Skip to main content

Nanoscale Effects in Water Splitting Photocatalysis

  • Chapter
  • First Online:
Solar Energy for Fuels

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 371))

Abstract

From a conceptual standpoint, the water photoelectrolysis reaction is the simplest way to convert solar energy into fuel. It is widely believed that nanostructured photocatalysts can improve the efficiency of the process and lower the costs. Indeed, nanostructured light absorbers have several advantages over traditional materials. This includes shorter charge transport pathways and larger redox active surface areas. It is also possible to adjust the energetics of small particles via the quantum size effect or with adsorbed ions. At the same time, nanostructured absorbers have significant disadvantages over conventional ones. The larger surface area promotes defect recombination and reduces the photovoltage that can be drawn from the absorber. The smaller size of the particles also makes electron–hole separation more difficult to achieve. This chapter discusses these issues using selected examples from the literature and from the laboratory of the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729–15735

    Article  CAS  Google Scholar 

  2. Lewis NS, Crabtree G, Nozik AJ, Wasielewski MR, Alivisatos AP (2005) Basic research needs for solar energy utilization. Department of Energy http://science.energy.gov/bes/news-and-resources/reports/

  3. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 23(1):1–9

    Article  Google Scholar 

  4. Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int J Hydrogen Energy 32(15):3248–3252

    Article  CAS  Google Scholar 

  5. Nocera DG (2012) The Artificial Leaf. Acc Chem Res 45(5):767–776

    Article  CAS  Google Scholar 

  6. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and Earth-abundant catalysts. Science 334(6056):645–648

    Article  CAS  Google Scholar 

  7. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593–1596

    Article  CAS  Google Scholar 

  8. Gratzel M, Park NG (2014) Organometal halide perovskite photovoltaics: a diamond in the rough. Nano 9(5):1440002–1440009

    Google Scholar 

  9. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  CAS  Google Scholar 

  10. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427

    Article  CAS  Google Scholar 

  11. Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495–500

    Article  CAS  Google Scholar 

  12. Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: a review with examples using titania nanotube array photoanodes. Sol Energy Mat Sol C 92(4):374–384

    Article  CAS  Google Scholar 

  13. Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houle FA, Greenblatt JB (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ Sci 7:3264–3278

    Article  CAS  Google Scholar 

  14. Ronge J, Bosserez T, Martel D, Nervi C, Boarino L, Taulelle F, Decher G, Bordiga S, Martens JA (2014) Monolithic cells for solar fuels. Chem Soc Rev 43:7963–7981

    Article  CAS  Google Scholar 

  15. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54

    Article  CAS  Google Scholar 

  16. Maeda K (2013) Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3(7):1486–1503

    Article  CAS  Google Scholar 

  17. Kudo A (2011) Z-Scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull 36(1):32–38

    Article  CAS  Google Scholar 

  18. Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78(12):2267–2276

    Article  CAS  Google Scholar 

  19. Rajeshwar K (2007) Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J Appl Electrochem 37(7):765–787

    Article  CAS  Google Scholar 

  20. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photoch Photobio C 12(4):237–268

    Article  CAS  Google Scholar 

  21. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111(22):7851–7861

    Article  CAS  Google Scholar 

  22. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  Google Scholar 

  23. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photoch Photobio C 11(4):179–209

    Article  CAS  Google Scholar 

  24. Osterloh FE, Parkinson BA (2011) Recent developments in solar water splitting photocatalysis. MRS Bull 36(1):17–22

    Article  CAS  Google Scholar 

  25. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen ZB, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang HL, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983–2002

    Article  CAS  Google Scholar 

  26. James BD, Baum GN, Perez J, Baum KN http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pec_technoeconomic_analysis.pdf

  27. Bard AJ, Fox MA (1995) Artificial photosynthesis – solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145

    Article  CAS  Google Scholar 

  28. Mills A, LeHunte S (1997) An overview of semiconductor photocatalysis. J Photoch Photobio A 108(1):1–35

    Article  CAS  Google Scholar 

  29. Nozik AJ (1978) Photoelectrochemistry – applications to solar-energy conversion. Ann Rev Phys Chem 29:189–222

    Article  CAS  Google Scholar 

  30. Memming R (1994) Photoinduced charge-transfer processes at semiconductor electrodes and particles. Electron Transfer I 169:105–181

