Skip to main content

Surface Plasmon-Assisted Solar Energy Conversion

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 371))

Abstract

The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  2. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  Google Scholar 

  3. Choi WY, Termin A, Hoffmann MR (1994) The role of metal-ion dopants in quantum-sized TiO2 – correlation between photoreactivity and charge-carrier recombination dynamics. J Phys Chem 98(51):13669–13679

    Article  Google Scholar 

  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  CAS  Google Scholar 

  5. Youngblood WJ, Lee S-HA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42(12):1966–1973

    Article  CAS  Google Scholar 

  6. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    Article  CAS  Google Scholar 

  7. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  8. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921

    Article  CAS  Google Scholar 

  9. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680

    Article  CAS  Google Scholar 

  10. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  11. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496

    Article  CAS  Google Scholar 

  12. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  13. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  14. Larsson EM, Langhammer C, Zoric I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326(5956):1091–1094

    Article  CAS  Google Scholar 

  15. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44(10):936–946

    Article  CAS  Google Scholar 

  16. Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y-T, Fan C (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50(50):11994–11998

    Article  CAS  Google Scholar 

  17. Zhang X, Chen YL, Liu R-S, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):1–41

    Article  CAS  Google Scholar 

  18. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11(3):1111–1116

    Article  CAS  Google Scholar 

  19. Thomann I, Pinaud BA, Chen Z, Clemens BM, Jaramillo TF, Brongersma ML (2011) Plasmon enhanced solar-to-fuel energy conversion. Nano Lett 11(8):3440–3446

    Article  CAS  Google Scholar 

  20. Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133(14):5202–5205

    Article  CAS  Google Scholar 

  21. Chen J-J, Wu JCS, Wu PC, Tsai DP (2011) Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J Phys Chem C 115(1):210–216

    Article  CAS  Google Scholar 

  22. Chen HM, Chen CK, Chen CJ, Cheng LC, Wu PC, Cheng BH, Ho YZ, Tseng ML, Hsu YY, Chan TS, Lee JF, Liu RS, Tsai DP (2012) Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS Nano 6(8):7362–7372

    Article  CAS  Google Scholar 

  23. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5(1):5133–5146

    Article  CAS  Google Scholar 

  24. Wang H, You T, Shi W, Li J, Guo L (2012) Au/TiO2/Au as a plasmonic coupling photocatalyst. J Phys Chem C 116(10):6490–6494

    Article  CAS  Google Scholar 

  25. Gao H, Liu C, Jeong HE, Yang P (2012) Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6(1):234–240

    Article  CAS  Google Scholar 

  26. Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M (2012) Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 12(9):5014–5019

    Article  CAS  Google Scholar 

  27. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13(1):14–20

    Article  CAS  Google Scholar 

  28. Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13(8):3817–3823

    Article  CAS  Google Scholar 

  29. Solarska R, Bienkowski K, Zoladek S, Majcher A, Stefaniuk T, Kulesza PJ, Augustynski J (2014) Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold-polyoxometalate particles. Angew Chem Int Ed Engl 53(51):14196–14200

    Google Scholar 

  30. Zhao X, Wang P, Yan Z, Ren N (2014) Ag nanoparticles decorated CuO nanowire arrays for efficient plasmon enhanced photoelectrochemical water splitting. Chem Phys Lett 609:59–64

    Article  CAS  Google Scholar 

  31. Zhong Y, Ueno K, Mori Y, Shi X, Oshikiri T, Murakoshi K, Inoue H, Misawa H (2014) Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew Chem Int Ed 53(39):10350–10354

    Article  CAS  Google Scholar 

  32. Gomes Silva C, Juarez R, Marino T, Molinari R, Garcia H (2011) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133(3):595–602

    Article  CAS  Google Scholar 

  33. Cao SW, Fang J, Shahjamali MM, Boey FYC, Barber J, Loo SCJ, Xue C (2012) Plasmon-enhanced hydrogen evolution on Au-InVO4 hybrid microspheres. RSC Adv 2(13):5513–5515

    Article  CAS  Google Scholar 

  34. Pany S, Naik B, Martha S, Parida K (2014) Plasmon induced nano Au particle decorated over S, N-modified TiO2 for exceptional photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces 6(2):839–846

