Skip to main content

Catalyst-Controlled, Regioselective Reactions of Carbohydrate Derivatives

  • Chapter
  • First Online:
Site-Selective Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 372))

Abstract

Carbohydrates generally possess multiple hydroxyl groups of similar reactivity, and selective monofunctionalization is often difficult. Catalysis provides a versatile and potentially general solution to this problem. This chapter provides an overview of catalyst-controlled methods for the regioselective activation of carbohydrate derivatives. The catalysts discussed include organocatalysts (Lewis bases, Brønsted acids/bases, and others) as well as those based on main group and transition metal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[TMPhA]+ :

Trimethylphenylammonium

Ac:

Acetyl

acac:

Acetylacetonate

AIBN:

Azobis(isobutyronitrile)

Ala:

Alanine

Alloc:

Allyloxycarbonyl

Ar:

Aryl

BINOL:

2,2′-Dihydroxy-1,1′-binaphthyl

Bn:

Benzyl

Boc:

tert-Butoxycarbonyl

BOX:

Bis(oxazoline)

Bu:

Butyl

Bz:

Benzoyl

Cbz:

Benzyloxycarbonyl

COD:

Cyclooctadiene

DCB:

2,6-Dichloro-1,4-benzoquinone

DMAc:

N,N-Dimethylacetamide

DMAP:

4-(Dimethylamino)pyridine

DME:

1,2-Dimethoxyethane

DMF:

Dimethylformamide

DPG:

Directing–protecting group

EPPS:

4-(2-Hydroxyethyl)-1-piperazinepropanesulfonic acid

Et:

Ethyl

Gal:

Galactose

Glc:

Glucose

GlcNAc:

N-Acetylglucosamine

i-Pr:

Isopropyl

M:

Mole per liter

Man:

Mannose

Me:

Methyl

MES:

2-(N-Morpholino)ethanesulfonic acid

Ms:

Methanesulfonyl

MS:

Molecular sieves

NMR:

Nuclear magnetic resonance

PEMP:

1,2,2,6,6-Pentamethylpiperidine

Ph:

Phenyl

Phe:

Phenylalanine

PMH:

Ï€-Methylhistidine

PMP:

4-Methoxyphenyl

PPY:

4-Pyrrolidinopyridine

Pr:

Propyl

T :

Temperature

TBDPS:

tert-Butyldiphenylsilyl

TBS:

tert-Butyldimethylsilyl

t-Bu:

tert-Butyl

TES:

Triethylsilyl

Tf:

Trifluoromethanesulfonyl (triflyl)

THF:

Tetrahydrofuran

THP:

Tetrahydropyranyl

TMEDA:

N,N,N′,N′-Tetramethylethylenediamine

Trp:

Tryptophan

Trt:

Triphenylmethyl

Ts:

Tosyl, 4-toluenesulfonyl

U:

Uracil

X:

Generic leaving group

References

  1. Wuts PGM, Green TW (2007) Green’s protective groups in organic synthesis, 4th edn. Wiley, Hoboken

    Google Scholar 

  2. Angyal SJ, Evans ME (1972) Oxidation of carbohydrates with chromium trioxide in acetic acid. III. Synthesis of the 3-hexuloses. Aust J Chem 25:1495

    Article  CAS  Google Scholar 

  3. Robins MJ, Hawrelak SD, Kanai T, Siefert JM, Mengel R (1979) Nucleic acid related compounds. 30. Transformations of adenosine to the first 2′,3′-aziridine-fused nucleosides, 9-(2,3-epimino-2,3-dideoxy-β-D-ribofuranosyl)adenine and 9-(2,3-epimino-2,3-dideoxy-β-D-lyxofuranosyl)adenine. J Org Chem 44:1317

    Article  CAS  Google Scholar 

  4. Schmidt RR, Klotz W (1991) Glycoside bond formation via anomeric O-alkylation: how many protective groups are required? Synlett 168