    Article  CAS  Google Scholar 

  31. Krol R (2012) Principles of photoelectrochemical cells. In: van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production, vol 102. Springer, USA, pp 13–67

    Google Scholar 

  32. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H-2 and O-2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089

    Article  CAS  Google Scholar 

  33. Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134(19):8254–8259

    Article  CAS  Google Scholar 

  34. Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110(28):13753–13758

    Article  CAS  Google Scholar 

  35. Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water – enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440(7082):295–295

    Article  CAS  Google Scholar 

  36. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627

    Article  CAS  Google Scholar 

  37. Zou ZG, Arakawa H (2003) Direct water splitting into H-2 and O-2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photoch Photobio A 158(2–3):145–162

    Article  CAS  Google Scholar 

  38. Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nano 9(1):69–73

    Article  CAS  Google Scholar 

  39. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358

    Article  Google Scholar 

  40. de Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Cu2O: a catalyst for the photochemical decomposition of water? Chem Commun 12:1069–1070

    Article  Google Scholar 

  41. Malingowski AC, Stephens PW, Huq A, Huang QZ, Khalid S, Khalifah PG (2012) Substitutional mechanism of Ni into the wide-band-gap semiconductor in TaO4 and its implications for water splitting activity in the wolframite structure type. Inorg Chem 51(11):6096–6103

    Article  CAS  Google Scholar 

  42. Duonghong D, Borgarello E, Gratzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103(16):4685–4690

    Article  CAS  Google Scholar 

  43. Bard AJ (1979) Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10(1):59–75

    Article  CAS  Google Scholar 

  44. Kato H, Sasaki Y, Shirakura N, Kudo A (2013) Synthesis of highly active rhodium-soped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A 1(39):12327–12333

    Article  CAS  Google Scholar 

  45. Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344(6187):1005–1009

    Article  CAS  Google Scholar 

  46. Paracchino A, Laporte V, Sivula K, Graetzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461

    Article  CAS  Google Scholar 

  47. Joshi UA, Palasyuk A, Arney D, Maggard PA (2010) Semiconducting oxides to facilitate the conversion of solar energy to chemical fuels. J Phys Chem Lett 1(18):2719–2726

    Article  CAS  Google Scholar 

  48. Woodhouse M, Parkinson BA (2008) Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem Mater 20(7):2495–2502

    Article  CAS  Google Scholar 

  49. Woodhouse M, Herman GS, Parkinson BA (2005) Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem Mater 17(17):4318–4324

    Article  CAS  Google Scholar 

  50. Woodhouse M, Parkinson BA (2009) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38(1):197–210

    Article  CAS  Google Scholar 

  51. Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, Choi KS, Stucky GD, McFarland EW (2005) Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production. J Comb Chem 7(2):264–271

    Article  CAS  Google Scholar 

  52. Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ Sci 2(1):103–112

    Article  CAS  Google Scholar 

  53. Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys Rev Lett 33(14):827–830

    Article  CAS  Google Scholar 

  54. Henglein A (1982) Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution. Phys Chem Chem Phys 86(4):301–305

    CAS  Google Scholar 

  55. Fojtik A, Weller H, Koch U, Henglein A (1984) Photo-chemistry of colloidal metal sulfides. 8. Photo-physics of extremely small CDS particle S – Q-state CDS and magic agglomeration numbers. Phys Chem Chem Phys 88(10):969–977

    CAS  Google Scholar 

  56. Brus LE (1983) A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79(11):5566–5571

    Article  CAS  Google Scholar 

  57. Vayssieres L (2009) On solar hydrogen & nanotechnology. Wiley, Singapore/Hoboken, p xxi, 680 pp, 16 p

    Google Scholar 

  58. Hoertz PG, Mallouk TE (2005) Light-to-chemical energy conversion in lamellar solids and thin films. Inorg Chem 44(20):6828–6840

    Article  CAS  Google Scholar 

  59. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68

    Article  CAS  Google Scholar 

  60. Zhu JF, Zach M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14(4):260–269

    Article  CAS  Google Scholar 

  61. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860

    Article  CAS  Google Scholar 

  62. Kamat PV, Dimitrijevic NM (1990) Colloidal semiconductors as photocatalysts for solar-energy conversion. Sol Energy 44(2):83–98