    Article  CAS  Google Scholar 

  35. Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136(2):586–589

    Article  CAS  Google Scholar 

  36. Verbruggen SW, Keulemans M, Filippousi M, Flahaut D, Van Tendeloo G, Lacombe S, Martens JA, Lenaerts S (2014) Plasmonic gold-silver alloy on TiO2 photocatalysts with tunable visible light activity. Appl Catal B Environ 156:116–121

    Article  CAS  Google Scholar 

  37. Rayalu SS, Jose D, Joshi MV, Mangrulkar PA, Shrestha K, Klabunde K (2013) Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect. Appl Catal B Environ 142:684–693

    Article  CAS  Google Scholar 

  38. Zhou C, Shang L, Yu H, Bian T, Wu L-Z, Tung C-H, Zhang T (2014) Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catal Today 225:158–163

    Article  CAS  Google Scholar 

  39. Long J, Chang H, Gu Q, Xu J, Fan L, Wang S, Zhou Y, Wei W, Huang L, Wang X, Liu P, Huang W (2014) Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy Environ Sci 7(3):973–977

    Article  CAS  Google Scholar 

  40. Qu Y, Zhou W, Ren Z, Tian C, Li J, Fu H (2014) Heterojunction Ag-TiO2 nanopillars for visible-light-driven photocatalytic H2 production. Chempluschem 79(7):995–1000

    Article  CAS  Google Scholar 

  41. Luo Y, Liu X, Tang X, Luo Y, Zeng Q, Deng X, Ding S, Sun Y (2014) Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. J Mater Chem A 2(36):14927–14939

    Article  CAS  Google Scholar 

  42. Rayalu SS, Jose D, Mangrulkar PA, Joshi M, Hippargi G, Shrestha K, Klabunde K (2014) Photodeposition of AuNPs on metal oxides: study of SPR effect and photocatalytic activity. Int J Hydrog Energy 39(8):3617–3624

    Article  CAS  Google Scholar 

  43. Ma X, Zhao K, Tang H, Chen Y, Lu C, Liu W, Gao Y, Zhao H, Tang Z (2014) New insight into the role of gold nanoparticles in Au@ CdS core-shell nanostructures for hydrogen evolution. Small 10(22):4664–4670

    Article  CAS  Google Scholar 

  44. Hou W, Hung WH, Pavaskar P, Goeppert A, Aykol M, Cronin SB (2011) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal 1(8):929–936

    Article  CAS  Google Scholar 

  45. An C, Wang J, Jiang W, Zhang M, Ming X, Wang S, Zhang Q (2012) Strongly visible-light responsive plasmonic shaped AgX:Ag (X=Cl, Br) nanoparticles for reduction of CO2 to methanol. Nanoscale 4(18):5646–5650

    Article  CAS  Google Scholar 

  46. Tan JZY, Fernandez Y, Liu D, Maroto-Valer M, Bian JC, Zhang XW (2012) Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chem Phys Lett 531:149–154

    Article  CAS  Google Scholar 

  47. Li X, Zhuang Z, Li W, Pan H (2012) Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl Catal A Gen 429:31–38

    Article  CAS  Google Scholar 

  48. Mankidy BD, Joseph B, Gupta VK (2013) Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology 24(40)

    Google Scholar 

  49. Zhang Z, Wang Z, Cao S-W, Xue C (2013) Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J Phys Chem C 117(49):25939–25947

    Article  CAS  Google Scholar 

  50. Liu EZ, Kang LM, Wu F, Sun T, Hu XY, Yang YH, Liu HC, Fan J (2014) Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 9(1):61–70

    Article  CAS  Google Scholar 

  51. Yu JG, Dai GP, Huang BB (2009) Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 TiO2 nanotube arrays. J Phys Chem C 113(37):16394–16401

    Article  CAS  Google Scholar 

  52. Chen X, Zheng ZF, Ke XB, Jaatinen E, Xie TF, Wang DJ, Guo C, Zhao JC, Zhu HY (2010) Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem 12(3):414–419

    Article  CAS  Google Scholar 

  53. Alvaro M, Cojocaru B, Ismail AA, Petrea N, Ferrer B, Harraz FA, Parvulescu VI, Garcia H (2010) Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl Catal B Environ 99(1–2):191–197

    Article  CAS  Google Scholar 

  54. Christopher P, Ingram DB, Linic S (2010) Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 114(19):9173–9177

    Article  CAS  Google Scholar 

  55. Wang P, Huang BB, Lou ZZ, Zhang XY, Qin XY, Dai Y, Zheng ZK, Wang XN (2010) Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem Eur J 16(2):538–544

