 19.
    Meredith JC, Karim A, Amis EJ (2002) MRS Bull 27:330 CrossRefGoogle Scholar
  20. 20.
    Hoogenboom R, Meir MAR, Schubert US (2003) Macromol Rapid Commun 24:15 CrossRefGoogle Scholar
  21. 21.
    Genzer J (2002) Molecular gradients: Formation and applications in soft condensed matter science. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of Materials Science. Elsevier, Amsterdam Google Scholar
  22. 22.
    Lee JH, Khang G, Lee JW, Lee HB (1998) J Biomed Mater Res 40:180 CrossRefGoogle Scholar
  23. 23.
    Lee JH, Lee JW, Khang G, Lee HB (1997) Biomaterials 18:351 CrossRefGoogle Scholar
  24. 24.
    Jeong BJ, Lee JH, Lee HB (1996) J Colloid Inter Sci 178:757 CrossRefGoogle Scholar
  25. 25.
    Lee JH, Jeong BJ, Lee HB (1997) J Biomed Mater Res 34:105 CrossRefGoogle Scholar
  26. 26.
    Ionov L, Zdyrko B, Sidorenko A, Minko S, Klep V, Luzinov I, Stamm M (2004) Macromol Rapid Commun 25:360 CrossRefGoogle Scholar
  27. 27.
    Ionov L, Houbenov N, Sidorenko A, Minko S, Stamm M (2004) Polym Mater Sci Eng 90:104 Google Scholar
  28. 28.
    Edmondson S, Osborne VL, Huck WTS (2004) Chem Soc Rev 33:14 CrossRefGoogle Scholar
  29. 29.
    Jordan R, Ulman A, Rafailovich M, Sokolov J (1999) J Am Chem Soc 121:1016 CrossRefGoogle Scholar
  30. 30.
    Advincula RC, Zhou QG, Park M, Wang SG, Mays J, Sakellariou G, Pispas S, Hadjichristidis N (2002) Langmuir 18:8672 CrossRefGoogle Scholar
  31. 31.
    Zhao B, Brittain WJ (2000) Macromolecules 33:342 CrossRefGoogle Scholar
  32. 32.
    Jordan R, Ulman A (1998) J Am Chem Soc 120:243 CrossRefGoogle Scholar
  33. 33.
    Husseman M, Mecerreyes D, Hawker CJ, Hedrick JL, Shah R, Abbott NL (1999) Angew Chem Int Ed 38:647 CrossRefGoogle Scholar
  34. 34.
    Choi IS, Langer R (2001) Macromolecules 34:5361 CrossRefGoogle Scholar
  35. 35.
    Kim NY, Jeon NL, Choi IS, Takami S, Harada Y, Finnie KR, Girolami GS, Nuzzo RG, Whitesides GM, Laibinis PE (2000) Macromolecules 33:2793 CrossRefGoogle Scholar
  36. 36.
    Juang A, Scherman OA, Grubbs RH, Lewis NS (2001) Langmuir 17:1321 CrossRefGoogle Scholar
  37. 37.
    Husseman M, Malmstrom EE, McNamara M, Mate M, Mecerreyes D, Benoit DG, Hedrick JL, Mansky P, Huang E, Russell TP, Hawker CJ (1999) Macromolecules 32:1424 CrossRefGoogle Scholar
  38. 38.
    Baum M, Brittain WJ (2002) Macromolecules 35:610 CrossRefGoogle Scholar
  39. 39.
    Pyun J, Kowalewski T, Matyjaszewski K (2003) Macromol Rapid Commun 24:1043 CrossRefGoogle Scholar
  40. 40.
    Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T (1998) Macromolecules 31:5934 CrossRefGoogle Scholar
  41. 41.
    Coessens V, Pintauer T, Matyjaszewski K (2001) Prog Polym Sci 26:337 CrossRefGoogle Scholar
  42. 42.
    Matyjaszewski K, Xia J (2001) Chem Rev 101:2921 CrossRefGoogle Scholar
  43. 43.