    Google Scholar 

  5. Garegg PJ, Iversen T, Oscarson S (1976) Monobenzylation of diols using phase-transfer catalysis. Carbohydr Res 50:C12

    Article  CAS  Google Scholar 

  6. Clode DM (1979) Carbohydrate cyclic acetal formation and migration. Chem Rev 79:491

    Article  CAS  Google Scholar 

  7. Ley SV, Polara A (2007) A fascination with 1,2-diacetals. J Org Chem 72:5943

    Article  CAS  Google Scholar 

  8. Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131

    Article  CAS  Google Scholar 

  9. Schmaltz RM, Hanson SR, Wong C-H (2011) Enzymes in the synthesis of glycoconjugates. Chem Rev 111:4259

    Article  CAS  Google Scholar 

  10. Armstrong Z, Withers SG (2013) Synthesis of glycans and glycopolymers through engineered enzymes. Biopolymers 99:666

    Article  CAS  Google Scholar 

  11. Lee D, Taylor MS (2012) Catalyst-controlled regioselective reactions of carbohydrate derivatives. Synthesis 44:3421

    Article  CAS  Google Scholar 

  12. Balmond EI, Galan MC, McGarrigle EM (2013) Recent developments in the application of organocatalysis to glycosylations. Synlett 24:2335

    Article  CAS  Google Scholar 

  13. Böttcher S, Thiem J (2014) Glycosylation employing unprotected carbohydrate acceptor components. Curr Org Chem 18:1804

    Article  CAS  Google Scholar 

  14. Denmark SE, Beutner GL (2008) Lewis base catalysis in organic synthesis. Angew Chem Int Ed 47:1560

    Article  CAS  Google Scholar 

  15. Kurahashi T, Mizutani T, Yoshida J-I (1999) Effect of intramolecular hydrogen-bonding network on the relative reactivities of carbohydrate OH groups. J Chem Soc Perkin Trans 1:465

    Article  Google Scholar 

  16. Kattnig E, Albert M (2004) Counterion-directed regioselective acetylation of octyl β-D-glucopyranoside. Org Lett 6:945

    Article  CAS  Google Scholar 

  17. Muramatsu W, Kawabata T (2007) Regioselective acylation of 6-O-protected octyl β-D-glucopyranosides by DMAP catalysis. Tetrahedron Lett 48:5031

    Article  CAS  Google Scholar 

  18. Moitessier N, Englebienne P, Chapleur Y (2005) Directing-protecting groups for carbohydrates. Design, conformational study, synthesis and application to regioselective functionalization. Tetrahedron 61:6839

    Article  CAS  Google Scholar 

  19. Lawandi J, Rocheleau S, Moitessier N (2011) Directing/protecting groups mediate highly regioselective glycosylation of monoprotected acceptors. Tetrahedron 67:8411

    Article  CAS  Google Scholar 

  20. Kurahashi T, Mizutani T, Yoshida J-I (2002) Functionalized DMAP catalysts for regioselective acetylation of carbohydrates. Tetrahedron 58:8669

    Article  CAS  Google Scholar 

  21. Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H (2007) A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J Am Chem Soc 129:12890

    Article  CAS  Google Scholar 

  22. Muramatsu W, Mishiro K, Ueda Y, Furuta T, Kawabata T (2010) Perfectly regioselective and sequential protection of glucopyranosides. Eur J Org Chem 827

    Google Scholar 

  23. Ueda Y, Muramatsu W, Mishiro K, Furuta T, Kawabata T (2009) Functional group tolerance in organocatalytic regioselective acylation of carbohydrates. J Org Chem 74:8802

    Article  CAS  Google Scholar 

  24. Yoshida K, Furuta T, Kawabata T (2010) Perfectly regioselective acylation of a cardiac glycoside, digitoxin, via catalytic amplification of the intrinsic reactivity. Tetrahedron Lett 51:4830