    Article  CAS  Google Scholar 

  63. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110(11):6664–6688

    Article  CAS  Google Scholar 

  64. Zhang JZ (2011) Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bull 36(1):48–55

    Article  CAS  Google Scholar 

  65. Foley JM, Price MJ, Feldblyum JI, Maldonado S (2012) Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energy Environ Sci 5(1):5203–5220

    Article  CAS  Google Scholar 

  66. Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition-metal chalcogenides. Prog Surf Sci 29(1–2):1–167

    Article  CAS  Google Scholar 

  67. van de Krol R, Liang YQ, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18(20):2311–2320

    Article  CAS  Google Scholar 

  68. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–U65

    Article  CAS  Google Scholar 

  69. Boddy PJ (1968) Oxygen evolution on semiconducting TIO2. J Electrochem Soc 115(2):199

    Google Scholar 

  70. Freund T, Gomes WP (1970) Electrochemical methods for investigating catalysis by semiconductors. Catal Rev 3(1):1–36

    Article  Google Scholar 

  71. Fujishima A, Honda K (1971) Studies on photosensitive electrode reactions. 3. Electrochemical evidence for mechanism of primary stage of photosynthesis. B Chem Soc Jpn 44(4):1148–1150

    Google Scholar 

  72. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  73. Henglein A (1989) Small-particle research – physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873

    Article  CAS  Google Scholar 

  74. Kalyanasundaram K, Gratzel M (1979) Cyclic cleavage of water into H-2 and O-2 by visible-light with coupled redox catalysts. Angew Chem Int Ed Engl 18(9):701–702

    Google Scholar 

  75. Mills A, Porter G (1982) Photosensitized dissociation of water using dispersed suspensions of N-type semiconductors. J Chem Soc Faraday T I 78:3659–3669

    Article  CAS  Google Scholar 

  76. Nozik AJ (1977) Photochemical diodes. Appl Phys Lett 30(11):567–569

    Article  CAS  Google Scholar 

  77. Würfel P (2005) Physics of solar cells. Wiley-VCH, Weinheim, p 244

    Google Scholar 

  78. Berger LI (2008) Optical properties of selected inorganic and organic solids. In: Lide DR (ed) CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton

    Google Scholar 

  79. Maiolo JR, Atwater HA, Lewis NS (2008) Macroporous silicon as a model for silicon wire array solar cells. J Phys Chem C 112(15):6194–6201

    Article  CAS  Google Scholar 

  80. Berger LI (2008) Properties of semiconductors. In: Lide DR (ed) CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton

    Google Scholar 

  81. Huda MN, Al-Jassim MM, Turner JA (2011) Mott insulators: an early selection criterion for materials for photoelectrochemical H(2) production. J Renew Sustain Energy 3(5):053101-1–053101-10

    Google Scholar 

  82. Cox PA (2010) Transition metal oxides: an introduction to their electronic structure and properties. Clarendon/Oxford University Press, Oxford/New York

    Google Scholar 

  83. Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Correction: photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk – a kinetic analysis. J Phys Chem C 116(35):19051–19051

    Article  CAS  Google Scholar 

  84. Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk – a kinetic analysis. J Phys Chem C 116(4):3161–3170

    Article  CAS  Google Scholar 

  85. Laser D, Bard AJ (1976) Semiconductor electrodes. 9. digital-simulation of relaxation of photogenerated free carriers and photocurrents. J Electrochem Soc 123(12):1837–1842

    Article  CAS  Google Scholar 

  86. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York, p xiv, 401

    Google Scholar 

  87. Pleskov YV, Gurevich YY (1986) Semiconductor photoelectrochemistry. Consultants Bureau, New York, p xxv, 422

    Google Scholar 

  88. Salvador P (2001) Semiconductors' photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J Phys Chem B 105(26):6128–6141

    Article  CAS  Google Scholar 

  89. Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with suspended alpha-Fe2O3 particles – effects of nanoscaling. Energy Env Sci 4:4270–4275

    Article  CAS  Google Scholar 

  90. de Almeida JS, Ahuja R (2006) Electronic and optical properties of RuO2 and IrO2. Phys Rev B 3(16)

    Google Scholar 

  91. Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich T, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with non-sensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133(19):7264–7267