    Article  CAS  Google Scholar 

  56. Hu C, Peng T, Hu X, Nie Y, Zhou X, Qu J, He H (2010) Plasmon-induced photodegradation of toxic pollutants with Ag-Agl/Al2O3 under visible-light irradiation. J Am Chem Soc 132(2):857–862

    Article  CAS  Google Scholar 

  57. Zielinska-Jurek A, Kowalska E, Sobczak JW, Lisowski W, Ohtani B, Zaleska A (2011) Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Appl Catal B Environ 101(3-4):504–514

    Article  CAS  Google Scholar 

  58. Zhang Q, Lima DQ, Lee I, Zaera F, Chi M, Yin Y (2011) A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem 50(31):7088–7092

    Article  CAS  Google Scholar 

  59. Hou W, Liu Z, Pavaskar P, Hung WH, Cronin SB (2011) Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light. J Catal 277(2):149–153

    Article  CAS  Google Scholar 

  60. Wen B, Ma J, Chen C, Ma W, Zhu H, Zhao J (2011) Supported noble metal nanoparticles as photo/sono-catalysts for synthesis of chemicals and degradation of pollutants. Sci China Chem 54(6):887–897

    Article  CAS  Google Scholar 

  61. Qu Y, Cheng R, Su Q, Duan X (2011) Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. J Am Chem Soc 133(42):16730–16733

    Article  CAS  Google Scholar 

  62. Anandan S, Pugazhenthiran N, Selvamani T, Hsieh SH, Lee GJ, Wu JJ (2012) Investigation on photocatalytic potential of Au-Ta2O5 semiconductor nanoparticle by degrading methyl orange in aqueous solution by illuminating with visible light. Catal Sci Technol 2(12):2502–2507

    Article  CAS  Google Scholar 

  63. Jiang L, Zhou G, Mi J, Wu Z (2012) Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst. Catal Commun 24:48–51

    Article  CAS  Google Scholar 

  64. Zhou MH, Zhang J, Cheng B, Yu HG (2012) Enhancement of visible-light photocatalytic activity of mesoporous Au-TiO2 nanocomposites by surface plasmon resonance. Int J Photoenergy 10

    Google Scholar 

  65. Kochuveedu ST, Kim DP, Kim DH (2012) Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. J Phys Chem C 116(3):2500–2506

    Article  CAS  Google Scholar 

  66. Gomez L, Sebastian V, Arruebo M, Santamaria J, Cronin SB (2014) Plasmon-enhanced photocatalytic water purification. Phys Chem Chem Phys 16(29):15111–15116

    Article  CAS  Google Scholar 

  67. Golabiewska A, Lisowski W, Jarek M, Nowaczyk G, Zielinska-Jurek A, Zaleska A (2014) Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles. Appl Surf Sci 317:1131–1142

    Article  CAS  Google Scholar 

  68. Ayati A, Ahmadpour A, Bamoharram FF, Tanhaei B, Manttari M, Sillanpaa M (2014) A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 107:163–174

    Article  CAS  Google Scholar 

  69. Tanaka A, Hashimoto K, Kominami H (2012) Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J Am Chem Soc 134(35):14526–14533

    Article  CAS  Google Scholar 

  70. Wang F, Li C, Chen H, Jiang R, Sun L-D, Li Q, Wang J, Yu JC, Yan C-H (2013) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 135(15):5588–5601

    Article  CAS  Google Scholar 

  71. Huang X, Li Y, Chen Y, Zhou H, Duan X, Huang Y (2013) Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew Chem Int Ed 52(23):6063–6067

    Article  CAS  Google Scholar 

  72. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43(1):473–486

    Article  CAS  Google Scholar 

  73. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44(28):283001

    Google Scholar 

  74. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  75. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111(6):3858–3887

    Article  CAS  Google Scholar 

  76. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  77. Ruach-Nir I, Bendikov TA, Doron-Mor I, Barkay Z, Vaskevich A, Rubinstein I (2007) Silica-stabilized gold island films for transmission localized surface plasmon sensing. J Am Chem Soc 129(1):84–92