    Article  CAS  Google Scholar 

  25. Ueda Y, Mishiro K, Yoshida K, Furuta T, Kawabata T (2012) Regioselective diversification of a cardiac glycoside, lanatoside C, by organocatalysis. J Org Chem 77:7850

    Article  CAS  Google Scholar 

  26. Kawabata T, Muramatsu W, Nishio T, Shibata T, Urono Y, Stragies R (2008) Regioselective acylation of octyl β-D-glucopyranoside by chiral 4-pyrrolidinopyridine analogues. Synthesis 5:747

    Article  CAS  Google Scholar 

  27. Griswold KS, Miller SJ (2003) A peptide-based catalyst approach to the regioselective functionalization of carbohydrates. Tetrahedron 59:8869

    Article  CAS  Google Scholar 

  28. SĂ¡nchez-RosellĂ³ M, Puchlopek ALA, Morgan AJ, Miller SJ (2008) Site-selective catalysis of phenyl thionoformate transfer as a tool for regioselective deoxygenation of polyols. J Org Chem 73:1774

    Article  CAS  Google Scholar 

  29. Fowler BS, Laemmerhold KM, Miller SJ (2012) Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. J Am Chem Soc 134:9755

    Article  CAS  Google Scholar 

  30. Han S, Miller SJ (2013) Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. J Am Chem Soc 135:12414

    Article  CAS  Google Scholar 

  31. Tan KL, Sun X, Worthy AD (2012) Scaffolding catalysis: expanding the repertoire of bifunctional catalysts. Synlett 321

    Google Scholar 

  32. Sun X, Lee H, Lee S, Tan KL (2013) Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules. Nat Chem 5:790

    Article  CAS  Google Scholar 

  33. Blaisdell TP, Lee S, Kasaplar P, Sun X, Tan KL (2013) Practical silyl protection of ribonucleosides. Org Lett 15:4710

    Article  CAS  Google Scholar 

  34. Sun X, Worthy AD, Tan KL (2011) Scaffolding catalysis: highly enantioselective desymmetrization reactions. Angew Chem Int Ed 50:8167

    Article  CAS  Google Scholar 

  35. Manville N, Alite H, Haeffner F, Hoveyda AH, Snapper ML (2013) Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts. Nat Chem 5:768

    Article  CAS  Google Scholar 

  36. Hu G, Vasella A (2003) Regioselective benzoylation of 6-O-protected and 4,6-O-diprotected hexopyranosides as promoted by chiral and achiral ditertiary 1,2-diamines. Helv Chim Acta 86:4369

    Google Scholar 

  37. Zhou Y, Rahm M, Wu B, Zhang X, Ren B, Dong H (2013) H-Bonding activation in highly regioselective acetylation of diols. J Org Chem 78:11618

    Article  CAS  Google Scholar 

  38. Ren B, Rahm M, Zhang X, Zhou Y, Dong H (2014) Regioselective acetylation of diols and polyols by acetate catalysis: mechanism and application. J Org Chem 79:8134

    Article  CAS  Google Scholar 

  39. Mensah E, Camasso N, Kaplan W, Nagorny P (2013) Chiral phosphoric acid directed regioselective acetalization of carbohydrate-derived 1,2-diols. Angew Chem Int Ed 52:12932

    Article  CAS  Google Scholar 

  40. Terada M (2010) Chiral phosphoric acids as versatile catalysts for enantioselective transformations. Synthesis 12:1929

    Article  CAS  Google Scholar 

  41. Akiyama T, Itoh J, Fuchibe K (2006) Recent progess in chiral Brønsted acid catalysis. Adv Synth Catal 9:999

    Article  CAS  Google Scholar 

  42. Cox DJ, Smith MD, Fairbanks AJ (2010) Glycosylation catalyzed by a chiral Brønsted acid. Org Lett 12:1452

    Article  CAS  Google Scholar 

  43. Reisman SE, Doyle AG, Jacobsen EN (2008) Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J Am Chem Soc 130:7198

    Article  CAS  Google Scholar 

  44. Balmond EI, Coe DM, Galan MC, McGarrigle EM (2012) α-Selective organocatalytic synthesis of 2-deoxygalactosides. Angew Chem Int Ed 51:9152