    Article  CAS  Google Scholar 

  92. Yoffe AD (2001) Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 50(1):1–208

    Article  CAS  Google Scholar 

  93. Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 35(11–12):1677–1699

    Article  CAS  Google Scholar 

  94. Marcus RA (1964) Chemical + electrochemical electron-transfer theory. Ann Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  95. Sant PA, Kamat PV (2002) Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4(2):198–203

    Article  CAS  Google Scholar 

  96. Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129(14):4136–4137

    Article  CAS  Google Scholar 

  97. Tvrdy K, Frantsuzov PA, Kamat PV (2011) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108(1):29–34

    Article  CAS  Google Scholar 

  98. Holmes MA, Townsend TK, Osterloh FE (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48(3):371–373

    Article  CAS  Google Scholar 

  99. Zhao J, Holmes MA, Osterloh FE (2013) Quantum confinement controls photocatalysis – a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7(5):4316–4325

    Article  CAS  Google Scholar 

  100. Rogach AL, Kornowski A, Gao MY, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103(16):3065–3069

    Article  CAS  Google Scholar 

  101. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. 2nd edn. Wiley, New York, p xxi, 833

    Google Scholar 

  102. Waller M, Townsend TK, Zhao J, Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Single-crystal tungsten oxide nanosheets: photochemical water oxidation in the quantum confinement regime. Chem Mater 24(4):698–704

    Article  CAS  Google Scholar 

  103. Sambur JB, Novet T, Parkinson BA (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330(6000):63–66

    Article  CAS  Google Scholar 

  104. Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062):1530–1533

    Article  CAS  Google Scholar 

  105. Nozik AJ (2002) Quantum dot solar cells. Phys E Low Dimens Syst Nanostruct 14(1–2):115–120

    Article  CAS  Google Scholar 

  106. Kavan L, Gratzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723

    Article  CAS  Google Scholar 

  107. Khan SUM, Akikusa J (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J Phys Chem B 103(34):7184–7189

    Article  CAS  Google Scholar 

  108. Atkinson RJ, Posner AM, Quirk JP (1967) Adsorption of potential-determining ions at ferric oxide-aqueous electrolyte interface. J Phys Chem 71(3):550–558

    Article  CAS  Google Scholar 

  109. Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Gratzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99(1):77–174

    Article  CAS  Google Scholar 

  110. Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215(5109):1459–1461

    Article  CAS  Google Scholar 

  111. Meissner D, Memming R, Kastening B (1988) Photoelectrochemistry of cadmium-sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J Phys Chem 92(12):3476–3483

    Article  CAS  Google Scholar 

  112. Ginley DS, Butler MA (1978) Flatband potential of cadmium-sulfide (Cds) photoanodes and its dependence on surface ion effects. J Electrochem Soc 125(12):1968–1974

    Article  CAS  Google Scholar 

  113. Frese KW, Canfield DG (1984) Adsorption of hydroxide and sulfide ions on single-crystal n-CdSe electrodes. J Electrochem Soc 131(11):2614–2618

    Article  CAS  Google Scholar 

  114. Lincot D, Vedel J (1988) Adsorption of telluride ions on cadmium telluride – consequences for photoelectrochemical cells. J Phys Chem 92(14):4103–4110

    Article  CAS  Google Scholar 

  115. Minoura H, Watanabe T, Oki T, Tsuiki M (1977) Effects of dissolved Cd2+ and S2- ions on flatband potential of CdS electrode in aqueous-solution. Jpn J Appl Phys 16(5):865–866

    Article  CAS  Google Scholar 

  116. Singh P, Singh R, Gale R, Rajeshwar K, Dubow J (1980) Surface-charge and specific ion adsorption effects in photoelectrochemical devices. J Appl Phys 51(12):6286–6291

    Article  CAS  Google Scholar 

  117. Butler MA, Ginley GS (1978) Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativies. J Electrochem Soc 125(2):228–232

    Article  CAS  Google Scholar 

  118. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 60

    Google Scholar 

  119. Vanysek P (2008) Electrochemical series. In: CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton

    Google Scholar 

  120. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn, Wiley, New York, p 550

    Google Scholar 

  121. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501

    Article  CAS  Google Scholar 

  122. Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist’s view. Ann Rev Phys Chem 55:363–390

    Article  CAS  Google Scholar 

  123. Chamousis RL, Osterloh FE (2014) Use of potential determining ions to control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst. Energy Envi Sci 7(2):736–743

