Advertisement

Mechanochemistry in Polymers with Supramolecular Mechanophores

  • Alexander P. Haehnel
  • Yoshimitsu Sagara
  • Yoan C. Simon
  • Christoph Weder
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 369)

Abstract

Mechanochemistry is a burgeoning field of materials science. Inspired by nature, many scientists have looked at different ways to introduce weak bonds into polymeric materials to impart them with function and in particular mechano-responsiveness. In the following sections, the incorporation of some of the weakest bonds, i.e. non-covalent bonds, into polymeric solids is being surveyed. This review covers sequentially π–π interactions, H-bonding and metal-ligand coordination bonds and tries to highlight some of the advantages and limitations of such systems, while providing some key perspective of what may come next in this tantalizing field.

Keywords

Mechanochemistry π–π interactions H-bonding Metal-ligand Non-covalent Solid polymers 

Notes

Acknowledgments

This work was supported by the National Center of Competence in Research (NCCR) Bio-Inspired Materials, a research instrument of the Swiss National Science Foundation. The authors acknowledge further support from the U.S. Army Research Office (W911NF-12-1-0339), the Swiss National Science Foundation (Grant No. 135405 and 152968), the European Research Council (ERC-2011-AdG 291490-MERESPO), and the Adolphe Merkle Foundation. Y.S. acknowledges JSPS Postdoctoral Fellowships for Research Abroad.

