Advertisement

Polymer Crystallization Driven by Anisotropic Interactions

  • Wenbing HuEmail author
  • Daan Frenkel
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 191)

Abstract

In this review, we consider a variety of aspects of polymer crystallization using a very simple lattice model. This model has three ingredients that give it the necessary flexibility to account for many features of polymer crystallization that have been observed experimentally. These ingredients are (1) a difference in attraction between neighboring (nonbonded) components, (2) attraction between parallel bonds, and (3) temperature-dependent flexibility due to the energy cost associated with kinks in the polymer chain. We consider this model using both dynamic Monte Carlo simulations and a simple mean-field theory. In particular, we focus on the interplay of polymer crystallization and liquid--liquid demixing in polymer solutions. In addition, we study the factors that are responsible for the characteristic crystal morphologies observed in a variety of homopolymer and statistical-copolymer crystals. Finally, we consider how the freezing of polymers in the bulk can be related to the crystallization of a single polymer chain.

Crystallization Lattice statistics Melting Monte Carlo simulations Phase diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO). We thank S. van Albada for critically reading the manuscript. W. H. thanks the funding of National Natural Science Foundation of China (Grant No. 20474027).

References

  1. 1.
    Onsager L (1949) Ann NY Acad Sci 51:627 Google Scholar
  2. 2.
    Maier W, Saupe AY (1959) Z Naturforsch 14a:882 Google Scholar
  3. 3.
    Maier W, Saupe AY (1959) Z Naturforsch 15a:287 Google Scholar
  4. 4.
    Jaehnig F (1979) J Chem Phys 70:3279 Google Scholar
  5. 5.
    Ronca G, Yoon DY (1982) J Chem Phys 76:3295 CrossRefGoogle Scholar
  6. 6.
    Ronca G, Yoon DY (1984) J Chem Phys 80:925 Google Scholar
  7. 7.
    ten Bosch A, Maissa P, Sixon P (1983) J Chem Phys 79:3462 Google Scholar
  8. 8.
    ten Bosch A, Maissa P, Sixon P (1983) J Phys Lett (Paris) 44:L105 Google Scholar
  9. 9.
    Khokhlov AR, Semenov AN (1985) J Stat Phys 38:161 CrossRefGoogle Scholar
  10. 10.
    Gupta AM, Edwards SF (1993) J Chem Phys 98:1588 Google Scholar
  11. 11.
    Lekkerkerker HNW, Vroege GJ (1993) Philos Trans R Soc Lond Ser A 344:419 Google Scholar
  12. 12.
    Flory PJ (1956) Proc R Soc Lond Ser A 234:60 Google Scholar
  13. 13.
    Hu WB (2000) J Chem Phys 113:3901 Google Scholar
  14. 14.
    Hu WB, Frenkel D, Mathot VBF (2003) J Chem Phys 118:10343 Google Scholar
  15. 15.
    Rowlinson JS (1970) Faraday Disc Chem Soc 49:30 Google Scholar
  16. 16.
    Guggenheim EA (1952) Mixtures. Clarendon, Oxford Google Scholar
  17. 17.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY p 495 Google Scholar
  18. 18.
    Prigogine I (1957) The molecular theory of solution. North-Holland, Amsterdam Google Scholar
  19. 19.
    Meyer KH (1939) Z Phys Chem B 44:383 Google Scholar
  20. 20.
    Huggins ML (1942) Ann NY Acad 43:1 Google Scholar
  21. 21.
    Flory PJ (1942) J Chem Phys 10:51 CrossRefGoogle Scholar
  22. 22.
    Flory PJ (1982) Proc Natl Acad Sci USA 79:4510 Google Scholar
  23. 23.
    Nagle JF (1974) Proc R Soc Lond Ser A 337:569 Google Scholar
  24. 24.
    Gordon M, Kapadia P, Malakis A (1976) J Phys A 9:751 Google Scholar
  25. 25.
    Gujrati PD (1980) J Phys A 13:L437 Google Scholar
  26. 26.
    Gujrati PD, Goldstein MJ (1981) J Chem Phys 74:2596 CrossRefGoogle Scholar
  27. 27.