    Article  CAS  Google Scholar 

  124. Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100(31):13061–13078

    Article  CAS  Google Scholar 

  125. Miller RJD, Memming R (2008) Fundamentals in photoelectrochemistry. In: Archer MD, Nozik AJ (eds) Nanostructured and photoelectrochemical systems for solar photon conversion, vol 3. Imperial College Press, London

    Google Scholar 

  126. Chmiel G, Gerischer H (1990) Photoluminescence at a semiconductor electrolyte contact around and beyond the flat-band potential. J Phys Chem 94(4):1612–1619

    Article  CAS  Google Scholar 

  127. Klahr BM, Hamann TW (2011) Current and voltage limiting processes in thin film hematite electrodes. J Phys Chem C 115(16):8393–8399

    Article  CAS  Google Scholar 

  128. Tan MX, Laibinis PE, Nguyen ST, Kesselman JM, Stanton CE, Lewis NS (1994) Principles and applications of semiconductor photoelectrochemistry. In: Progress in inorganic chemistry, Wiley, New York, vol 41. pp 21–144

    Google Scholar 

  129. Cowan AJ, Tang JW, Leng WH, Durrant JR, Klug DR (2010) Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J Phys Chem C 114(9):4208–4214

    Article  CAS  Google Scholar 

  130. Tang JW, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO(2). Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130(42):13885–13891

    Article  CAS  Google Scholar 

  131. McCrory CCL, Jung SH, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987

    Article  CAS  Google Scholar 

  132. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270

    Article  CAS  Google Scholar 

  133. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 126(21):5531–5534

    Article  Google Scholar 

  134. Lewis NS (2005) Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg Chem 44(20):6900–6911

    Article  CAS  Google Scholar 

  135. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32(3):510–519

    Article  CAS  Google Scholar 

  136. Lewis NS (1990) Mechanistic studies of light-induced charge separation at semiconductor liquid interfaces. Acc Chem Res 23(6):176–183

    Article  CAS  Google Scholar 

  137. Lewis NS (2001) Frontiers of research in photoelectrochemical solar energy conversion. J Electroanal Chem 508(1–2):1–10

    Article  CAS  Google Scholar 

  138. Yablonovitch E, Allara DL, Chang CC, Gmitter T, Bright TB (1986) Unusually low surface recombination velocity on silicon and germanium surfaces. Phys Rev Lett 57(2):249–252

    Article  CAS  Google Scholar 

  139. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  Google Scholar 

  140. Cummings CY, Marken F, Peter LM, Tahir AA, Wijayantha KGU (2012) Kinetics and mechanism of light-driven oxygen evolution at thin film alpha-Fe2O3 electrodes. Chem Commun 48(14):2027–2029

    Article  CAS  Google Scholar 

  141. Arakawa H (2002) Water photolysis by TiO2 particles-significant effect of Na2CO3 addition on water splitting. In: Kaneko M, Okura I (eds) Photocatalysis science and technology. Springer, New York, pp 235–248

    Google Scholar 

  142. Saito K, Koga K, Kudo A (2011) Lithium niobate nanowires for photocatalytic water splitting. Dalton Trans 40(15):3909–3913

    Article  CAS  Google Scholar 

  143. Yan SC, Wan LJ, Li ZS, Zou ZG (2011) Facile temperature-controlled synthesis of hexagonal Zn(2)GeO(4) nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO(2). Chem Commun 47(19):5632–5634

    Article  CAS  Google Scholar 

  144. Pala RA, Leenheer AJ, Lichterman M, Atwater HA, Lewis NS (2014) Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy Environ Sci 7(10):3424–3430

    Article  CAS  Google Scholar 

  145. Pendlebury SR, Cowan AJ, Barroso M, Sivula K, Ye JH, Gratzel M, Klug DR, Tang JW, Durrant JR (2012) Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ Sci 5(4):6304–6312

    Article  CAS  Google Scholar 

  146. Hagedorn K, Forgacs C, Collins S, Maldonado S (2010) Design considerations for nanowire heterojunctions in solar energy conversion/storage applications. J Phys Chem C 114(27):12010–12017

    Article  CAS  Google Scholar 

  147. Maruyama M, Iwase A, Kato H, Kudo A, Onishi H (2009) Time-resolved infrared absorption study of NaTaO3 photocatalysts doped with alkali earth metals. J Phys Chem C 113(31):13918–13923