    Article  CAS  Google Scholar 

  78. Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263

    Article  CAS  Google Scholar 

  79. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604

    Article  CAS  Google Scholar 

  80. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109(46):21556–21565

    Article  CAS  Google Scholar 

  81. Pena O, Pal U, Rodriguez-Fernandez L, Crespo-Sosa A (2008) Linear optical response of metallic nanoshells in different dielectric media. J Optical Soc Am B Optical Phys 25(8):1371–1379

    Article  CAS  Google Scholar 

  82. Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720

    Article  CAS  Google Scholar 

  83. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237

    Article  CAS  Google Scholar 

  84. Haes AJ, Zou SL, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(1):109–116

    Article  CAS  Google Scholar 

  85. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  86. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  87. Zheng Y, Zhong X, Li Z, Xia Y (2014) Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part Part Syst Charact 31(2):266–273

    Article  CAS  Google Scholar 

  88. Choi KW, Kim DY, Zhong X-L, Li Z-Y, Im SH, Park OO (2013) Robust synthesis of gold rhombic dodecahedra with well-controlled sizes and their optical properties. Crystengcomm 15(2):252–258

    Article  CAS  Google Scholar 

  89. Zhou X, Liu G, Yu J, Fan W (2012) Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem 22(40):21337–21354

    Article  CAS  Google Scholar 

  90. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248

    Article  CAS  Google Scholar 

  91. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217

    Article  CAS  Google Scholar 

  92. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    Article  CAS  Google Scholar 

  93. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134(14):6309–6315

    Article  CAS  Google Scholar 

  94. Chen C-J, Chen M-G, Chen CK, Wu PC, Chen P-T, Basu M, Hu S-F, Tsai DP, Liu R-S (2015) Ag-Si artificial microflowers for plasmon-enhanced solar water splitting. Chem Commun 51(3):549–552

    Article  CAS  Google Scholar 

  95. Hou X (2014) Nonaqueous fabrication of ZnO/Au nanohybrids with enhanced photocatalytic activity. Mater Lett 137:319–322

    Article  CAS  Google Scholar 

  96. Primo A, Corma A, Garcia H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13(3):886–910

    Article  CAS  Google Scholar 

  97. Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041

    Article  CAS  Google Scholar 

  98. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112(10):5520–5551

    Article  CAS  Google Scholar 

  99. Hou WB, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23(13):1612–1619

    Article  CAS  Google Scholar 

  100. Zhang XM, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):41

    Article  CAS  Google Scholar 

  101. Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42(21):8467–8493

    Article  CAS  Google Scholar 

  102. Bumajdad A, Madkour M (2014) Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys Chem Chem Phys 16(16):7146–7158

    Article  CAS  Google Scholar 

  103. Watanabe K, Menzel D, Nilius N, Freund H-J (2006) Photochemistry on metal nanoparticles. Chem Rev 106(10):4301–4320

    Article  CAS  Google Scholar 

  104. Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4(1):116–128

    Article  CAS  Google Scholar 

  105. Xiao Q, Jaatinen E, Zhu HY (2014) Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light. Chem Asian J 9(11):3046–3064

    Article  CAS  Google Scholar 

  106. Yu K, Tian Y, Tatsuma T (2006) Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold-TiO2 nanocomposites. Phys Chem Chem Phys 8(46):5417–5420

    Article  CAS  Google Scholar 

  107. Sakai N, Fujiwara Y, Takahashi Y, Tatsuma T (2009) Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. ChemPhysChem 10(5):766–769

    Article  CAS  Google Scholar 

  108. Kowalska E, Abe R, Ohtani B (2009) Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem Commun 2:241–243

    Article  Google Scholar 

  109. Nishijima Y, Ueno K, Yokota Y, Murakoshi K, Misawa H (2010) Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J Phys Chem Lett 1(13):2031–2036

    Article  CAS  Google Scholar 

  110. Li RH, Chen WX, Kobayashi H, Ma CX (2010) Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chem 12(2):212–215

    Article  CAS  Google Scholar 

  111. Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M (2011) Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 11(12):5548–5552

    Article  CAS  Google Scholar 

  112. Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY (2011) Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett 11(10):4251–4255

    Article  CAS  Google Scholar 

  113. Kimura K, Naya S-I, Jin-nouchi Y, Tada H (2012) TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst’s activity. J Phys Chem C 116(12):7111–7117

    Google Scholar 

  114. Lu Y, Yu H, Chen S, Quan X, Zhao H (2012) Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ Sci Technol 46(3):1724–1730