    Jones DM, Huck WTS (2001) Adv Mater 13:1256 CrossRefGoogle Scholar
  44. 44.
    Juang W, Kin JB, Bruening ML, Baker GL (2002) Macromolecules 25:1175 Google Scholar
  45. 45.
    Wang XS, Laxcelles SF, Jackson RA, Armes SP (1999) Chem Commun 1817 Google Scholar
  46. 46.
    Robinson KL, Khan MA, de Par Banez MV, Wang XS, Armes SP (2001) Macromolecules 34:3155 CrossRefGoogle Scholar
  47. 47.
    Chen G, Ito Y (2001) Biomaterials 22:2453 CrossRefGoogle Scholar
  48. 48.
    Liu H, Ito Y (2003) J Biomed Mater Res 67A:1424 CrossRefGoogle Scholar
  49. 49.
    Hypolite CL, McLernon TL, Adams DN, Chapman KE, Herbert CB, Huang CC, Distefano MD, Hu WS (1997) Bioconjugate Chem 8:658 CrossRefGoogle Scholar
  50. 50.
    Matyjaszewski K, Ziegler MJ, Arehart SV, Greszta D, Pakula T (2000) J Phys Org Chem 12:775 CrossRefGoogle Scholar
  51. 51.
    Matyjaszewski K, Greszta D, Pakula T (1997) Poly Prepr 38:709 Google Scholar
  52. 52.
    Lee SB, Russell AJ, Matyjaszewski K (2003) Biomacromolecules 4:1386 CrossRefGoogle Scholar
  53. 53.
    Davis KA, Matyjaszewski K (2002) Adv Poly Sci 159:1 CrossRefGoogle Scholar
  54. 54.
    Patten TE, Matyjaszewski K (1998) Adv Mater 10:901 CrossRefGoogle Scholar
  55. 55.
    Börner HG, Duran D, Matyjaszewski K, da Silva M, Sheiko SS (2003) Macromolecules 35:3387 CrossRefGoogle Scholar
  56. 56.
    Noy A, Vezenov DV, Lieber CM (1997) Ann Rev Mater Sci 27:381 CrossRefGoogle Scholar
  57. 57.
    Ulman A (1991) An Introduction to Ultrathin Organic Films from Langmuir–Blodgett to Self Assembly. Academic Press, New York Google Scholar
  58. 58.
    Ruardy TG, Schakenraad JM, van der Mei HC, Busscher HJ (1997) Surf Sci Rep 29:1 CrossRefGoogle Scholar
  59. 59.
    Chou NJ (1990) In: Tong H-M, Nguyen LT (eds) New Characterization Techniques for Thin Polymer Films. Wiley, New York, p 289 Google Scholar
  60. 60.
    Stöhr J (1992) NEXAFS Spectroscopy. Springer, Berlin Heidelberg New York Google Scholar
  61. 61.
    Genzer J, Fischer DA, Efimenko K (2003) Appl Phys Lett 82:266 CrossRefGoogle Scholar
  62. 62.
    Fischer DA, Efimenko K, Bhat RR, Sambasivan S, Genzer J (2004) Macromol Rapid Commun 25:141 CrossRefGoogle Scholar
  63. 63.
    Pohl DW (1990) In: Sheppard CJR, Mulvey T (eds) Advances in Optical and Electron Microscopy. Academic Press, London Google Scholar
  64. 64.
    Jin G, Jansson R, Arwin H (1996) Rev Sci Instr 67:2930 CrossRefGoogle Scholar
  65. 65.
    Anders S, Padmore HA, Duarte RM, Renner T, Stammler T, Scholl A, Scheinfein MR, Stohr J, Seve L, Sinkovic B (1999) Rev Sci Instr 70:3973 CrossRefGoogle Scholar
  66. 66.
    Wu T, Efimenko K, Genzer J (2002) J Am Chem Soc 124:9394 CrossRefGoogle Scholar
  67. 67.