    Article  CAS  Google Scholar 

  148. Garnett EC, Yang PD (2008) Silicon nanowire radial p-n junction solar cells. J Am Chem Soc 130(29):9224

    Google Scholar 

  149. Wu P, Wang J, Zhao J, Guo L, Osterloh FE (2014) Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J Mater Chem A 2(47):20338–20344

    Article  CAS  Google Scholar 

  150. Osterloh FE (2014) Boosting the efficiency of suspended photocatalysts for overall water splitting. J Phys Chem Lett 5(15):2510–2511

    Article  CAS  Google Scholar 

  151. Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K (2011) Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2(4):737–743

    Article  Google Scholar 

  152. Spray RL, McDonald KJ, Choi K-S (2011) Enhancing photoresponse of nanoparticulate alpha-Fe2O3 electrodes by surface composition tuning. J Phys Chem C 115(8):3497–3506

    Article  CAS  Google Scholar 

  153. Liang YQ, Tsubota T, Mooij LPA, van de Krol R (2011) Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J Phys Chem C 115(35):17594–17598

    Article  CAS  Google Scholar 

  154. Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133(45):18370–18377

    Article  CAS  Google Scholar 

  155. Osterloh FE (2014) Maximum theoretical efficiency limit of photovoltaic devices: effect of band structure on excited state entropy. J Phys Chem Lett 2014:3354–3359

    Article  CAS  Google Scholar 

  156. Gerischer H (1966) Electrochemical behavior of semiconductors under illumination. J Electrochem Soc 113(11):1174–1182

    Article  CAS  Google Scholar 

  157. Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11(3):174–177

    Article  CAS  Google Scholar 

  158. Hodes G, Howell IDJ, Peter LM (1992) Nanocrystalline photoelectrochemical cells – a new concept in photovoltaic cells. J Electrochem Soc 139(11):3136–3140

    Article  CAS  Google Scholar 

  159. Cesar I, Sivula K, Kay A, Zboril R, Graetzel M (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113(2):772–782

    Article  CAS  Google Scholar 

  160. Oregan B, Moser J, Anderson M, Gratzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric-field effects on the dynamics of light-induced charge separation. J Phys Chem 94(24):8720–8726

    Article  CAS  Google Scholar 

  161. Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101(49):10281–10289

    Article  CAS  Google Scholar 

  162. Giebink NC, Wiederrecht GP, Wasielewski MR, Forrest SR (2011) Thermodynamic efficiency limit of excitonic solar cells. Phys Rev B 83(19):195326-1–195326-6

    Google Scholar 

  163. Miseki Y, Kato H, Kudo A (2009) Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ Sci 2(3):306–314

    Article  CAS  Google Scholar 

  164. Matsumoto Y, Ida S, Inoue T (2008) Photodeposition of metal and metal oxide at the TiOx nanosheet to observe the photocatalytic active site. J Phys Chem C 112(31):11614–11616

    Article  CAS  Google Scholar 

  165. Sabio EM, Chi M, Browning ND, Osterloh FE (2010) Charge separation in a niobate nanosheet photocatalyst studied with photochemical labeling. Langmuir 26(10):7254–7261

    Article  CAS  Google Scholar 

  166. Li RG, Han HX, Zhang FX, Wang DG, Li C (2014) Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ Sci 7(4):1369–1376

    Article  CAS  Google Scholar 

  167. Giocondi JL, Rohrer GS (2001) Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem Mater 13(2):241–242

    Article  CAS  Google Scholar 

  168. Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH, Rossell MD, Yu P, Chu YH, Scott JF, Ager JW, Martin LW, Ramesh R (2010) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotechnol 5(2):143–147

    Article  CAS  Google Scholar 

  169. Li L, Salvador PA, Rohrer GS (2014) Photocatalysts with internal electric fields. Nanoscale 6(1):24–42

    Article  Google Scholar 

  170. Abdi FF, Han LH, Smets AHM, Zeman M, Dam B, van de Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 2013:4

    Google Scholar 

  171. Dittrich T, Belaidi A, Ennaoui A (2011) Concepts of inorganic solid-state nanostructured solar cells. Sol Energy Mater 95(6):1527–1536

    Article  CAS  Google Scholar 

  172. Du C, Yang XG, Mayer MT, Hoyt H, Xie J, McMahon G, Bischoping G, Wang DW (2013) Hematite-based water splitting with low turn-on voltages. Angew Chem Int Ed Engl 52(48):12692–12695