References

  1. 1.
    Lumpkin EA, Caterina MJ (2007) Nature 445:858. doi: 10.1038/Nature05662 CrossRefGoogle Scholar
  2. 2.
    Chen Y, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW, Sijbesma RP (2012) Nat Chem 4:559. doi: 10.1038/nchem.1358 CrossRefGoogle Scholar
  3. 3.
    Davis DA, Hamilton A, Yang JL, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martinez TJ, White SR, Moore JS, Sottos NR (2009) Nature 459:68. doi: 10.1038/Nature07970 CrossRefGoogle Scholar
  4. 4.
    Groote R, Jakobs RTM, Sijbesma RP (2013) Polym Chem 4:4846. doi: 10.1039/C3py00071k CrossRefGoogle Scholar
  5. 5.
    Heinrichs A (2009) Nat Rev Mol Cell Biol 10:163. doi: 10.1038/Nrm2642 CrossRefGoogle Scholar
  6. 6.
    Gillespie PG, Walker RG (2001) Nature 413:194. doi: 10.1038/35093011 CrossRefGoogle Scholar
  7. 7.
    Brantley JN, Konda SSM, Makarov DE, Bielawski CW (2012) J Am Chem Soc 134:9882. doi: 10.1021/Ja303147a CrossRefGoogle Scholar
  8. 8.
    Lenhardt JM, Black AL, Craig SL (2009) J Am Chem Soc 131:10818. doi: 10.1021/ja9036548 CrossRefGoogle Scholar
  9. 9.
    Beyer MK, Clausen-Schaumann H (2005) Chem Rev 105:2921. doi: 10.1021/Cr030697h CrossRefGoogle Scholar
  10. 10.
    Cravotto G, Cintas P (2012) Chem Sci 3:295. doi: 10.1039/C1sc00740h CrossRefGoogle Scholar
  11. 11.
    Lee CK, Davis DA, White SR, Moore JS, Sottos NR, Braun PV (2010) J Am Chem Soc 132:16107. doi: 10.1021/Ja106332g CrossRefGoogle Scholar
  12. 12.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nat Mater 9:101. doi: 10.1038/Nmat2614 CrossRefGoogle Scholar
  13. 13.
    Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Chem Rev 109:5755CrossRefGoogle Scholar
  14. 14.
    Black AL, Lenhardt JM, Craig SL (2011) J Mater Chem 21:1655. doi: 10.1039/C0jm02636k CrossRefGoogle Scholar
  15. 15.
    Black AL, Orlicki JA, Craig SL (2011) J Mater Chem 21:8460. doi: 10.1039/C0jm03875j CrossRefGoogle Scholar
  16. 16.
    Weder C (2015) In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Weinheim, GermanyGoogle Scholar
  17. 17.
    Turro NJ (1978) Modern molecular photochemistry. Benjamine/Cummings Publishing Co. Menlo Park, California, USAGoogle Scholar
  18. 18.
    Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH. Weinheim, GermanyGoogle Scholar
  19. 19.
    Birks JB (1975) Rep Prog Phys 38:903Google Scholar
  20. 20.
    Winnik FM (1993) Chem Rev 93:587CrossRefGoogle Scholar
  21. 21.
    Goetz KP, Vermeulen D, Payne ME, Kloc C, McNeil LE, Jurchescu OD (2014) J Mater Chem C 2:3065. doi: 10.1039/C3TC32062F CrossRefGoogle Scholar
  22. 22.
    Weber CD, Robinson SG, Stay DP, Vonnegut CL, Lonergan MC (2012) ACS Macro Lett 1:499. doi: 10.1021/mz300046x CrossRefGoogle Scholar
  23. 23.
    Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371Google Scholar
  24. 24.
    Hong Y, Lamab JWY, Tang BZ (2011) Chem Soc Rev 40:5361CrossRefGoogle Scholar
  25. 25.
    Sagara Y, Kato T (2009) Nat Chem 1:605. doi: 10.1038/nchem.411 CrossRefGoogle Scholar
  26. 26.
    Pucci A, Ruggeri G (2011) J Mater Chem 21:8282. doi: 10.1039/c0jm03653f CrossRefGoogle Scholar
  27. 27.
    Pucci A, Bizzarri R, Ruggeri G (2011) Soft Matter 7:3689. doi: 10.1039/C0SM01038C CrossRefGoogle Scholar
  28. 28.
    Ciardelli F, Ruggeri G, Pucci A (2013) Chem Soc Rev 42:857. doi: 10.1039/c2cs35414d CrossRefGoogle Scholar
  29. 29.
    Makowski B, Kunzelman J, Weder C (2011) In: Urban M (ed) Handbook of stimuli-responsive materials. Wiley-VCH, New York, p 117Google Scholar
  30. 30.
    Förster T, Kasper KZ (1954) Physik Chem NF 1:275CrossRefGoogle Scholar
  31. 31.
    Förster T, Kasper KZ (1955) Elektrochem Angew Physik Chem 59:976Google Scholar
  32. 32.
    Döller E, Förster TZ (1962) Phys Chem 34:132Google Scholar
  33. 33.
    Birks JB, Dyson DJ, Munro IH (1963) Prog R Soc 275 (Ser. A):575Google Scholar
  34. 34.
    Spies C, Gehrke RJ (2002) Phys Chem 106:5348CrossRefGoogle Scholar
  35. 35.
