Skip to main content

Asymmetric Iridium-Catalyzed C–C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 372))

Abstract

Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C–H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hendrickson JB (1975) Systematic synthesis design. IV. Numerical codification of construction reactions. J Am Chem Soc 97:5784–5800

    Article  CAS  Google Scholar 

  2. Burns NZ, Baran PS, Hoffmann RW (2009) Redox economy in organic synthesis. Angew Chem Int Ed 48:2854–2867

    Article  CAS  Google Scholar 

  3. Trost BM (1983) Selectivity: a key to synthetic efficiency. Science 219:245–250

    Article  CAS  Google Scholar 

  4. Newhouse T, Baran PS, Hoffmann RW (2009) The economies of synthesis. Chem Soc Rev 38:3010–3021

    Article  CAS  Google Scholar 

  5. Hoffmann RW (2006) Protecting-group-free synthesis. Synthesis 3531–3541

    Google Scholar 

  6. Young IS, Baran PS (2009) Protecting-group-free synthesis as an opportunity for invention. Nat Chem 1:193–205

    Article  CAS  Google Scholar 

  7. Roulland E (2011) Protecting-group-free total syntheses: a challenging approach. Angew Chem Int Ed 50:1226–1227

    Article  CAS  Google Scholar 

  8. Trost BM (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  9. Trost BM (1995) Atom economy – a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed Engl 34:259–281

    Article  CAS  Google Scholar 

  10. Sheldon RA (1997) Catalysis and pollution prevention. Chem Ind 12–15

    Google Scholar 

  11. Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283

    Article  CAS  Google Scholar 

  12. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451

    Article  CAS  Google Scholar 

  13. Butters M, Catterick D, Craig A, Curzons A, Dale D, Gillmore A, Green SP, Marziano I, Sherlock J-P, White W (2006) Critical assessment of pharmaceutical processes – a rationale for changing the synthetic route. Chem Rev 106:3002–3027

    Article  CAS  Google Scholar 

  14. Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337–2347

    Article  CAS  Google Scholar 

  15. Busacca CA, Fandrick DR, Song JJ, Senanayake CH (2011) The growing impact of catalysis in the pharmaceutical industry. Adv Synth Catal 353:1825–1864

    Article  CAS  Google Scholar 

  16. Dunn PJ (2012) The importance of green chemistry in process research and development. Chem Soc Rev 41:1452–1461

    Article  CAS  Google Scholar 

  17. Han SB, Kim IS, Krische MJ (2009) Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Chem Commun 7278–7287

    Google Scholar 

  18. Knowles WS (1983) Asymmetric hydrogenation. Acc Chem Res 16:106–112

    Article  CAS  Google Scholar 

  19. Knowles WS (2002) Asymmetric hydrogenations (Nobel Lecture). Angew Chem Int Ed 41:1998–2007

    Article  CAS  Google Scholar 

  20. Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H (2007) A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J Am Chem Soc 129:12890–12895

    Article  CAS  Google Scholar 

  21. Muramatsu W, Kawabata T (2007) Regioselective acylation of 6-O-protected octyl β-d-glucopyranosides by DMAP catalysis. Tetrahedron Lett 48:5031–5033

    Article  CAS  Google Scholar 

  22. Kawabata T, Muramatsu W, Nishio T, Shibata T, Uruno Y, Stragies R (2008) Regioselective acylation of octyl β-d-glucopyranoside by chiral 4-pyrrolidinopyridine analogues. Synthesis 747–753

    Google Scholar 

  23. Ueda Y, Muramatsu W, Mishiro K, Furuta T, Kawabata T (2009) Functional group tolerance in organocatalytic regioselective acylation of carbohyrates. J Org Chem 74:8802–8805

    Article  CAS  Google Scholar 

  24. Yoshida K, Furuta T, Kawabata T (2010) Perfectly regioselective acylation of a cardiac glycoside, digitoxin, via catalytic amplification of the intrinsic reactivity. Tetrahedron Lett 51:4830–4832