    Google Scholar 

  173. Pasquarelli RM, Ginley DS, O'Hayre R (2011) Solution processing of transparent conductors: from flask to film. Chem Soc Rev 40(11):5406–5441

    Article  CAS  Google Scholar 

  174. Sodergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical-models for the action spectrum and the current–voltage characteristics of microporous semiconductor-films in photoelectrochemical cells. J Phys Chem 98(21):5552–5556

    Article  Google Scholar 

  175. Hagfeldt A, Bjorksten U, Lindquist SE (1992) Photoelectrochemical studies of colloidal TIO2-films – the charge separation process studied by means of action spectra in the UV region. Sol Energy Mat Sol C 27(4):293–304

    Article  CAS  Google Scholar 

  176. Bisquert J, Vikhrenko VS (2004) Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108(7):2313–2322

    Article  CAS  Google Scholar 

  177. Hagfeldt A, Lindstrom H, Sodergren S, Lindquist SE (1995) Photoelectrochemical studies of colloidal TiO2 films – the effect of oxygen studied by photocurrent transients. J Electroanal Chem 381(1–2):39–46

    Article  Google Scholar 

  178. Abeles B, Sheng P, Coutts MD, Arie Y (1975) Structural and electrical properties of granular metal-films. Adv Phys 24(3):407–461

    Article  CAS  Google Scholar 

  179. Terrill RH, Postlethwaite TA, Chen CH, Poon CD, Terzis A, Chen AD, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson CS, Samulski ET, Murray RW (1995) Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc 117(50):12537–12548

    Article  CAS  Google Scholar 

  180. Yokoi T, Sakuma J, Maeda K, Domen K, Tatsumi T, Kondo JN (2011) Preparation of a colloidal array of NaTaO(3) nanoparticles via a confined space synthesis route and its photocatalytic application. Phys Chem Chem Phys 13(7):2563–2570

    Article  CAS  Google Scholar 

  181. Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6(8):7420–7426

    Article  CAS  Google Scholar 

  182. Liu B, Wu C-H, Miao J, Yang P (2014) All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano 8(11):11739–11744

    Article  CAS  Google Scholar 

  183. Liu J, Hisatomi T, Ma G, Iwanaga A, Minegishi T, Moriya Y, Katayama M, Kubota J, Domen K (2014) Improving the photoelectrochemical activity of La5Ti2CuS5O7 for hydrogen evolution by particle transfer and doping. Energy Environ Sci 7(7):2239–2242

    Article  CAS  Google Scholar 

  184. Minegishi T, Nishimura N, Kubota J, Domen K (2013) Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem Sci 4(3):1120–1124

    Article  CAS  Google Scholar 

  185. Urabe H, Hisatomi T, Minegishi T, Kubota J, Domen K (2014) Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discuss 176:213–223

    Google Scholar 

  186. Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Improved niobate nanoscroll photocatalysts for partial water splitting. ChemSusChem 4(2):185–190

    CAS  Google Scholar 

  187. Kronik L, Shapira Y (1999) Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37:1–206

    Article  CAS  Google Scholar 

  188. Kronik L, Shapira Y (2001) SPV review-short version. Surf Interface Anal 31:954–965

    Article  CAS  Google Scholar 

  189. Zhao J, Osterloh FE (2014) Photochemical charge separation in nanocrystal photocatalyst films – insights from surface photovoltage spectroscopy. J Phys Chem Lett 5:782–786

    Article  CAS  Google Scholar 

  190. Osterloh FE, Holmes MA, Zhao J, Chang L, Kawula S, Roehling JD, Moulé AJ (2014) P3HT:PCBM bulk-heterojunctions: observing interfacial and charge transfer states with surface photovoltage spectroscopy. J Phys Chem C 118(27):14723–14731

    Article  CAS  Google Scholar 

  191. Osterloh FE, Holmes MA, Chang L, Moule AJ, Zhao J (2013) Photochemical charge separation in poly(3-hexylthiophene) (P3HT) films observed with surface photovoltage spectroscopy. J Phys Chem C 117(51):26905–26913