    Trabesinger W, Renn A, Hecht B, Wild UP, Montali A, Smith P, Weder C (2000) J Phys Chem B 104:5221Google Scholar
  36. 36.
    Crenshaw BR, Weder C (2003) Chem Mater 15:4717. doi: 10.1021/Cm034447t CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Crenshaw BR, Burnworth M, Khariwala D, Hiltner A, Mather PT, Simha R, Weder C (2007) Macromolecules 40:2400. doi: 10.1021/ma062936j CrossRefGoogle Scholar
  39. 39.
    Kinami M, Crenshaw BR, Weder C (2006) Chem Mater 18:946. doi: 10.1021/cm052186c CrossRefGoogle Scholar
  40. 40.
    Lott J, Weder C (2010) Macromol Chem Phys 211:28. doi: 10.1002/macp.200900476 CrossRefGoogle Scholar
  41. 41.
    Crenshaw BR, Weder C (2006) Macromolecules 39:9581. doi: 10.1021/ma061685b CrossRefGoogle Scholar
  42. 42.
    Kunzelman J, Crenshaw BR, Kinami M, Weder C (2006) Macromol Rapid Comm 27:1981. doi: 10.1002/marc.200600642 CrossRefGoogle Scholar
  43. 43.
    Kunzelman J, Gupta M, Crenshaw BR, Schiraldi DA, Weder C (2009) Macro Mater Eng 294:244. doi: 10.1002/mame.200800299 CrossRefGoogle Scholar
  44. 44.
    Crenshaw BR, Weder C (2005) Adv Mater 17:1471. doi: 10.1002/adma.200401688 CrossRefGoogle Scholar
  45. 45.
    Crenshaw BR, Kunzelman J, Sing CE, Ander C, Weder C (2007) Macromol Chem Phys 208:572. doi: 10.1002/macp.200600622 CrossRefGoogle Scholar
  46. 46.
    Kunzelman J, Chung T, Mather PT, Weder C (2008) J Mater Chem 18:1082. doi: 10.1039/b718445j CrossRefGoogle Scholar
  47. 47.
    Sing CE, Kunzelman J, Weder C (2009) J Mater Chem 19:104. doi: 10.1039/b813644k CrossRefGoogle Scholar
  48. 48.
    Kunzelman J, Crenshaw BR, Weder C (2007) J Mater Chem 17:2989. doi: 10.1039/b705880b CrossRefGoogle Scholar
  49. 49.
    Tang L, Whalen J, Schutte G, Weder C (2009) ACS Appl Mater Interfaces 1:688. doi: 10.1021/am800199u CrossRefGoogle Scholar
  50. 50.
    Pucci A, Bertoldo M, Bronco S (2005) Macromol Rapid Comm 26:1043. doi: 10.1002/marc.200500227 CrossRefGoogle Scholar
  51. 51.
    Pucci A, Di Cuia F, Signori F, Ruggeri G (2007) J Mater Chem 17:783. doi: 10.1039/b612033d CrossRefGoogle Scholar
  52. 52.
    Donati F, Pucci A, Cappelli C, Mennucci B, Ruggeri G (2008) J Phys Chem B 112:3668CrossRefGoogle Scholar
  53. 53.
    Löwe C, Weder C (2002) Synthesis 9:1185CrossRefGoogle Scholar
  54. 54.
    Makowski BT, Lott J, Valle B, Singer KD, Weder C (2012) J Mater Chem 22:5190. doi: 10.1039/c2jm15846a CrossRefGoogle Scholar
  55. 55.
    Kunzelman J, Kinami M, Crenshaw BR, Protasiewicz JD, Weder C (2008) Adv Mater 20:119. doi: 10.1002/adma.200701.772 CrossRefGoogle Scholar
  56. 56.
    Sagara Y, Komatsu T, Ueno T, Hanaoka K, Kato T, Nagano T (2014) J Am Chem Soc 136:4273. doi: 10.1021/ja412670g CrossRefGoogle Scholar
  57. 57.
    Burattini S, Colquhoun HM, Greenland BW, Hayes W (2009) Faraday Discuss 143:251CrossRefGoogle Scholar
  58. 58.
    Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJ, Hayes W, Mackay ME, Rowan SJ (2009) Chem Commun (Camb) 6717. doi: 10.1039/b910648k
  59. 59.
    Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) J Am Chem Soc 132:12051CrossRefGoogle Scholar
  60. 60.
    Hart LR, Hunter JH, Nguyen NA, Harries JL, Greenland BW, Mackay ME, Colquhoun HM, Hayes W (2014) Polym Chem 5:3680. doi: 10.1039/c4py00292j CrossRefGoogle Scholar
  61. 61.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071. doi: 10.1021/cr990125q CrossRefGoogle Scholar
  62. 62.
    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning A (2005) Chem Rev 105:1491. doi: 10.1021/cr030070z CrossRefGoogle Scholar
  63. 63.
    Aida T, Meijer EW, Stupp SI (2012) Science 335:813. doi: 10.1126/science.1205962 CrossRefGoogle Scholar
  64. 64.
    Kato T, Mizoshita N, Kishimoto K (2005) Angew Chem Int Ed Engl 45:38. doi: 10.1002/anie.200501384 CrossRefGoogle Scholar
  65. 65.
    Wojtecki RJ, Meador MA, Rowan SJ (2011) Nat Mater 10:14. doi: 10.1038/nmat2891 CrossRefGoogle Scholar
  66. 66.
    Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Macromol Chem Phys 213:131. doi: 10.1002/macp.201100442 CrossRefGoogle Scholar