    Article  CAS  Google Scholar 

  25. Muramatsu W, Mishiro K, Ueda Y, Furuta T, Kawabata T (2010) Perfectly regioselective and sequential protection of glucopyranosides. Eur J Org Chem 827–831

    Google Scholar 

  26. Ueda Y, Mishiro K, Yoshida K, Furuta T, Kawabata T (2012) Regioselective diversification of a cardiac glycoside, lanatoside C, by organocatalysis. J Org Chem 77:7850–7857

    Article  CAS  Google Scholar 

  27. Griswold KS, Miller SJ (2003) A peptide-based catalyst approach to regioselective functionalization of carbohydrates. Tetrahedron 59:8869–8875

    Article  CAS  Google Scholar 

  28. Lewis CA, Sculimbrene BR, Xu Y, Miller SJ (2005) Desymmetrization of glycerol derivatives with peptide-based acylation catalysts. Org Lett 7:3021–3023

    Article  CAS  Google Scholar 

  29. Lewis CA, Miller SJ (2006) Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew Chem Int Ed 45:5616–5619

    Article  CAS  Google Scholar 

  30. Lewis CA, Merkel J, Miller SJ (2008) Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorg Med Chem Lett 18:6007–6011

    Article  CAS  Google Scholar 

  31. Lewis CA, Longcore KE, Miller SJ, Wender PA (2009) An approach to the site-selective diversification of apoptolidin A with peptide-based catalysts. J Nat Prod 72:1864–1869

    Article  CAS  Google Scholar 

  32. Fowler BS, Laemmerhold KM, Miller SJ (2012) Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. J Am Chem Soc 134:9755–9761

    Article  CAS  Google Scholar 

  33. Allen CL, Miller SJ (2013) Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates. Org Lett 15:6178–6181

    Article  CAS  Google Scholar 

  34. Pathak TP, Miller SJ (2013) Chemical tailoring of teicoplanin with site-selective reactions. J Am Chem Soc 135:8415–8422

    Article  CAS  Google Scholar 

  35. Han S, Miller SJ (2013) Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. J Am Chem Soc 135:12414–12421

    Article  CAS  Google Scholar 

  36. Lee D, Taylor MS (2011) Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. J Am Chem Soc 133:3724–3727

    Article  CAS  Google Scholar 

  37. Chan L, Taylor MS (2011) Regioselective alkylation of carbohydrate derivatives catalyzed by a diarylborinic acid derivative. Org Lett 13:3090–3093

    Article  CAS  Google Scholar 

  38. Gouliaras C, Lee D, Chan L, Taylor MS (2011) Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J Am Chem Soc 133:13926–13929

    Article  CAS  Google Scholar 

  39. Lee D, Williamson CL, Chan L, Taylor MS (2012) Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies. J Am Chem Soc 134:8260–8267

    Article  CAS  Google Scholar 

  40. Lee D, Taylor MS (2013) Regioselective silylation of pyranosides using a boronic acid/Lewis base co-catalyst system. Org Biomol Chem 11:5409–5412

    Article  CAS  Google Scholar 

  41. Beale TM, Taylor MS (2013) Synthesis of cardiac glycoside analogs by catalyst-controlled, regioselective glycosylation of digitoxin. Org Lett 15:1358–1361

    Article  CAS  Google Scholar 

  42. Patman RL, Bower JF, Kim IS, Krische MJ (2008) Formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation: vinylation, allylation, and enolate addition. Aldrichim Acta 41:95–104

    CAS  Google Scholar 

  43. Bower JF, Kim IS, Patman RL, Krische MJ (2009) Catalytic carbonyl addition through transfer hydrogenation: a departure from preformed organometallic reagents. Angew Chem Int Ed 48:34–46

    Article  CAS  Google Scholar 

  44. Bower JF, Krische MJ (2011) Formation of C–C bonds via iridium-catalyzed hydrogenation and transfer hydrogenation. Top Organomet Chem 34:107–138

    CAS  Google Scholar 

  45. Hassan A, Krische MJ (2011) Unlocking hydrogenation for C–C bond formation: a brief overview of enantioselective methods. Org Process Res Dev 15:1236–1242