    Chaudhury MK, Whitesides GM (1992) Science 256:1539 CrossRefGoogle Scholar
  68. 68.
    The NEXAFS experiments were carried out on the U7A NIST/Dow Materials Soft X-rayMaterials Characterization Facility at the National Synchrotron Light Source at Brookhaven National Laboratory (NSLS BNL) Google Scholar
  69. 69.
    Chaudhury MK, Owen MJ (1993) J Phys Chem 97:5722 CrossRefGoogle Scholar
  70. 70.
    Allara DL, Parikh AN, Judge E (1994) J Chem Phys 100:1761 CrossRefGoogle Scholar
  71. 71.
    Huang X, Doneski LJ, Wirth MJ (1998) Anal Chem 70:4023 CrossRefGoogle Scholar
  72. 72.
    Huang X, Wirth MJ (1999) Macromolecules 32:1694 CrossRefGoogle Scholar
  73. 73.
    Wu T, Efimenko K, Genzer J (2001) Macromolecules 34:684 CrossRefGoogle Scholar
  74. 74.
    Yamamoto S, Ejaz M, Ohno K, Tsujii Y, Fukuda T (2000) Macromolecules 33:5608 CrossRefGoogle Scholar
  75. 75.
    Jones DM, Brown AA, Huck WTS (2002) Langmuir 18:1265 CrossRefGoogle Scholar
  76. 76.
    Wu T, Efimenko K, Vlček P, Šubr V, Genzer J (2003) Macromolecules 36:2448 CrossRefGoogle Scholar
  77. 77.
    In order to measure the contact angle of DI water on pure PAAm, we have first grown PAAm from a substrate covered homogeneously with the CMPE initiator. The polymerization conditions were the same as for the sample described in the text. The contact angle was determined using the technique described in the text Google Scholar
  78. 78.
    Kent MS (2000) Macromol Rapid Commun 21:243 and references therein CrossRefGoogle Scholar
  79. 79.
    Carignano MA, Szleifer I (1995) Macromolecules 28:3197 CrossRefGoogle Scholar
  80. 80.
    Szleifer I (1996) Curr Opin Colloid Interface Sci 1:416 CrossRefGoogle Scholar
  81. 81.
    Szleifer I, Carignano MA (1996) Adv Chem Phys XCIV:165 Google Scholar
  82. 82.
    Pincus P (1991) Macromolecules 24:2912 CrossRefGoogle Scholar
  83. 83.
    Zhulina EB, Birshtein TM, Borisov OV (1995) Macromolecules 28:1491 CrossRefGoogle Scholar
  84. 84.
    Zhulina EB, Borisov OV (1997) J Chem Phys 107:5952 CrossRefGoogle Scholar
  85. 85.
    Israëls R, Scheutjens JMHM, Fleer GJ (1994) Macromolecules 27:3087 CrossRefGoogle Scholar
  86. 86.
    Israëls R, Leermakers FAM, Fleer GJ, Zhulina EB (1994) Macromolecules 27:3249 CrossRefGoogle Scholar
  87. 87.
    Fleer GJ (1996) Ber Bunsenges Phys Chem 100:936 Google Scholar
  88. 88.
    Israëls R, Leermakers FAM, Fleer GJ (1995) Macromolecules 28:1626 CrossRefGoogle Scholar
  89. 89.
    Wu T, Genzer J, Gong P, Szleifer I, Vlček P, Šubr V (2004) In: Advincula RC, Brittain WJ, Rühe J, Caster K (ed) Polymer Brush. Wiley, New York Google Scholar
  90. 90.
    Currie EPK, Sieval AB, Fleer GJ, Cohen Stuart MA (1999) Langmuir 15:7116 CrossRefGoogle Scholar
  91. 91.
    Currie EPK, Sieval AB, Fleer GJ, Cohen Stuart MA (2000) Langmuir 16:8324 CrossRefGoogle Scholar
  92. 92.
    Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Macromolecules 32:8716 CrossRefGoogle Scholar
  93. 93.