    Article  CAS  Google Scholar 

  115. Hu XF, Burgi T (2012) Photoinduced electron transfer and photodegradation of malonic acid at Au/TiO2 investigated by in situ ATR-IR spectroscopy. Appl Catal A Gen 449:139–144

    Article  CAS  Google Scholar 

  116. Sa J, Tagliabue G, Friedli P, Szlachetko J, Rittmann-Frank MH, Santomauro FG, Milne CJ, Sigg H (2013) Direct observation of charge separation on Au localized surface plasmons. Energy Environ Sci 6(12):3584–3588

    Article  CAS  Google Scholar 

  117. Wu K, Rodriguez-Cordoba WE, Yang Y, Lian T (2013) Plasmon-induced hot electron transfer from the Au Tip to CdS rod in CdS-Au nanoheterostructures. Nano Lett 13(11):5255–5263

    Article  CAS  Google Scholar 

  118. Mubeen S, Lee J, Singh N, Kraemer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8(4):247–251

    Article  CAS  Google Scholar 

  119. Naya S-I, Niwa T, Kume T, Tada, H (2014) Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew Chem Int Ed 53(28):7305–7309

    Google Scholar 

  120. Bian ZF, Tachikawa T, Zhang P, Fujitsuka M, Majima T (2014) Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J Am Chem Soc 136(1):458–465

    Article  CAS  Google Scholar 

  121. DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD (2014) Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chem Int Ed 53(30):7887–7891

    Article  CAS  Google Scholar 

  122. Marchuk K, Willets KA (2014) Localized surface plasmons and hot electrons. Chem Phys 445:95–104

    Article  CAS  Google Scholar 

  123. Takahiro K, Naya S-I, Tada H (2014) Highly active supported plasmonic photocatalyst consisting of gold nanoparticle-loaded mesoporous titanium(IV) oxide over layer and conducting substrate. J Phys Chem C 118(46):26887–26893

    Google Scholar 

  124. Kazuma E, Tatsuma T (2014) In situ nanoimaging of photoinduced charge separation at the plasmonic au nanoparticle-TiO2 interface. Adv Mater Interfaces 1(3):1400066

    Google Scholar 

  125. Li JT, Cushing SK, Zheng P, Senty T, Meng FK, Bristow AD, Manivannan A, Wu NQ (2014) Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 136(23):8438–8449

    Article  CAS  Google Scholar 

  126. Wu L, Li F, Xu Y, Zhang JW, Zhang D, Li G, Li H (2015) Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl Catal B Environ 164:217–224

    Article  CAS  Google Scholar 

  127. Qian K, Sweeny BC, Johnston-Peck AC, Niu W, Graham JO, DuChene JS, Qiu J, Wang Y-C, Engelhard MH, Su D, Stach EA, Wei WD (2014) Surface plasmon-driven water reduction: gold nanoparticle size matters. J Am Chem Soc 136(28):9842–9845

    Article  CAS  Google Scholar 

  128. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127(20):7632–7637

    Article  CAS  Google Scholar 

  129. Zhai WY, Xue SJ, Zhu AW, Luo YP, Tian Y (2011) Plasmon-driven selective oxidation of aromatic alcohols to aldehydes in water with recyclable Pt/TiO2 nanocomposites. ChemCatChem 3(1):127–130

    Article  CAS  Google Scholar 

  130. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Whangbo M-H (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21(25):9079–9087

    Article  CAS  Google Scholar 

  131. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129(48):14852–14853

    Article  CAS  Google Scholar 

  132. Du LC, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113(16):6454–6462

    Article  CAS  Google Scholar 

  133. Du LC, Furube A, Hara K, Katoh R, Tachiya M (2013) Ultrafast plasmon induced electron injection mechanism in gold-TiO2 nanoparticle system. J Photochem Photobiol C Photochem Rev 15:21–30

    Article  CAS  Google Scholar 

  134. Tian Y, Tatsuma T (2004) Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem Commun 16:1810–1811

    Article  CAS  Google Scholar 

  135. Priebe JB, Karnahl M, Junge H, Beller M, Hollmann D, Brueckner A (2013) Water reduction with visible light: synergy between optical transitions and electron transfer in Au-TiO2 catalysts visualized by in situ EPR spectroscopy. Angew Chem Int Ed 52(43):11420–11424