    Article  CAS  Google Scholar 

  192. Lagowski J (1994) Semiconductor surface spectroscopies – the early years. Surf Sci 299(1–3):92–101

    Article  Google Scholar 

  193. Luria JL, Hoepker N, Bruce R, Jacobs AR, Groves C, Marohn JA (2012) Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film. ACS Nano 6(11):9392–9401

    Article  CAS  Google Scholar 

  194. Burstein L, Bregman J, Shapira Y (1991) Characterization of interface states at III-V compound semiconductor–metal interfaces. J Appl Phys 69(4):2312–2316

    Article  CAS  Google Scholar 

  195. Lagowski J, Jastrzebski L, Cullen GW (1981) Electronic characterization of hetero-epitaxial silicon-on-sapphire by surface photo-voltage spectroscopy. J Electrochem Soc 128(12):2665–2670

    Article  CAS  Google Scholar 

  196. Musser ME, Dahlberg SC (1980) The surface photo-voltage of polymethine semiconducting-films. J Chem Phys 72(7):4084–4088

    Article  CAS  Google Scholar 

  197. Moons E, Eschle M, Gratzel M (1997) Determination of the energy diagram of the dithioketopyrrolopyrrole/SnO2:F heterojunction by surface photovoltage spectroscopy. Appl Phys Lett 71(22):3305–3307

    Article  CAS  Google Scholar 

  198. Gross D, Mora-Sero I, Dittrich T, Belaidi A, Mauser C, Houtepen AJ, Da Como E, Rogach AL, Feldmann J (2010) Charge separation in type II tunneling multi layered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J Am Chem Soc 132(17):5981

    Google Scholar 

  199. Dittrich T, Fiechter S, Thomas A (2011) Surface photovoltage spectroscopy of carbon nitride powder. Appl Phys Lett 99(8):084105-1–084105-3

    Google Scholar 

  200. Nowotny MK, Bogdanoff P, Dittrich T, Fiechter S, Fujishima A, Tributsch H (2010) Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater Lett 64(8):928–930

    Article  CAS  Google Scholar 

  201. Zidon Y, Shapira Y, Dittrich T, Otero L (2007) Light-induced charge separation in thin tetraphenyl-porphyrin layers deposited on Au. Phys Rev B 75(19)

    Google Scholar 

  202. Mandujano-Ramirez HJ, Gonzalez-Vazquez JP, Oskam G, Dittrich T, Garcia-Belmonte G, Mora-Sero I, Bisquert J, Anta JA (2014) Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations. Phys Chem Chem Phys 16(9):4082–4091

    Article  CAS  Google Scholar 

  203. Fungo F, Milanesio ME, Durantini EN, Otero L, Dittrich T (2007) Optically induced switch of the surface work function in TiO2/porphyrin-C-60 dyad system. J Mater Chem 17(20):2107–2112

    Article  CAS  Google Scholar 

  204. Herzog C, Belaidi A, Ogacho A, Dittrich T (2009) Inorganic solid state solar cell with ultra-thin nanocomposite absorber based on nanoporous TiO(2) and In(2)S(3). Energy Environ Sci 2(9):962–964

    Article  CAS  Google Scholar 

  205. Maeda K, Mallouk TE (2009) Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J Mater Chem 19(27):4813–4818

    Article  CAS  Google Scholar 

  206. Compton OC, Osterloh FE (2009) Niobate nanosheets as catalysts for photochemical water splitting into hydrogen and hydrogen peroxide. J Phys Chem C 113(1):479–485

    Article  CAS  Google Scholar 

  207. Lide DR (2008) Electron work function of the elements. In: CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton

    Google Scholar 

  208. Wang J, Osterloh FE (2014) Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J Mater Chem A 2:9405–9411

    Article  CAS  Google Scholar 

  209. Kudo A, Ueda K, Kato H, Mikami I (1998) Photocatalytic O-2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett 53(3–4):229–230

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the National Science Foundation under CHE – 1152250 and CBET − 1133099. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. The author thanks the Research Corporation for Science Advancement for a Scialog award, and Kathryn A. Newton for help with proofreading the manuscript and with obtaining copyrights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Osterloh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osterloh, F.E. (2015). Nanoscale Effects in Water Splitting Photocatalysis. In: Tüysüz, H., Chan, C. (eds) Solar Energy for Fuels. Topics in Current Chemistry, vol 371. Springer, Cham. https://doi.org/10.1007/128_2015_633

Download citation

Publish with us

Policies and ethics