    Nagle JF, Gujrati PD, Goldstein MJ (1984) J Phys Chem 88:4599 CrossRefGoogle Scholar
  28. 28.
    DiMarzio EA (1961) J Chem Phys 35:658 CrossRefGoogle Scholar
  29. 29.
    Ronca G (1983) J Chem Phys 79:6326 Google Scholar
  30. 30.
    Jarry JP, Monnerie L (1979) Macromolecules 12:316 Google Scholar
  31. 31.
    Doi M, Pearson D, Kornfield J, Fuller G (1989) Macromolecules 22:1488 Google Scholar
  32. 32.
    Watanabe H, Kotaka T, Tirrell M (1991) Macromolecules 24:201 Google Scholar
  33. 33.
    Baumgaertner A, Yoon DY (1983) J Chem Phys 79:521 Google Scholar
  34. 34.
    Yoon DY, Baumgaertner A (1984) Macromolecules 17:2864 Google Scholar
  35. 35.
    Boyd RH (1986) Macromolecules 19:1128 Google Scholar
  36. 36.
    Mansfield ML (1994) Macromolecules 27:4699 Google Scholar
  37. 37.
    Meyer H, Mueller-Plathe F (2002) Macromolecules 35:1241 Google Scholar
  38. 38.
    Weber H, Paul W, Binder K (1999) Phys Rev E 59:2168 CrossRefGoogle Scholar
  39. 39.
    Weber H, Paul W, Kob W, Binder K (1997) Phys Rev Lett 78:2136 Google Scholar
  40. 40.
    Baumgaertner A (1984) J Chem Phys 81:484; (1986) J Chem Phys 84:1905 Google Scholar
  41. 41.
    Kolinsky A, Skolnick J, Yaris R (1986) Macromolecules 19:2560 Google Scholar
  42. 42.
    Weber TA, Helfand E (1979) J Chem Phys 71:4760 CrossRefGoogle Scholar
  43. 43.
    Fischer EW, Strobl GR, Dettenmaier M, Stamm M, Steidle N (1979) Faraday Disc Chem Soc 68:26 CrossRefGoogle Scholar
  44. 44.
    Walasek J (1990) J Polym Sci Part B Polym Phys 28:1075 Google Scholar
  45. 45.
    Walasek J (1990) J Polym Sci Part B Polym Phys 28:2473 Google Scholar
  46. 46.
    Bleha T (1985) Polymer 26:1638 CrossRefGoogle Scholar
  47. 47.
    Mansfield (1983) Macromolecules 16:914 Google Scholar
  48. 48.
    Yoon DY (1989) Polym Prepr Am Chem Soc Div Polym Chem 30:63 Google Scholar
  49. 49.
    McCoy JD, Honnell KG, Schweizer KS, Curro JG (1991) J Chem Phys 95:9348 Google Scholar
  50. 50.
    van Ruiten J, van Dieren F, Mathot VBF (1993) In: Dosiere M (ed) Crystallization of polymers. Kluwer, Dordrecht, p 481 Google Scholar
  51. 51.
    Hu WB, Yu TY (1995) Chem J Chin Univ 16:1140 Google Scholar
  52. 52.
    Hu WB, Frenkel D, Mathot VBF (2003) Macromolecules 36:2165 Google Scholar
  53. 53.
    Toma L, Toma S, Subirana JA (1998) Macromolecules 31:2328 CrossRefGoogle Scholar
  54. 54.
    Chen CM, Higgs PG (1998) J Chem Phys 108:4305 Google Scholar
  55. 55.
    Hu WB, Yu TY, Bu HS (1994) Chem J Chin Univ 15:1099 Google Scholar
  56. 56.
    Hu WB (2001) J Chem Phys 115:4395 CrossRefGoogle Scholar
  57. 57.
    Hu WB, Frenkel D, Mathot VBF (2003) Macromolecules 36:549 Google Scholar
  58. 58.
    Hu WB, Frenkel D, Mathot VBF (2002) Macromolecules 35:7172 Google Scholar
  59. 59.