    Article  CAS  Google Scholar 

  136. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127(11):3928–3934

    Article  CAS  Google Scholar 

  137. Rosseler O, Shankar MV, Du MK-L, Schmidlin L, Keller N, Keller V (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal 269(1):179–190

    Article  CAS  Google Scholar 

  138. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au∙TiO2 and Pt∙TiO2. J Photochem Photobiol A Chem 89(2):177–189

    Article  CAS  Google Scholar 

  139. Kumar MK, Krishnamoorthy S, Tan LK, Chiam SY, Tripathy S, Gao H (2011) Field effects in plasmonic photocatalyst by precise SiO2 thickness control using atomic layer deposition. ACS Catal 1(4):300–308

    Article  CAS  Google Scholar 

  140. Seh ZW, Liu S, Low M, Zhang S-Y, Liu Z, Mlayah A, Han M-Y (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24(17):2310–2314

    Article  CAS  Google Scholar 

  141. Li H, Lu W, Tian J, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Synthesis and study of plasmon-induced carrier behavior at Ag/TiO2 nanowires. Chem Eur J 18(27):8508–8514

    Article  CAS  Google Scholar 

  142. Park JY, Kim SM, Lee H, Naik B (2014) Hot electron and surface plasmon-driven catalytic reaction in metal-semiconductor nanostructures. Catal Lett 144(12):1996–2004

    Article  CAS  Google Scholar 

  143. Jiang DH, Zhou W, Zhong XH, Zhang YG, Li XH (2014) Distinguishing localized surface plasmon resonance and Schottky junction of Au-Cu2O composites by their molecular spacer dependence. ACS Appl Mater Interfaces 6(14):10958–10962

    Article  CAS  Google Scholar 

  144. Qiu J, Zeng G, Pavaskar P, Li Z, Cronin SB (2014) Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts. Phys Chem Chem Phys 16(7):3115–3121

    Article  CAS  Google Scholar 

  145. Amrollahi R, Hamdy MS, Mul G (2014) Understanding promotion of photocatalytic activity of TiO2 by Au nanoparticles. J Catal 319:194–199

    Article  CAS  Google Scholar 

  146. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101

    Google Scholar 

  147. Ingram DB, Christopher P, Bauer JL, Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 1(10):1441–1447

    Article  CAS  Google Scholar 

  148. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366

    Article  CAS  Google Scholar 

  149. Esteban R, Borisov AG, Nordlander P, Aizpurua J (2012) Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun 2012:3

    Google Scholar 

  150. Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11(11):10907–10929

    Article  CAS  Google Scholar 

  151. Zhang X, Zhu Y, Yang X, Wang S, Shen J, Lin B, Li C (2013) Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles. Nanoscale 5(8):3359–3366

    Article  CAS  Google Scholar 

  152. Zhang X, Zhao J, Wang S, Dai H, Sun X (2014) Shape-dependent localized surface plasmon enhanced photocatalytic effect of ZnO nanorods decorated with Ag. Int J Hydrog Energy 39(16):8238–8245

    Article  CAS  Google Scholar 

  153. Li J, Cushing SK, Bright J, Meng F, Senty TR, Zheng P, Bristow AD, Wu N (2013) Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal 3(1):47–51

    Article  CAS  Google Scholar 

  154. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739

    Article  CAS  Google Scholar 

  155. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7(2):171–187

    Article  CAS  Google Scholar 

  156. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  157. Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: Influence of morphology. Appl Phys Lett 94(15):153109

    Google Scholar 

  158. Herzog JB, Knight MW, Natelson D (2014) Thermoplasmonics: quantifying plasmonic heating in single nanowires. Nano Lett 14(2):499–503

    Article  CAS  Google Scholar 

  159. Baffou G, Polleux J, Rigneault H, Monneret S (2014) Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J Phys Chem C 118(9):4890–4898

    Article  CAS  Google Scholar 

  160. Wang C, Ranasingha O, Natesakhawat S, Ohodnicki PR Jr, Andio M, Lewis JP, Matranga C (2013) Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 5(15):6968–6974

    Article  CAS  Google Scholar 

  161. Christopher P, Xin H, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3(6):467–472

    CAS  Google Scholar 

  162. Adleman JR, Boyd DA, Goodwin DG, Psaltis D (2009) Heterogenous catalysis mediated by plasmon heating. Nano Lett 9(12):4417–4423