  67. 67.
    Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, Lowe JKL, Meijer EW (1997) Science 278:1601CrossRefGoogle Scholar
  68. 68.
    Sivakova S, Bohnsack DA, Mackay ME, Suwanmala P, Rowan SJ (2005) J Am Chem Soc 127:18202CrossRefGoogle Scholar
  69. 69.
    Guan Z, Roland JT, Bai JZ, Ma SX, McIntire TM, Nguyen M (2004) J Am Chem Soc 126:2058CrossRefGoogle Scholar
  70. 70.
    Roland JT, Guan Z (2004) J Am Chem Soc 126:14328CrossRefGoogle Scholar
  71. 71.
    Kushner AM, Gabuchian V, Johnson EG, Guan Z (2007) J Am Chem Soc 129:14110CrossRefGoogle Scholar
  72. 72.
    Kushner AM, Vossler JD, Williams GA, Guan Z (2009) J Am Chem Soc 131:8766CrossRefGoogle Scholar
  73. 73.
    Beck JB, Rowan SJ (2003) J Am Chem Soc 125:13922. doi: 10.1021/ja038521k CrossRefGoogle Scholar
  74. 74.
    Lis S (2002) J Alloy Comp 341:45. doi:  10.1016/S0925-8388(02)00055-5
  75. 75.
    Sabbatini N, Guardigli M, Lehn J-M (1993) Coord Chem Rev 123:201. doi: 10.1016/0010-8545(93)85056-A CrossRefGoogle Scholar
  76. 76.
    Schubert US, Eschbaumer C (2002) Angew Chem Int Ed 41:2892. doi: 10.1002/1521-3773(20020816)41:16<2892::AID-ANIE2892>3.0.CO;2-6 CrossRefGoogle Scholar
  77. 77.
    Rowan SJ, Beck JB (2005) Faraday Discuss 128:43. doi: 10.1039/B403135K CrossRefGoogle Scholar
  78. 78.
    Kumpfer JR, Wie JJ, Swanson JP, Beyer FL, Mackay ME, Rowan SJ (2011) Macromolecules 45:473. doi: 10.1021/ma201659d CrossRefGoogle Scholar
  79. 79.
    Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Nature 472:334. doi: 10.1038/nature09963 CrossRefGoogle Scholar
  80. 80.
    Coulibaly S, Roulin A, Balog S, Biyani M, Foster EJ, Rowan SJ, Fiore GL, Weder C (2014) Macromolecules 47:152CrossRefGoogle Scholar
  81. 81.
    Biyani MV, Foster EJ, Weder C (2013) ACS Macro Letters 2:236–240CrossRefGoogle Scholar
  82. 82.
    Fiore G, Rowan SJ, Weder C (2013) Chem Soc Rev 42:7278CrossRefGoogle Scholar
  83. 83.
    Balkenende DWR, Coulibaly S, Balog S, Simon YC, Fiore GL, Weder C (2014) J Am Chem Soc 136:10493. doi: 10.1021/Ja5051633 CrossRefGoogle Scholar
  84. 84.
    Simon YC, Fiore GL, Weder C (2014) Chimia 68:666. doi: 10.2533/chimia.2014.666 CrossRefGoogle Scholar
  85. 85.
    Kumpfer JR, Taylor SD, Connick WB, Rowan SJ (2012) J Mater Chem 22:14196. doi: 10.1039/C2JM32160B CrossRefGoogle Scholar
  86. 86.
    Paulusse JMJ, Sijbesma RP (2004) Angew Chem Int Ed 43:4460. doi: 10.1002/anie.200460040 CrossRefGoogle Scholar
  87. 87.
    Groote R, Szyja BM, Leibfarth FA, Hawker CJ, Doltsinis NL, Sijbesma RP (2014) Macromolecules 47:1187. doi: 10.1021/ma4022339 CrossRefGoogle Scholar
  88. 88.
    Jakobs RTM, Ma S, Sijbesma RP (2013) ACS Macro Lett 2:613. doi: 10.1021/mz400201c CrossRefGoogle Scholar
  89. 89.
    Jakobs RTM, Sijbesma RP (2012) Organometallics 31:2476. doi: 10.1021/Om300161z
  90. 90.
    Paulusse JMJ, Huijbers JPJ, Sijbesma RP (2006) Chem Eur J 12:4928. doi: 10.1002/chem.200600120 CrossRefGoogle Scholar
  91. 91.
    Paulusse JMJ, van Beek DJM, Sijbesma RP (2007) J Am Chem Soc 129:2392. doi: 10.1021/ja067523c CrossRefGoogle Scholar
  92. 92.
    Paulusse JMJ, Sijbesma RP (2008) Chem Comm 4416. doi: 10.1039/B806978F
  93. 93.
    Berkowski KL, Potisek SL, Hickenboth CR, Moore JS (2005) Macromolecules 38:8975. doi: 10.1021/ma051394n CrossRefGoogle Scholar
  94. 94.
    Nguyen TQ, Liang OZ, Kausch HH (1997) Polymer 38:3783. doi: 10.1016/S0032-3861(96)00950-0
  95. 95.
    Yuan J, Zhang H, Hong G, Chen Y, Chen G, Xu Y, Weng W (2013) J Mater Chem B 1:4809. doi: 10.1039/C3TB20647E CrossRefGoogle Scholar
  96. 96.
    Liang B, Tong R, Wang Z, Guo S, Xia H (2014) Langmuir 30:9524. doi: 10.1021/la500841x CrossRefGoogle Scholar
  97. 97.
    Wiggins KM, Hudnall TW, Tennyson AG, Bielawski CW (2011) J Mater Chem 21:8355. doi: 10.1039/C0JM03619F CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Adolphe Merkle InstituteUniversity of FribourgFribourgSwitzerland

Personalised recommendations