    Lenz RW (1967) Organic chemistry of synthetic high polymers. Interscience, New York, p 91 Google Scholar
  60. 60.
    Wunderlich B (1973) Macromolecular physics, vol 1. Crystal structure, morphology, defects. Academic, New York, p 68 Google Scholar
  61. 61.
    Tadokoro H (1979) Structure of crystalline polymers. Wiley, New York, p 15 Google Scholar
  62. 62.
    Sperling LH (1992) Introduction to physical polymer science, 2nd edn. Wiley, New York, p 261 Google Scholar
  63. 63.
    Pan Y, Cao MY, Wunderlich B (1989) In: Brandrup J, Immergut EH (eds) Polymer handbook, 3rd edn. Wiley, New York, p VI=376 Google Scholar
  64. 64.
    Bunn CW (1955) J Polym Sci 16:323 CrossRefGoogle Scholar
  65. 65.
    Wunderlich B (1980) Macromolecular physics, vol 3. Crystal melting. Academic, New York, p 27 Google Scholar
  66. 66.
    Mandelkern L (2002) Crystallization of polymers,vol 1, 2nd edn. Equilibrium concepts. Cambridge University Press, Cambridge, p 42 Google Scholar
  67. 67.
    Flory PJ, Vrij A (1963) J Am Chem Soc 85:3548 CrossRefGoogle Scholar
  68. 68.
    Bawendi MG, Freed KF (1988) J Chem Phys 88:2741 CrossRefGoogle Scholar
  69. 69.
    Buta D, Freed KF, Szleifer I (2000) J Chem Phys 112:6040 CrossRefGoogle Scholar
  70. 70.
    Richards RB (1946) Trans Faraday Soc 42:10 CrossRefGoogle Scholar
  71. 71.
    Flory PJ, Mandelkern L, Hall HK (1951) J Am Chem Soc 73:2532 Google Scholar
  72. 72.
    He XW, Herz J, Guenet JM (1987) Macromolecules 20:2003 CrossRefGoogle Scholar
  73. 73.
    Aerts L, Berghmans H, Koningsveld R (1993) Makromol Chem 194:2697 CrossRefGoogle Scholar
  74. 74.
    Wang H, Shimizu K, Kim H, Hobbie EK, Wang ZG, Han CC (2002) J Chem Phys 116:7311 Google Scholar
  75. 75.
    Flory PJ (1949) J Chem Phys 17:223 Google Scholar
  76. 76.
    Mandelkern L (2002) Crystallization of polymers,vol 1, 2nd edn. Equilibrium concepts. Cambridge University Press, Cambridge, p 70 Google Scholar
  77. 77.
    ten Wolde PR, Frenkel D (1997) Science 277:1975 CrossRefGoogle Scholar
  78. 78.
    Talanquer V, Oxtoby DW (1998) J Chem Phys 109:233 CrossRefGoogle Scholar
  79. 79.
    Sear RP (2001) Phys Rev E 63:066105 CrossRefGoogle Scholar
  80. 80.
    Inaba N, Sato K, Suzuki S, Hashimoto T (1986) Macromolecules 19:1690 Google Scholar
  81. 81.
    Lee HK, Myerson AS, Levon K (1992) Macromolecules 25:4002 Google Scholar
  82. 82.
    Guenet JM (1996) Thermochim Acta 284:67 CrossRefGoogle Scholar
  83. 83.
    Berghmans H, de Cooman R, de Rudder J, Koningsveld R (1998) Polymer 39:4621 CrossRefGoogle Scholar
  84. 84.
    Hu WB, Frenkel D (2004) Macromolecules 37:4336 Google Scholar
  85. 85.
    Schaaf P, Lotz B, Wittmann JC (1987) Polymer 28:193 CrossRefGoogle Scholar
  86. 86.
    Hu WB, Mathot VBF (2003) J Chem Phys 119:10953 Google Scholar
  87. 87.
    Dudowicz J, Freed KF, Douglas JF (2002) Phys Rev Lett 88:095503 CrossRefGoogle Scholar
  88. 88.
    Dudowicz J, Freed KF (1991) Macromolecules 24:5076; 24:5112 Google Scholar
  89. 89.