    Davis KA, Matyjaszewski K (2000) Macromolecules 33:4039 CrossRefGoogle Scholar
  94. 94.
    Tomlinson MR, Genzer J (2003) Macromolecules 36:3449 CrossRefGoogle Scholar
  95. 95.
    Matyjaszewski K, Patten TE, Xia JH (1997) J Am Chem Soc 119:674 CrossRefGoogle Scholar
  96. 96.
    Kim JB, Huang WX, Bruening ML, Baker GL (2002) Macromolecules 35:5410 CrossRefGoogle Scholar
  97. 97.
    Osborne VL, Jones DM, Huck WTS (2002) Chem Commun 1838 Google Scholar
  98. 98.
    Tomlinson MR, Genzer J (2003) Chem Commun 1350 Google Scholar
  99. 99.
    Dautzenberg H, Jaeger W, Kotz J, Philipp B, Seidel C (1994) Polyelectrolytes. Hanser Publishers, Munich Google Scholar
  100. 100.
    Everaers R, Johner A, Joanny JF (1997) Europhys Lett 37:275 CrossRefGoogle Scholar
  101. 101.
    Harada A, Kataoka K (1999) Science 283:65 CrossRefGoogle Scholar
  102. 102.
    Walter H, Harrats C, Muller-Buschbaum P, Jerome R, Stamm M (1999) Langmuir 15:1260 CrossRefGoogle Scholar
  103. 103.
    Mahltig B, Jerome R, Stamm M (1999) Phys Chem Chem Phys 1:3853 CrossRefGoogle Scholar
  104. 104.
    Gohy JF, Creutz S, Garcia M, Mahltig B, Stamm M, Jerome R (2000) Macromolecules 33:6378 CrossRefGoogle Scholar
  105. 105.
    Bruining MJ, Blaauwgeers HGT, Kuijer R, Pels E, Nuijts RMMA, Koole LH (2000) Biomaterials 21:595 CrossRefGoogle Scholar
  106. 106.
    Hilborn J, Gupta B, Garamszegi L, Laurent A, Plummer CJG, Bisson I, Frey P, Hedrick JL (2000) Mat Res Soc Symp Proc 629:FF4.1.1 Google Scholar
  107. 107.
    Chun MK, Cho CS, Choi HK (2000) J Appl Poly Sci 79:1525 CrossRefGoogle Scholar
  108. 108.
    We note that charge dissociation behavior of surface-grafted molecules can be very different from that of free molecules [Bain CD, Whitesides GM (1989) Langmuir 5:1370; van der Vegte EW, Hadziioannou H (1997) J Phys Chem B 101:9563]. However, the bulk values can still be used to obtain a good estimate of behavior in grafted polyelectrolyte systems Google Scholar
  109. 109.
    Zhang X, Xia J, Matyjaszewki K (1998) Macromolecules 31:5167 CrossRefGoogle Scholar
  110. 110.
    Zhang X, Matyjaszewki K (1999) Macromolecules 32:1763 CrossRefGoogle Scholar
  111. 111.
    Wu T (2003) PhD Thesis. NC State University Google Scholar
  112. 112.
    Tomkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry: A user's guide. Wiley, New York Google Scholar
  113. 113. (see tutorials)
  114. 114.
    Prucker O, Rühe J (1998) Langmuir 14:6893 CrossRefGoogle Scholar
  115. 115.
    Prucker O, Rühe J (1998) Macromolecules 31:592 CrossRefGoogle Scholar
  116. 116.
    Biesalski M, Rühe J (2002) Macromolecules 35:499 CrossRefGoogle Scholar
  117. 117.
    Bhat RR, Tomlinson MR, Genzer J (2004) Macromol Rapid Commun 25:270 CrossRefGoogle Scholar
  118. 118.
    Bhat RR, Tomlinson MR, Genzer J (2005) J Poly Sci Poly Phys 43:3384 CrossRefGoogle Scholar
  119. 119.