    Article  CAS  Google Scholar 

  46. Moran J, Krische MJ (2012) Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation. Pure Appl Chem 84:1729–1739

    Article  CAS  Google Scholar 

  47. Dechert-Schmitt A-MR, Schmitt DC, Gao X, Itoh T, Krische MJ (2014) Polyketide construction via hydrohydroxyalkylation and related alcohol C–H functionalizations: reinventing the chemistry of carbonyl addition. Nat Prod Rep 31:504–513

    Article  CAS  Google Scholar 

  48. Ketcham JM, Shin I, Montgomery TP, Krische MJ (2014) Catalytic enantioselective C–H functionalization of alcohols by redox-triggered carbonyl addition: borrowing hydrogen, returning carbon. Angew Chem Int Ed 53:9142–9150

    Article  CAS  Google Scholar 

  49. Kim IS, Ngai M-Y, Krische MJ (2008) Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate. J Am Chem Soc 130:6340–6341

    Article  CAS  Google Scholar 

  50. Kim IS, Ngai M-Y, Krische MJ (2008) Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level via transfer hydrogenative coupling of allyl acetate: departure from chirally modified allyl metal reagents in carbonyl addition. J Am Chem Soc 130:14891–14899

    Article  CAS  Google Scholar 

  51. Lu Y, Kim IS, Hassan A, Del Valle DJ, Krische MJ (2009) 1, n-Glycols as dialdehyde equivalents in iridium-catalyzed enantioselective carbonyl allylation and iterative two-directional assembly of 1,3-polyols. Angew Chem Int Ed 48:5018–5021

    Article  CAS  Google Scholar 

  52. Hassan A, Lu Y, Krische MJ (2009) Elongation of 1,3-polyols via iterative catalyst-directed carbonyl allylation from the alcohol oxidation level. Org Lett 11:3112–3115

    Article  CAS  Google Scholar 

  53. Schmitt DC, Dechert-Schmitt A-MR, Krische MJ (2012) Iridium-catalyzed allylation of chiral β-stereogenic alcohols: bypassing discrete formation of epimerizable aldehydes. Org Lett 14:6302–6305

    Article  CAS  Google Scholar 

  54. Han SB, Hassan A, Kim IS, Krische MJ (2010) Total synthesis of (+)-roxaticin via C–C bond forming transfer hydrogenation: a departure from stoichiometric chiral reagents, auxiliaries, and premetalated nucleophiles in polyketide construction. J Am Chem Soc 132:15559–15561

    Article  CAS  Google Scholar 

  55. Lu Y, Woo SK, Krische MJ (2011) Total synthesis of bryostatin 7 via C–C bond-forming hydrogenation. J Am Chem Soc 133:13876–13879

    Article  CAS  Google Scholar 

  56. Gao X, Woo SK, Krische MJ (2013) Total synthesis of 6-deoxyerythronolide B via C–C bond-forming transfer hydrogenation. J Am Chem Soc 135:4223–4226

    Article  CAS  Google Scholar 

  57. Del Valle DJ, Krische MJ (2013) Total synthesis of (+)-trienomycins A and F via C–C bond-forming hydrogenation and transfer hydrogenation. J Am Chem Soc 135:10986–10989

    Article  Google Scholar 

  58. Waldeck AR, Krische MJ (2013) Total synthesis of cyanolide A in the absence of protecting groups, chiral auxiliaries, or premetalated carbon nucleophiles. Angew Chem Int Ed 52:4470–4473

    Article  CAS  Google Scholar 

  59. Yang Z, Zhang B, Zhao G, Yang J, Xie X, She X (2011) Concise formal synthesis of (+)-neopeltolide. Org Lett 13:5916–5919

    Article  CAS  Google Scholar 

  60. Feng Y, Jiang X, De Brabander JK (2012) Studies toward the unique pederin family member psymberin: full structure elucidation, two alternative total syntheses, and analogs. J Am Chem Soc 134:17083–17093