    Clancy TC, Putz M, Weinhold JD, Curro JG, Mattice WL (2000) Macromolecules 33:9452 CrossRefGoogle Scholar
  90. 90.
    Xu GQ, Clancy TC, Mattice WL (2000) Macromolecules 35:3309 Google Scholar
  91. 91.
    Maier RD, Thomann R, Kressler J, Muelhaupt R, Rudolf B (1997) J Polym Sci B Polym Phys 35:1135 CrossRefGoogle Scholar
  92. 92.
    Haliloglu T, Mattice WL (1999) J Chem Phys 111:4327 CrossRefGoogle Scholar
  93. 93.
    Thomann R, Kressler J, Setz S, Wang C, Muelhaupt R (1996) Polymer 37:2627 Google Scholar
  94. 94.
    Silvestri R, Sgarzi P (1998) Polymer 39:5871 CrossRefGoogle Scholar
  95. 95.
    Wang ZG, Phillips RA, Hsiao BS (2000) J Polym Sci B Polym Phys 38:2580 Google Scholar
  96. 96.
    Lohse D (1986) J Polym Eng Sci 26:1500 Google Scholar
  97. 97.
    Yeh GSY, Lambert SL (1972) J Polym Sci A-2 10:1183 CrossRefGoogle Scholar
  98. 98.
    Ermer H, Thomann R, Kressler J, Brenn R, Wunsch J (1997) Macromol Chem Phys 198:3639 CrossRefGoogle Scholar
  99. 99.
    Woo EM, Lee ML, Sun YS (2000) Polymer 42:883 Google Scholar
  100. 100.
    Keller A (1957) Philos Mag 2:1171 Google Scholar
  101. 101.
    Fischer EW (1957) Z Naturforsch 12a:753 Google Scholar
  102. 102.
    Till PH Jr (1957) J Polym Sci 24:301 CrossRefGoogle Scholar
  103. 103.
    Lindenmeyer PH (1963) J Polym Sci C 1:5 Google Scholar
  104. 104.
    Geil PH (1963) Polymer single crystals. Wiley-Interscience, New York Google Scholar
  105. 105.
    Wunderlich B (1973) Macromolecular physics, vol 1. Crystal structure, morphology, defects. Academic, New York, pp 178–379 Google Scholar
  106. 106.
    Bassett DC (1981) Principles of polymer morphology. Cambridge University Press, London Google Scholar
  107. 107.
    Welch P, Muthukumar M (2001) Phys Rev Lett 87:218302 CrossRefGoogle Scholar
  108. 108.
    Lotz B (1994) Philos Trans R Soc Lond Ser A 348:19 Google Scholar
  109. 109.
    Bu Z, Cheng SZD, Putthanarat S, Eby RK, Reneker DH, Lotz B, Magonov S, Hsieh ET, Johnson TW, Geerts RG, Plackal SJ, Hawley GR, Welch MB (2000) Macromolecules 33:6861 CrossRefGoogle Scholar
  110. 110.
    Kelton KF (1991) In: Ehrenreich H, Turnbull D (eds) Crystal nucleation in liquids and glasses. Academic, Boston, p 75 Google Scholar
  111. 111.
    Pennings AJ (1977) J Polym Sci Polym Symp 59:55 Google Scholar
  112. 112.
    McHugh AJ (1982) Polym Eng Sci 22:15 CrossRefGoogle Scholar
  113. 113.
    Barham PJ, Keller A (1985) J Mater Sci 20:2281 Google Scholar
  114. 114.
    Keller A, Odell JA (1985) Colloid Polym Sci 263:181 CrossRefGoogle Scholar
  115. 115.
    Al-Hussein M, Strobl G (2002) Macromolecules 35:1672 Google Scholar
  116. 116.
    Heck B, Strobl G, Grasruck M (2003) Eur Phys J E 11:117 CrossRefGoogle Scholar
  117. 117.
    Bassett DC, Keller A (1961) Philos Mag 6:1053 Google Scholar
  118. 118.