    Article  CAS  Google Scholar 

  163. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7):1221–1231

    Article  CAS  Google Scholar 

  164. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z-Y, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7(4):1032–1036

    Article  CAS  Google Scholar 

  165. Sankar M, Nowicka E, Carter E, Murphy DM, Knight DW, Bethell D, Hutchings GJ (2014) The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat Commun 2014:5

    Google Scholar 

  166. Zhou J, Ren F, Zhang S, Wu W, Xiao X, Liu Y, Jiang C (2013) SiO2-Ag-SiO2-TiO2 multi-shell structures: plasmon enhanced photocatalysts with wide-spectral-response. J Mater Chem A 1(42):13128–13138

    Article  CAS  Google Scholar 

  167. Lin S-J, Lee K-C, Wu J-L, Wu J-Y (2012) Plasmon-enhanced photocurrent in dye-sensitized solar cells. Sol Energy 86(9):2600–2605

    Article  CAS  Google Scholar 

  168. Abdi FF, Dabirian A, Dam B, van de Krol R (2014) Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core-shell nanoparticles. Phys Chem Chem Phys 16(29):15272–15277

    Article  CAS  Google Scholar 

  169. Li JT, Cushing SK, Zheng P, Meng FK, Chu D, Wu NQ (2013) Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun 4:1–8

    Google Scholar 

  170. Kong B, Tang J, Selomulya C, Li W, Wei J, Fang Y, Wang Y, Zheng G, Zhao D (2014) Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces. J Am Chem Soc 136(19):6822–6825

    Article  CAS  Google Scholar 

  171. Zhang X, Liu Y, Lee S-T, Yang S, Kang Z (2014) Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ Sci 7(4):1409–1419

    Article  CAS  Google Scholar 

  172. Zhan ZY, An JN, Zhang HC, Hansen RV, Zheng LX (2014) Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting. ACS Appl Mater Interfaces 6(2):1139–1144

    Article  CAS  Google Scholar 

  173. Erwin WR, Coppola A, Zarick HF, Arora P, Miller KJ, Bardhan R (2014) Plasmon enhanced water splitting mediated by hybrid bimetallic Au–Ag core-shell nanostructures. Nanoscale 6(21):12626–12634

    Article  CAS  Google Scholar 

  174. DeSario PA, Pietron JJ, DeVantier DE, Brintlinger TH, Stroud RM, Rolison DR (2013) Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels. Nanoscale 5(17):8073–8083

    Article  CAS  Google Scholar 

  175. Wang G, Ling Y, Wang H, Lu X, Li Y (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C Photochem Rev 19:35–51

    Article  CAS  Google Scholar 

  176. Bowker M, Millard L, Greaves J, James D, Soares J (2004) Photocatalysis by au nanoparticles: reforming of methanol. Gold Bull 37(3-4):170–173

    Article  CAS  Google Scholar 

  177. Daskalaki VM, Kondarides DI (2009) Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal Today 144(1–2):75–80

    Article  CAS  Google Scholar 

  178. Su R, Tiruvalam R, Logsdail AJ, He Q, Downing CA, Jensen MT, Dimitratos N, Kesavan L, Wells PP, Bechstein R, Jensen HH, Wendt S, Catlow CRA, Kiely CJ, Hutchings GJ, Besenbacher F (2014) Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8(4):3490–3497

    Article  CAS  Google Scholar 

  179. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2012) Preparation of Au/TiO2 exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation from organic and inorganic compounds under irradiation of visible light. Catal Sci Technol 2(5):907–909

    Article  CAS  Google Scholar 

  180. Fu X, Long J, Wang X, Leung DYC, Ding Z, Wu L, Zhang Z, Li Z, Fu X (2008) Photocatalytic reforming of biomass: a systematic study of hydrogen evolution from glucose solution. Int J Hydrog Energy 33(22):6484–6491

    Article  CAS  Google Scholar 

  181. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535

    Article  CAS  Google Scholar 

  182. Fang J, Cao SW, Wang Z, Shahjamali MM, Loo SCJ, Barber J, Xue C (2012) Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int J Hydrog Energy 37(23):17853–17861

    Article  CAS  Google Scholar 

  183. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2014) Photocatalytic reactions under irradiation of visible light over gold nanoparticles supported on titanium(IV) oxide powder prepared by using a multi-step photodeposition method. Catal Sci Technol 4(7):1931–1938