    Article  CAS  Google Scholar 

  61. Wan S, Wu F, Rech JC, Green ME, Balachandran R, Horne WS, Day BW, Floreancig PE (2011) Total synthesis and biological evaluation of pederin, psymberin, and highly potent analogs. J Am Chem Soc 133:16668–16679

    Article  CAS  Google Scholar 

  62. Kretschmer M, Dieckmann M, Li P, Rudolph S, Herkommer D, Troendlin J, Menche D (2013) Modular total synthesis of rhizopodin: a highly potent G-actin dimerizing macrolide. Chem Eur J 19:15993–16018

    Article  CAS  Google Scholar 

  63. Sejberg JJP, Smith LD, Leatherbarrow RJ, Beavil AJ, Spivey AC (2013) Enantioselective synthesis of (+)-aspercyclide A. Tetrahedron Lett 54:4970–4972

    Article  CAS  Google Scholar 

  64. Willwacher J, Fürstner A (2014) Catalysis-based total synthesis of putative mandelalide A. Angew Chem Int Ed 53:4217–4221

    Article  CAS  Google Scholar 

  65. Suzuki T (2011) Organic synthesis involving iridium-catalyzed oxidation. Chem Rev 111:1825–1845

    Article  CAS  Google Scholar 

  66. Lin Y, Zhu X, Zhou Y (1992) A convenient lactonization of diols to γ- and δ-lactones catalyzed by transition metal polyhydrides. J Organomet Chem 429:269–274

    Article  CAS  Google Scholar 

  67. Suzuki T, Morita K, Tsuchida M, Hiroi K (2002) Mild and chemoselective synthesis of lactones from diols using a novel metal–ligand bifunctional catalyst. Org Lett 4:2361–2363

    Article  CAS  Google Scholar 

  68. Suzuki T, Yamada T, Watanabe K, Katoh T (2005) Iridium-catalyzed oxidative lactonization and intramolecular Tishchenko reaction of δ-ketoaldehydes for the synthesis of isocoumarins and 3,4-dihydroisocoumarins. Bioorg Med Chem Lett 15:2583–2585

    Article  CAS  Google Scholar 

  69. Suzuki T, Morita K, Ikemiyagi H, Watanabe K, Hiroi K, Katoh T (2006) Synthesis of the hemiacetal pheromone of the spined citrus bug biprorulus bibax utilizing an iridium catalyzed oxidative lactonization. Heterocycles 69:457–461

    Article  CAS  Google Scholar 

  70. Kӧnigsmann M, Donati N, Stein D, Schӧnberg H, Harmer J, Sreekanth A, Grützmacher H (2007) Metalloenzyme-inspired catalysis: selective oxidation of primary alcohols with an iridium–aminyl-radical complex. Angew Chem Int Ed 46:3567–3570

    Article  Google Scholar 

  71. Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano J-M (2008) Stereocontrolled access to isoprostanes via a bicycle[3.3.0]octene framework. Org Lett 10:5087–5090

    Article  CAS  Google Scholar 

  72. Arita S, Koike T, Kayaki Y, Ikariya T (2008) Aerobic oxidation of alcohols with bifunctional transition-metal catalysts bearing C–N chelate ligands. Chem Asian J 3:1479–1485

    Article  CAS  Google Scholar 

  73. Kosaka M, Sekiguchi S, Naito J, Uemura M, Kuwahara S, Watanabe M, Harada N, Hiroi K (2005) Synthesis of enantiopure phthalides including 3-butylphthalide, a fragrance component of celery oil, and determination of their absolute configurations. Chirality 17:218–232

    Article  CAS  Google Scholar 

  74. Suzuki T, Morita K, Matsuo Y, Hiroi K (2003) Catalytic asymmetric oxidative lactonizations of meso-diols using a chiral iridium complex. Tetrahedron Lett 44:2003–2006

    Article  CAS  Google Scholar 

  75. Dechert-Schmitt A-MR, Schmitt DC, Krische MJ (2013) Protecting-group-free diastereoselective C–C coupling of 1,3-glycols and allyl acetate through site-selective primary alcohol dehydrogenation. Angew Chem Int Ed 52:3195–3198