    Dosiere M, Colet M, Point JJ (1986) In: Sedlacek B (ed) Morphology of polymers. De Gruyter, Berlin, p 171 Google Scholar
  119. 119.
    Doye JPK, Frenkel D (1998) Phys Rev Lett 81:2160 CrossRefGoogle Scholar
  120. 120.
    Doye JPK, Frenkel D (1999) J Chem Phys 110:7073 Google Scholar
  121. 121.
    Hikosaka M (1987) Polymer 28:1257 CrossRefGoogle Scholar
  122. 122.
    Hikosaka M (1990) Polymer 32:458 Google Scholar
  123. 123.
    Hikosaka M, Rastogi S, Keller A, Kawabata H (1992) J Macromol Sci Phys B31:87 Google Scholar
  124. 124.
    Hu WB, Mathot VBF (2004) Macromolecules 37:673 Google Scholar
  125. 125.
    Frenkel D, Smit B (2002) Understanding molecular simulations, 2nd edn. Academic, San Diego, p 167 Google Scholar
  126. 126.
    Hu WB, Frenkel D, Mathot VBF (2003) J Chem Phys 118:3455 Google Scholar
  127. 127.
    Hu WB, Frenkel D, Mathot VBF (2003) Macromolecules 36:8178 Google Scholar
  128. 128.
    Nishi M, Hikosaka M, Ghosh SK, Toda A, Yamada K (1999) Polym J 31:749 CrossRefGoogle Scholar
  129. 129.
    Ghosh SK, Hikosaka M, Toda A (2001) Colloid Polym Sci 279:382 CrossRefGoogle Scholar
  130. 130.
    Umemoto S, Hayashi R, Kawano R, Kikutani T, Okui N (2003) J Macromol Sci B 42:421 Google Scholar
  131. 131.
    Umemoto S, Okui N (2002) Polymer 43:1423 CrossRefGoogle Scholar
  132. 132.
    Umemoto S, Kobayashi N, Okui N (2002) J Macromol Sci B 41:923 Google Scholar
  133. 133.
    Mehta A, Wunderlich B (1974) J Polym Sci Polym Phys Ed 12:255 Google Scholar
  134. 134.
    Hu WB (1998) J Chem Phys 109:3686 Google Scholar
  135. 135.
    Kremer K, Binder K (1988) Comput Phys Rep 7:259 CrossRefGoogle Scholar
  136. 136.
    Verdier PH, Stockmayer WH (1962) J Chem Phys 36:227 CrossRefGoogle Scholar
  137. 137.
    Wall FT, Mandel F (1975) J Chem Phys 63:4592 Google Scholar
  138. 138.
    Larson RG, Scriven LE, Davis HT (1985) J Chem Phys 83:2411 CrossRefGoogle Scholar
  139. 139.
    Carmesin I, Kremer K (1988) Macromolecules 21:2819 CrossRefGoogle Scholar
  140. 140.
    Deutsch HP, Binder K (1991) J Chem Phys 94:2294 CrossRefGoogle Scholar
  141. 141.
    Lu JM, Yang YL (1993) Sci Chin A 36:357 Google Scholar
  142. 142.
    de Gennes PG (1971) J Chem Phys 55:571 Google Scholar
  143. 143.
    Binder K (1995) In: Binder K (ed) Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press, New York, p 22 Google Scholar
  144. 144.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY, p 29 Google Scholar
  145. 145.
    Kremer K, Grest GS (1990) J Chem Phys 92:5057 Google Scholar
  146. 146.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087 CrossRefGoogle Scholar
  147. 147.
    Binder K (1979) In: Binder K (ed) Monte Carlo methods in statistical physics. Springer, Berlin Heidelberg New York, p 1 Google Scholar
  148. 148.
    Torrie GM, Valleau JP (1974) Chem Phys Lett 28:578 CrossRefGoogle Scholar
  149. 149.
    ten Wolde PR (1998) PhD thesis, Amsterdam University, p 72 Google Scholar
  150. 150.
    Auer S, Frenkel D (2001) Nature 409:1020 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, College of Chemistry and Chemical EngineeringNanjing UniversityNanjingP.R. China
  2. 2.FOM Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands

Personalised recommendations