    Article  CAS  Google Scholar 

  45. Balmond EI, Benito-Alfonso D, Coe DM, Alder RW, McGarrigle EM, Galan MC (2014) A 3,4-trans-fused cyclic protecting group facilitates α-selective catalytic synthesis of 2-deoxyglycosides. Angew Chem Int Ed 53:8190

    Article  CAS  Google Scholar 

  46. Garegg PJ, Iversen T, Oscarson S (1977) Monotosylation of diols using phase-transfer catalysis. Carbohydr Res 53:C5

    Article  CAS  Google Scholar 

  47. Garegg PJ, Kvarnström I, Niklasson A, Niklasson G, Svensson SCT (1993) Partial substitution of thioglycosides by phase transfer catalyzed benzoylation and benzylation. J Carbohydr Chem 12:933

    Article  CAS  Google Scholar 

  48. Davis NJ, Flitsch SL (1993) Selective oxidation of monosaccharide derivatives to uronic acids. Tetrahedron Lett 34:1181

    Article  CAS  Google Scholar 

  49. GyörgydeĂ¡k Z, Thiem J (1995) Synthesis of methyl (D-glycopyranosyl azide)urinates. Carbohydr Res 268:85

    Article  Google Scholar 

  50. Bragd PL, Besemer AC, van Bekkum H (2001) TEMPO-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates. J Mol Catal A 170:35

    Article  CAS  Google Scholar 

  51. de Nooy AEJ, Besemer AC, van Bekkum H (1994) Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pays Bas 113:165

    Article  Google Scholar 

  52. Li K, Helm R (1995) A practical synthesis of methyl 4-O-methyl-α-D-glucopyranosiduronic acid. Carbohydr Res 273:249

    Article  CAS  Google Scholar 

  53. Kochkar H, Morawietz M, Hölderich WF (2000) Regioselective oxidation of primary hydroxyl groups of sugar and its derivatives using a new catalytic system mediated by TEMPO. Stud Surf Sci Catal 130:545

    Article  Google Scholar 

  54. Kochkar H, Lassalle L, Morawietz M, Hölderich WF (2000) Regioselective oxidation of hydroxyl groups of sugar and its derivatives using silver catalysts mediated by TEMPO and peroxodisulfate in water. J Catal 194:343

    Article  CAS  Google Scholar 

  55. Wang CC, Lee J-C, Luo S-Y, Kulkarni SS, Huang Y-W, Lee C-C, Chang K-L, Hung S-C (2007) Regioselective one-pot protection of carbohydrates. Nature 446:896

    Article  CAS  Google Scholar 

  56. Français A, Urban D, Beau J-M (2007) Tandem catalysis for a one-pot regioselective protection of carbohydrates: the example of glucose. Angew Chem Int Ed 46:8662

    Article  CAS  Google Scholar 

  57. Bourdreaux Y, Lemétais A, Urban D, Beau J-M (2011) Iron(III) chloride-tandem catalysis for a one-pot regioselective protection of glycopyranosides. Chem Commun 47:2146

    Article  CAS  Google Scholar 

  58. Tran A-T, Jones RA, Pastor J, Boisson J, Smith N, Galan MC (2011) Copper(II) triflate: a versatile catalyst for the one-pot preparation of orthogonally protected glycosides. Adv Synth Catal 353:2593

    Article  CAS  Google Scholar 

  59. Gyurcsik B, Nagy L (2000) Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coord Chem Rev 203:81

    Article  CAS  Google Scholar 

  60. Wagner D, Verheyden JPH, Moffatt JG (1974) Preparation and synthetic utility of some organotin derivatives of nucleosides. J Org Chem 38:24

    Article  Google Scholar 

  61. David S, Hanessian S (1985) Regioselective manipulation of hydroxyl groups via organotin derivatives. Tetrahedron 41:643

