Skip to main content

Biomimetic Water-Oxidation Catalysts: Manganese Oxides

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 371))

Abstract

The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnO x .

This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnO x . The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed MnIII/IV-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials.

In the outlook, the challenges of catalyst screenings (and hence the identification of a “best MnO x catalyst”) are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnO x materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Armaroli N, Balzani V, Serpone N (2013) Powering planet Earth: energy solutions for the future. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58

    Article  CAS  Google Scholar 

  3. Lubitz W, Reijerse EJ, Messinger J (2008) Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energy Environ Sci 1:15–31

    Article  CAS  Google Scholar 

  4. Kirch M, Lehn JM, Sauvage JP (1979) Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy. Helv Chim Acta 62:1345–1384

    Article  CAS  Google Scholar 

  5. Taiz L, Zeiger E (2010) Plant physiology. Sinauer Ass, Sunderland

    Google Scholar 

  6. Kärkäs MD, Verho O, Johnston EV et al (2014) Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem Rev 114:11863–12001

    Article  Google Scholar 

  7. Crabtree RH (ed) (2010) Energy production and storage: inorganic chemical strategies for a warming world. Wiley, Chichester

    Google Scholar 

  8. Thapper A, Styring S, Saracco G et al (2013) Artificial photosynthesis for solar fuels. Green 3:43–57

    Article  Google Scholar 

  9. Holleman AF, Wiberg E (2007) Lehrbuch der Anorganischen Chemie. de Gruyter, Berlin

    Book  Google Scholar 

  10. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  CAS  Google Scholar 

  11. Dau H, Limberg C, Reier T et al (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761

    Article  CAS  Google Scholar 

  12. Cox N, Pantazis DA, Neese F et al (2013) Biological water oxidation. Acc Chem Res 46:1588–1596

    Article  CAS  Google Scholar 

  13. Krewald V, Retegan M, Pantazis DA (2015) Principles of natural photosynthesis. Top Curr Chem. doi:10.1007/128_2015_645

    Google Scholar 

  14. Siegbahn PE (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880

    Article  CAS  Google Scholar 

  15. Krewald V, Retegan M, Cox N et al (2015) Metal oxidation states in biological water splitting. Chem Sci 6:1676–1695

    Article  CAS  Google Scholar 

  16. Suga M, Akita F, Hirata K et al (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Article  CAS  Google Scholar 

  17. Rehder D (2014) Bioinorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  18. Kraatz H, Metzler-Nolte N (eds) (2006) Concepts and models in bioinorganic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  19. Llobet A (ed) (2014) Molecular water oxidation catalysis: a key topic for new sustainable energy conversion schemes. Wiley, Chichester

    Google Scholar 

  20. Greenwood NN, Earnshaw A (1998) Chemistry of the elements. Butterworth Heinemann, Oxford

    Google Scholar 

  21. Takeno N (2005) Atlas of Eh-pH diagrams. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (Japan)

    Google Scholar 

  22. Tebo BM, Bargar JR, Clement BG et al (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Article  CAS  Google Scholar 

  23. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci U S A 96:3447–3454

    Article  CAS  Google Scholar 

  24. Indra A, Menezes PW, Zaharieva I et al (2013) Active mixed-valent MnO(x) water oxidation catalysts through partial oxidation (corrosion) of nanostructured MnO particles. Angew Chem Int Ed 52:13206–13210

    Article  CAS  Google Scholar 

  25. Meng Y, Song W, Huang H et al (2014) Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464

    Article  CAS  Google Scholar 

  26. Frey CE, Wiechen M, Kurz P (2014) Water-oxidation catalysis by synthetic manganese oxides – systematic variations of the calcium birnessite theme. Dalton Trans 43:4370

    Article  CAS  Google Scholar 

  27. Robinson DM, Go YB, Mui M et al (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135:3494–3501

    Article  CAS  Google Scholar 

  28. Gorlin Y, Lassalle-Kaiser B, Benck JD et al (2013) In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc 135:8525–8534

    Article  CAS  Google Scholar 

  29. Najafpour MM, Sedigh DJ, Pashaei B et al (2013) Water oxidation by nano-layered manganese oxides in the presence of cerium(IV) ammonium nitrate: important factors and a proposed self-repair mechanism. New J Chem 37:2448

    Article  CAS  Google Scholar 

  30. Boppana VB, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47:8973–8975

    Article  CAS  Google Scholar 

  31. Glikman TS, Shchegoleva IS (1968) The catalytic oxidation of water by quadrivalent cerium ions. Kinet Katal 1968:461–462

    Google Scholar 

  32. Shafirovich VY, Khannanov NK, Shilov AE (1981) Inorganic models of photosystem II of plant photosynthesis – catalytic and photocatalytic oxidation of water with participation of manganese compounds. J Inorg Biochem 15:113–129

    Article  CAS  Google Scholar 

  33. Trasatti S (1980) Electrocatalysis by oxides – attempt at a unifying approach. J Electroanal Chem 111:125–131

    Article  CAS  Google Scholar 

  34. Morita M, Iwakura C, Tamura H (1979) Anodic characteristics of massive manganese oxide electrode. Electrochim Acta 24:357–362

    Article  CAS  Google Scholar 

  35. Okuno Y, Yonemitsu O, Chiba Y (1983) Manganese dioxide as specific redox catalyst in the photosensitized oxygen generation from water. Chem Lett 815–818