    Article  CAS  Google Scholar 

  76. Shin I, Wang G, Krische MJ (2014) Catalyst-directed diastereo- and site-selectivity in successive nucleophilic and electrophilic allylations of chiral 1,3-diols: protecting-group-free synthesis of substituted pyrans. Chem Eur J 20:13382–13389

    Article  CAS  Google Scholar 

  77. Ramachandran PV (2002) Pinane-based versatile “allyl” boranes. Aldrichim Acta 35:23–35

    CAS  Google Scholar 

  78. Denmark SE, Fu J (2003) Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. Chem Rev 103:2763–2793

    Article  CAS  Google Scholar 

  79. Yu C-M, Youn J, Jung H-K (2006) Regulation of stereoselectivity and reactivity in the inter- and intramolecular allylic transfer reactions. Bull Korean Chem Soc 27:463–472

    Article  CAS  Google Scholar 

  80. Marek I, Sklute G (2007) Creation of quaternary stereocenters in carbonyl allylation reactions. Chem Commun 1683–1691

    Google Scholar 

  81. Hall DG (2007) Lewis and Brønsted acid catalyzed allylboration of carbonyl compounds: from discovery to mechanism and applications. Synlett 1644–1655

    Google Scholar 

  82. Lachance H, Hall DG (2008) Allyboration of carbonyl compounds. Org React 73:1–573

    Google Scholar 

  83. Yus M, González-Gómez JC, Foubelo F (2011) Catalytic enantioselective allylation of carbonyl compounds and imines. Chem Rev 111:7774–7854

    Article  CAS  Google Scholar 

  84. Denmark SE, Ghosh SK (2001) The first catalytic, diastereoselective, and enantioselective crossed-aldol reactions of aldehydes. Angew Chem Int Ed 40:4759–4762

    Article  CAS  Google Scholar 

  85. Rychnovsky SD, Skalitzky DJ (1992) A practical preparation of α-alkoxylithium reagents: synthesis of syn or anti 1,3-diols. J Org Chem 57:4336–4339

    Article  CAS  Google Scholar 

  86. Marriner GA, Garner SA, Jang H-Y, Krische MJ (2004) Metallo-aldehyde enolates via enal hydrogenation: catalytic cross aldolization with glyoxal partners as applied to the synthesis of 3,5-disubstituted pyridazines. J Org Chem 69:1380–1382

    Article  CAS  Google Scholar 

  87. Fu F, Loh T-P (2009) An asymmetric synthesis of the polyol fragment of the polyene macrolide antibiotic RK-397. Tetrahedron Lett 50:3530–3533

    Article  CAS  Google Scholar 

  88. Mengel A, Reiser O (1999) Around and beyond Cram’s rule. Chem Rev 99:1191–1223

    Article  CAS  Google Scholar 

  89. Feng J, Garza VJ, Krische MJ (2014) Redox-triggered C–C Coupling of alcohols and vinyl epoxides: diastereo- and enantioselective formation of all-carbon quaternary centers via tert-(hydroxy)-prenylation. J Am Chem Soc 136:8911–8914

    Article  CAS  Google Scholar 

  90. Wang G, Franke J, Ngo CQ, Krische MJ (2015) Diastereo- and enantioselective iridium catalyzed coupling of vinyl aziridines and alcohols: site-selective modification of unprotected diols and synthesis of substituted piperidines. J Am Chem Soc 137:7915–7920

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Acknowledgment is made to the Robert A. Welch Foundation (F-0038) and the NIH-NIGMS (RO1 GM093905) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Krische .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shin, I., Krische, M.J. (2015). Asymmetric Iridium-Catalyzed C–C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition. In: Kawabata, T. (eds) Site-Selective Catalysis. Topics in Current Chemistry, vol 372. Springer, Cham. https://doi.org/10.1007/128_2015_651

Download citation

Publish with us

Policies and ethics