    Article  CAS  Google Scholar 

  184. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2013) Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal 3(1):79–85

    Article  CAS  Google Scholar 

  185. Zhang ZY, Li AR, Cao SW, Bosman M, Li SZ, Xue C (2014) Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers. Nanoscale 6(10):5217–5222

    Article  CAS  Google Scholar 

  186. Yan J, Wu G, Guan N, Li L (2013) Synergetic promotion of the photocatalytic activity of TiO2 by gold deposition under UV-visible light irradiation. Chem Commun 49(100):11767–11769

    Article  CAS  Google Scholar 

  187. Sreethawong T, Yoshikawa S (2005) Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catal Commun 6(10):661–668

    Article  CAS  Google Scholar 

  188. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3(6):489–492

    CAS  Google Scholar 

  189. Yuzawa H, Yoshida T, Yoshida H (2012) Gold nanoparticles on titanium oxide effective for photocatalytic hydrogen formation under visible light. Appl Catal B Environ 115:294–302

    Article  CAS  Google Scholar 

  190. Jovic V, Chen WT, Sun-Waterhouse D, Blackford MG, Idriss H, Waterhouse GIN (2013) Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol-water mixtures. J Catal 305:307–317

    Article  CAS  Google Scholar 

  191. Kowalska E, Mahaney OOP, Abe R, Ohtani B (2010) Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys Chem Chem Phys 12(10):2344–2355

    Article  CAS  Google Scholar 

  192. Yan JQ, Wu GJ, Dai WL, Guan NJ, Li LD (2014) Synthetic design of gold nanoparticles on anatase TiO2 {001} for enhanced visible light harvesting. ACS Sustain Chem Eng 2(8):1940–1946

    Article  CAS  Google Scholar 

  193. Cui ET, Lu GX (2014) New evidence for the regulation of photogenerated electron transfer on surface potential energy controlled co-catalyst on TiO2 – the investigation of hydrogen production over selectively exposed Au facet on Au/TiO2. Int J Hydrog Energy 39(15):7672–7685

    Article  CAS  Google Scholar 

  194. Wang Y, Yu JG, Xiao W, Li Q (2014) Microwave-assisted hydrothermal synthesis of graphene based Au-TiO2 photocatalysts for efficient visible-light hydrogen production. J Mater Chem A 2(11):3847–3855

    Article  CAS  Google Scholar 

  195. Liu Y, Yu H, Wang H, Chen S, Quan X (2014) Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2. Mater Res Bull 59:111–116

    Article  CAS  Google Scholar 

  196. Singh GP, Shrestha KM, Nepal A, Klabunde KJ, Sorensen CM (2014) Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 25(26):1–11

    Article  CAS  Google Scholar 

  197. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3):1259–1278

    Article  CAS  Google Scholar 

  198. Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5(11):9217–9233

    Article  CAS  Google Scholar 

  199. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26(27):4607–4626

    Article  CAS  Google Scholar 

  200. Das S, Daud WMAW (2014) A review on advances in photocatalysts towards CO2 conversion. RSC Adv 4(40):20856–20893

    Google Scholar 

  201. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408

    Article  CAS  Google Scholar 

  202. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114(19):9987–10043

    Article  CAS  Google Scholar 

  203. Neatu S, Macia-Agullo JA, Concepcion P, Garcia H (2014) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136(45):15969–15976

    Article  CAS  Google Scholar 

  204. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580

    Article  CAS  Google Scholar 

  205. Wang Z, Liu Y, Huang B, Dai Y, Lou Z, Wang G, Zhang X, Qin X (2014) Progress on extending the light absorption spectra of photocatalysts. Phys Chem Chem Phys 16(7):2758–2774

    Article  CAS  Google Scholar 

  206. Lou Z, Wang Z, Huang B, Dai Y (2014) Synthesis and activity of plasmonic photocatalysts. ChemCatChem 6(9):2456–2476

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the MAXNET Energy consortium of Max Planck Society and the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Tüysüz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dodekatos, G., Schünemann, S., Tüysüz, H. (2015). Surface Plasmon-Assisted Solar Energy Conversion. In: Tüysüz, H., Chan, C. (eds) Solar Energy for Fuels. Topics in Current Chemistry, vol 371. Springer, Cham. https://doi.org/10.1007/128_2015_642

Download citation

Publish with us

Policies and ethics