    Google Scholar 

  36. Harriman A, Pickering IJ, Thomas JM et al (1988) Metal-oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans I 84:2795–2806

    Article  CAS  Google Scholar 

  37. Rasiyah P, Tseung AC (1984) The role of the lower metal-oxide higher metal oxide couple in oxygen evolution reactions. J Electrochem Soc 131:803–808

    Article  CAS  Google Scholar 

  38. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  CAS  Google Scholar 

  39. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  CAS  Google Scholar 

  40. Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922

    Article  CAS  Google Scholar 

  41. Najafpour MM, Ehrenberg T, Wiechen M et al (2010) Calcium manganese(III) oxides (CaMn2O4 · xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237

    Article  CAS  Google Scholar 

  42. Zaharieva I, Najafpour MM, Wiechen M et al (2011) Synthetic manganese-calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ Sci 4:2400–2408

    Article  CAS  Google Scholar 

  43. Wiechen M, Najafpour MM, Allakhverdiev SI et al (2014) Water oxidation catalysis by manganese oxides: learning from evolution. Energy Environ Sci 7:2203

    Article  CAS  Google Scholar 

  44. Wiechen M, Berends HM, Kurz P (2012) Water oxidation catalysed by manganese compounds: from complexes to ‘biomimetic rocks’. Dalton Trans 41:21–31

    Article  CAS  Google Scholar 

  45. Zhang M, Frei H (2015) Towards a molecular level understanding of the multi-electron catalysis of water oxidation on metal oxide surfaces. Catal Lett 145:420–435

    Article  CAS  Google Scholar 

  46. Najafpour MM, Moghaddam AN, Dau H et al (2014) Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay. J Am Chem Soc 136:7245–7248

    Article  CAS  Google Scholar 

  47. Hocking RK, Brimblecombe R, Chang LY et al (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–466

    CAS  Google Scholar 

  48. Wiechen M, Zaharieva I, Dau H et al (2012) Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion. Chem Sci 3:2330–2339

    Article  CAS  Google Scholar 

  49. Zaharieva I, Chernev P, Risch M et al (2012) Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ Sci 5:7081–7089

    Article  CAS  Google Scholar 

  50. Schöler A, Zaharieva I, Zimmermann S et al (2014) Biogenic manganese-calcium oxides on the cell walls of the algae Chara Corallina: elemental composition, atomic structure, and water-oxidation catalysis. Eur J Inorg Chem 2014:780–790

    Article  Google Scholar 

  51. Bergmann A, Zaharieva I, Dau H et al (2013) Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activity. Energy Environ Sci 6:2745

    Article  CAS  Google Scholar 

  52. Tsui EY, Tran R, Yano J et al (2013) Redox-inactive metals modulate the reduction potential in heterometallic manganese-oxido clusters. Nat Chem 5(4):293–299

    Article  Google Scholar 

  53. Lee SY, González-Flores D, Ohms J et al (2014) Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an “electrochemical Harriman series”. ChemSusChem 7:3442–3451

    Article  CAS  Google Scholar 

  54. Najafpour MM, Rahimi F, Amini M et al (2012) A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans 41:11026–11031

    Article  CAS  Google Scholar 

  55. Menezes PW, Indra A, Littlewood P et al (2014) Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry. ChemSusChem 7:2202–2211

    Article  CAS  Google Scholar 

  56. Elmaci G, Frey CE, Kurz P et al (2015) Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites. Inorg Chem 54:2734–2741

    Article  CAS  Google Scholar 

  57. Mette K, Bergmann A, Tessonnier J et al (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 4:851–862

    Article  CAS  Google Scholar 

  58. Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136:6002–6010

    Article  CAS  Google Scholar 

  59. Fekete M, Hocking RK, Chang SLY et al (2013) Highly active screen-printed electrocatalysts for water oxidation based on beta-manganese oxide. Energy Environ Sci 6:2222

    Article  CAS  Google Scholar 

  60. Takashima T, Hashimoto K, Nakamura R (2012) Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J Am Chem Soc 134:1519–1527

    Article  CAS  Google Scholar 

  61. Carmo M, Fritz DL, Mergel J et al (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934

    Article  CAS  Google Scholar 

  62. Joya KS, Joya YF, Ocakoglu K et al (2013) Water-splitting catalysis and solar fuel devices: artificial leaves on the move. Angew Chem Int Ed Engl 52:10426–10437

    Article  CAS  Google Scholar 

  63. Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First and foremost I would like to thank the Ph.D. students of my research group who have worked very hard in recent years to broaden our understanding of MnO x WOR catalysis: Carolin E. Frey, Seung Y. Lee, M. Mahdi Najafpour, and Mathias Wiechen. In Freiburg special thanks go to Jann Sonnenfeld for preparing Fig. 2. Additionally, the close collaboration with Holger Dau and Ivelina Zaharieva at Freie Universität Berlin has been a great source of inspiration and results since its start in 2008. Finally, I would like to acknowledge generous financial support by the Fonds der Chemischen Industrie (FCI) and the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kurz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurz, P. (2015). Biomimetic Water-Oxidation Catalysts: Manganese Oxides. In: Tüysüz, H., Chan, C. (eds) Solar Energy for Fuels. Topics in Current Chemistry, vol 371. Springer, Cham. https://doi.org/10.1007/128_2015_634

Download citation

Publish with us

Policies and ethics