    Article  CAS  Google Scholar 

  62. Grindley TB (1998) Applications of tin-containing intermediates to carbohydrate chemistry. Adv Carbohydr Chem Biochem 53:17

    Article  CAS  Google Scholar 

  63. Maki T, Iwasaki F, Matsumura Y (1998) A new convenient method for selective monobenzoylation of diols. Tetrahedron Lett 39:5601

    Article  CAS  Google Scholar 

  64. Iwasaki F, Maki T, Onomura O, Nakashima W, Matsumura Y (2000) Chemo- and stereoselective monobenzoylation of 1,2-diols catalyzed by organotin compounds. J Org Chem 65:996

    Article  CAS  Google Scholar 

  65. Martinelli MJ, Vaidyanathan R, Van Khau V (2000) Selective monosulfonylation of internal 1,2-diols catalyzed by di-n-butyltin oxide. Tetrahedron Lett 41:3773

    Article  CAS  Google Scholar 

  66. Martinelli MJ, Vaidyanatha R, Pawlak JM, Nayyar NK, Dhokte UP, Doecke CW, Zollars LMH, Moher ED, Van Khau V, Kosmrlj B (2002) Catalytic regioselective sulfonylation of α-chelatable alcohols: scope and mechanistic insight. J Am Chem Soc 124:3578

    Article  CAS  Google Scholar 

  67. Voight EA, Rein C, Burke SD (2002) Synthesis of sialic acids via desymmetrization by ring-closing metathesis. J Org Chem 67:8489

    Article  CAS  Google Scholar 

  68. Demizu Y, Kubo Y, Miyoshi H, Maki T, Matsumura Y, Moriyama N, Onomura O (2008) Regioselective protection of sugars catalyzed by dimethyltin dichloride. Org Lett 10:5075

    Article  CAS  Google Scholar 

  69. Muramatsu W (2012) Chemo- and regioselective monosulfonylation of nonprotected carbohydrates catalyzed by organotin dichloride under mild conditions. J Org Chem 77:8083

    Article  CAS  Google Scholar 

  70. Muramatsu W, Takemoto Y (2013) Selectivity switch in the catalytic functionalization of nonprotected carbohydrates: selective synthesis in the presence of anomeric and structurally similar carbohydrates under mild conditions. J Org Chem 78:2336

    Article  CAS  Google Scholar 

  71. Muramatsu W, Tanigawa S, Takemoto Y, Yoshimatsu H, Onomura O (2012) Organotin-catalyzed highly regioselective thiocarbonylation of nonprotected carbohydrates and synthesis of deoxy carbohydrates in a minimum number of steps. Chem Eur J 18:4850

    Article  CAS  Google Scholar 

  72. Giordano M, Iadonisi A (2014) Tin-mediated regioselective benzylation and allylation of polyols: applicability of a catalytic approach under solvent-free conditions. J Org Chem 79(1):213–222

    Article  CAS  Google Scholar 

  73. Xu H, Lu Y, Zhou Y, Ren B, Pei Y, Dong H, Pei Z (2014) Regioselective benzylation of diols and polyols by catalytic amounts of an organotin reagent. Adv Synth Catal 356:1735

    Article  CAS  Google Scholar 

  74. Muramatsu W (2014) Catalytic and regioselective oxidation of carbohydrates to synthesize keto-sugars under mild conditions. Org Lett 16:4846

    Article  CAS  Google Scholar 

  75. Augé C, Veyrières A (1979) Stannylene derivatives in glycoside synthesis. Application to the synthesis of the blood-group B antigenic determinant. J Chem Soc Perkin Trans 1:1825

    Article  Google Scholar 

  76. Muramatsu W, Yoshimatsu H (2013) Regio- and stereochemical controlled Koenigs–Knorr-type monoglycosylation of secondary hydroxy groups in carbohydrates utilizing the high site recognition ability of organotin catalysts. Adv Synth Catal 355:2518