    (1991) Special issue in Science 254:1277 Google Scholar
  120. 120.
    Rao CNR, Cheetham AK (2001) J Mater Chem 11:2887 CrossRefGoogle Scholar
  121. 121.
    Wohltjen H, Snow AW (1998) Anal Chem 70:2856 CrossRefGoogle Scholar
  122. 122.
    Oregan B, Gratzel M (1991) Nature 353:737 CrossRefGoogle Scholar
  123. 123.
    Nie S, Emory SR (1997) Science 275:1102 CrossRefGoogle Scholar
  124. 124.
    Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354 CrossRefGoogle Scholar
  125. 125.
    Shipway AN, Katz E, Willner I (2000) Chem Phys Chem 1:18 Google Scholar
  126. 126.
    Link S, El-Sayed MA (2000) Inter Rev Phys Chem 19:409 CrossRefGoogle Scholar
  127. 127.
    Alivisatos AP (1996) Science 271:933 CrossRefGoogle Scholar
  128. 128.
    Godovski DY (1995) Adv Pol Sci 119:79 CrossRefGoogle Scholar
  129. 129.
    Brus L (1997) Curr Opin Colloid Interface Sci 1:197 CrossRefGoogle Scholar
  130. 130.
    Weller H (1993) Angew Chem Int Ed Engl 105:43 Google Scholar
  131. 131.
    Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ (1996) J Am Chem Soc 118:1148 CrossRefGoogle Scholar
  132. 132.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735 CrossRefGoogle Scholar
  133. 133.
    Kotov NA, Dekany I, Fendler JH (1995) J Phys Chem 99:13065 CrossRefGoogle Scholar
  134. 134.
    Bhat RR, Fischer DA, Genzer J (2002) Langmuir 18:3404 CrossRefGoogle Scholar
  135. 135.
    Sohn BH, Cohen RE (1997) Chem Mater 9:264 CrossRefGoogle Scholar
  136. 136.
    Hashimoto T, Harada M, Sakamoto N (1999) Macromolecules 32:6867 CrossRefGoogle Scholar
  137. 137.
    Gage RA, Currie EPK, Stuart MAC (2001) Macromolecules 34:5078 CrossRefGoogle Scholar
  138. 138.
    Bhat RR, Genzer J (2005) Appl Surf Sci, in press Google Scholar
  139. 139.
    Liu Z, Pappacena K, Cerise J, Kim JU, Durning CJ, O'Shaughnessy B, Levicky R (2002) Nano Lett 2:219 CrossRefGoogle Scholar
  140. 140.
    Bhat RR, Genzer J, Chaney BN, Sugg HW, Liebmann-Vinson A (2003) Nanotechnology 14:1145 CrossRefGoogle Scholar
  141. 141.
    Bhat RR, Genzer J (2005) Surf Sci 596:187 Google Scholar
  142. 142.
    Frens G (1973) Nature Phys Sci 241:20 Google Scholar
  143. 143.
    Xiao D, Wirth MJ (2002) Macromolecules 35:2919 CrossRefGoogle Scholar
  144. 144.
    Kim JU, O'Shaughnessy B (2002) Phys Rev Lett 89:238301 CrossRefGoogle Scholar
  145. 145.
    Musick MD, Keating CD, Keefe MH, Natan MJ (1997) Chem Mater 16:7825 Google Scholar
  146. 146.
    Chandrasekharan N, Kamat PV (2001) Nano Lett 1:67 CrossRefGoogle Scholar
  147. 147.
    Jana NR, Gearheart L, Murphy CJ (2001) Langmuir 17:6782 CrossRefGoogle Scholar
  148. 148.
    Currie EPK, Van der Gucht J, Borisov OV, Stuart MAC (1999) Pure Appl Chem 71:1227 CrossRefGoogle Scholar
  149. 149.
    Currie EPK, Cohen Stuart MA, Fleer GJ, Borisov OV (2000) Eur Phys J E 1:27 CrossRefGoogle Scholar
  150. 150.