    Article  CAS  Google Scholar 

  77. Oshima K, Kitazono E-i, Aoyama Y (1997) Complexation-induced activation of sugar OH groups. Regioselective alkylation of methyl fucopyranoside via cyclic phenylboronate in the presence of amine. Tetrahedron Lett 38:5001

    Article  CAS  Google Scholar 

  78. Oshima K, Aoyama Y (1999) Regiospecific glycosidation of unprotected sugars via arylboronic activation. J Am Chem Soc 121:2315

    Article  CAS  Google Scholar 

  79. Taylor MS (2015) Catalysis based on reversible covalent interactions of organoboron compounds. Acc Chem Res 48:295–305

    Article  CAS  Google Scholar 

  80. Lee D, Taylor MS (2011) Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. J Am Chem Soc 133:3724

    Article  CAS  Google Scholar 

  81. Lee D, Williamson CL, Chan L, Taylor MS (2012) Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies. J Am Chem Soc 134:8260

    Article  CAS  Google Scholar 

  82. Chan L, Taylor MS (2011) Regioselective alkylation of carbohydrate derivatives catalyzed by a diarylborinic acid derivative. Org Lett 13:3090

    Article  CAS  Google Scholar 

  83. Dimitrijevic E, Taylor MS (2013) 9-Hetero-10-boraanthracene-derived borinic acid catalysts for regioselective activation of polyols. Chem Sci 4:3298

    Article  CAS  Google Scholar 

  84. Lee D, Taylor MS (2013) Regioselective silylation of pyranosides using a boronic acid / Lewis base co-catalyst system. Org Biomol Chem 11:5409

    Article  CAS  Google Scholar 

  85. Gouliaras C, Lee D, Chan L, Taylor MS (2011) Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J Am Chem Soc 133:13926

    Article  CAS  Google Scholar 

  86. Beale TM, Taylor MS (2013) Synthesis of cardiac glycoside analogs by catalyst-controlled, regioselective glycosylation of digitoxin. Org Lett 15:1358

    Article  CAS  Google Scholar 

  87. Beale TM, Moon PJ, Taylor MS (2014) Organoboron-catalyzed regio- and stereoselective formation of β-2-deoxyglycosidic linkages. Org Lett 16:3604

    Article  CAS  Google Scholar 

  88. Bajaj SO, Sharif EU, Akhmedov NG, O’Doherty GA (2014) De novo asymmetric synthesis of the mezzettiaside family of natural products via the iterative use of a dual B-/Pd-catalyzed glycosylation. Chem Sci 5:2230

    Article  CAS  Google Scholar 

  89. Cameron LL, Wang SC, Kluger R (2004) Biomimetic monoacylation of diols in water. Lanthanide-promoted reactions of methyl benzoyl phosphate. J Am Chem Soc 126:10721

    Article  CAS  Google Scholar 

  90. Tzvetkova S, Kluger R (2007) Biomimetic aminoacylation of ribonucleotides and RNA with aminoacyl phosphate esters and lanthanum salts. J Am Chem Soc 129(51):15848–15854

    Article  CAS  Google Scholar 

  91. Her S, Kluger R (2011) Biomimetic protecting-group-free 2′,3′-selective aminoacylation of nucleosides and nucleotides. Org Biomol Chem 9:676

    Article  CAS  Google Scholar 

  92. Gray IJ, Kluger R (2007) Chelation-controlled regioselectivity in the lanthanum-promoted monobenzoylation of monosaccharides. Carbohydr Res 342:1998

    Article  CAS  Google Scholar 

  93. Dhiman RS, Kluger R (2010) Magnesium ion enhances lanthanum-promoted monobenzoylation of a monosaccharide in water. Org Biomol Chem 8:2006

    Article  CAS  Google Scholar 

  94. Eby R, Webster KT, Schuerch C (1984) Regioselective alkylation and acylation of carbohydrates engaged in metal complexes. Carbohydr Res 129:111

    Article  CAS  Google Scholar 

  95. Osborn HMI, Brome VA, Harwood LM, Suthers WG (2001) Regioselective C-3-O-acylation and O-methylation of 4,6-O-benzylidene-β-D-gluco- and galactopyranosides displaying a range of anomeric substituents. Carbohydr Res 332:157

    Article  CAS  Google Scholar 

  96. Gangadharmath UB, Demchenko AV (2004) Nickel(II) chloride-mediated regioselective benzylation and benzoylation of diequatorial vicinal diols. Synlett 2191

    Google Scholar 

  97. Wang H, She J, Zhang L-H, Ye X-S (2004) Silver(I) oxide mediated selective monoprotection of diols in pyranosides. J Org Chem 69:5774

    Article  CAS  Google Scholar 

  98. Evtushenko EV (2012) Regioselective benzoylation of glycopyranosides by benzoic anhydride in the presence of Cu(CF3COO)2. Carbohydr Res 359:111

    Article  CAS  Google Scholar 

  99. Evtushenko EV (2006) Regioselective monoacetylation of methyl pyranosides of pentoses and 6-deoxyhexoses by acetic anhydride in the presence of MoCl5. Synth Commun 36:1593

    Article  CAS  Google Scholar 

  100. Evtushenko EV (2010) Regioselective benzoylation of glycopyranosides by benzoyl chloride in the presence of MoO2(acac)2. J Carbohydr Chem 29:368

    Google Scholar 

  101. Matsumura Y, Maki T, Murakami S, Onomura O (2003) Copper ion-induced activation and asymmetric benzoylation of 1,2-diols: kinetic chiral molecular recognition. J Am Chem Soc 125:2052

    Article  CAS  Google Scholar 

  102. Matsumura Y, Maki T, Tsurukami K, Onomura O (2004) Kinetic resolution of D,L-myo-inositol derivatives catalyzed by chiral Cu(II) complex. Tetrahedron Lett 45:9131

    Article  CAS  Google Scholar 

  103. Demizu Y, Matsumoto K, Onomura O, Matsumura Y (2007) Copper complex catalyzed asymmetric monosulfonylation of meso-vic-diols. Tetrahedron Lett 48:7605

    Article  CAS  Google Scholar 

  104. Allen CL, Miller SJ (2013) Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates. Org Lett 15:6178

    Article  CAS  Google Scholar 

  105. Chen I-H, Kou KGM, Le DN, Rathburn CM, Dong V (2014) Recognition and site-selective transformation of monosaccharides by using copper(II) catalysis. Chem Eur J 20:5013

    Article  CAS  Google Scholar 

  106. Chung M-K, Orlova G, Goddard JD, Schlaf M, Harris R, Beveridge TJ, White G, Hallett FR (2002) Regioselective silylation of sugars through palladium nanoparticle-catalyzed silane alcoholysis. J Am Chem Soc 124:10508

    Article  CAS  Google Scholar 

  107. Chung M-K, Schlaf M (2005) Regioselectively trisilylated hexopyranosides through homogeneously catalyzed silane alcoholysis. J Am Chem Soc 127:18085

    Article  CAS  Google Scholar 

  108. Jäger M, Hartmann M, de Vries HG, Minnaard AJ (2013) Catalytic regioselective oxidation of glycosides. Angew Chem Int Ed 52:7809

    Article  CAS  Google Scholar 

  109. Fabre J, Betbeder D, Paul F, Monsan P (1993) Improved synthesis of sodium alkyl-glucopyranuronates. Synth Commun 23:1357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, M.S. (2015). Catalyst-Controlled, Regioselective Reactions of Carbohydrate Derivatives. In: Kawabata, T. (eds) Site-Selective Catalysis. Topics in Current Chemistry, vol 372. Springer, Cham. https://doi.org/10.1007/128_2015_656

Download citation

Publish with us

Policies and ethics