    McPherson T, Kidane A, Szleifer I, Park K (1998) Langmuir 14:176 CrossRefGoogle Scholar
  151. 151.
    Carignano MA, Szleifer I (2000) Biointerfaces 18:169 CrossRefGoogle Scholar
  152. 152.
    Szleifer I (1997) Physica A 244:370 CrossRefGoogle Scholar
  153. 153.
    Szleifer I (1997) Biophys J 72:595 CrossRefGoogle Scholar
  154. 154.
    Fang F, Szleifer I (2001) Biophys J 80:2568 CrossRefGoogle Scholar
  155. 155.
    Fang F, Szleifer I (2002) Langmuir 18:5497 CrossRefGoogle Scholar
  156. 156.
    Halperin A, Leckband DE (2000) C R Acad Sci Paris t 1 Série IV:1171 Google Scholar
  157. 157.
    Efremova NV, Sheth SR, Leckband DE (2001) Langmuir 17:7628 CrossRefGoogle Scholar
  158. 158.
    Zhu B, Eurell T, Gunawan R, Leckband D (2001) J Biomed Mater Res 56:406 CrossRefGoogle Scholar
  159. 159.
    Sheth SR, Efremova N, Leckband DE (2000) J Phys Chem B 104:7652 CrossRefGoogle Scholar
  160. 160.
    Gombotz WR, Guanghui W, Horbett TA, Hoffman AS (1991) J Biomed Mater Res 25:1546 CrossRefGoogle Scholar
  161. 161.
    Rouce FR Jr, Ratner BD, Horbett TA (1982) In: Cooper SL, Peppas NA (eds) Biomaterials: Interfacial Phenomena and Applications. American Chemical Society, Washington, DC Google Scholar
  162. 162.
    Bohnert JL, Horbett TA, Ratner BD, Royce FH (1988) Investig Opth Vis Sci 29:362 Google Scholar
  163. 163.
    Morra M, Cassinelli C (1999) Langmuir 15:4658 CrossRefGoogle Scholar
  164. 164.
    Bhat RR, Genzer J (2004) Mat Res Soc Symp Proc 804:J5.8.1 Google Scholar
  165. 165.
    Bhat RR, Chaney BN, Rowley J, Liebmann-Vinson A, Genzer J (2005) Adv Mater 17:2802 Google Scholar
  166. 166.
    (2003) Special issue of Macromol Rapid Commun, Volume 24, Issue 1 Google Scholar
  167. 167.
    (2004) Special issue of Macromol Rapid Commun, Volume 25, Issue 1 Google Scholar
  168. 168.
    Zhao H, Beysens D (1995) Langmuir 11:627 CrossRefGoogle Scholar
  169. 169.
    Genzer J, Kramer EJ (1998) Erophys Lett 44:180 CrossRefGoogle Scholar
  170. 170.
    Smith AP, Douglas JF, Meredith JC, Amis EJ, Karim A (2001) Phys Rev Lett 87:Art No 015503 Google Scholar
  171. 171.
    Smith AP, Sehgal A, Douglas JF, Karim A, Amis EJ (2003) Macromol Rapid Commun 21:131 CrossRefGoogle Scholar
  172. 172.
    Meredith JC, Sormana JL, Keselowsky BG, Garcia AJ, Tona A, Karim A, Amis EJ (2003) J Biomed Mat Res 66A:483 CrossRefGoogle Scholar
  173. 173.
    Lord SJ, Sheiko SS, LaRue I, Lee H-I, Matyjaszewski K (2004) Macromolecules 37:4235 CrossRefGoogle Scholar

Authors and Affiliations

  • Rajendra R. Bhat
    • 1
  • Michael R. Tomlinson
    • 1
  • Tao Wu
    • 1
    • 2
  • Jan Genzer
    • 1
    Email author
  1. 1.Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Polymers DivisionNational Institute for Standards and TechnologyGaithersburgUSA

Personalised recommendations