Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy

  • Bo Cheng
  • Shuxun CuiEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 369)


Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.


AFM Desorption Inherent elasticity Macromolecules Mechanochemistry Molecular motor Non-covalent interactions Polymer models QM calculations Single-molecule elasticity SMFS Supramolecular chemistry Supramolecular polymer Water rearrangement 



Atomic force spectroscopy


Allyl-3-methylimidazolium chloride








Degree of polymerization


Double-stranded DNA


Freely jointed chain

Force curve

Force-extension curve


Freely rotating chain


Guanidine chloride


Host-stabilized charge transfer


Ionic liquid




Molecular dynamics


Modified FJC






Poly(4-vinyl pyridine)




Poly(2-acrylamido-2-methyl propane sulfonic acid)


Phosphate buffered saline




Polyethylene glycol










Poly(vinyl alcohol)


Room temperature


Single-molecule force spectroscopy


Single-stranded DNA




Worm-like chain




Methanol molar fraction



This work was supported by the Natural Science Foundation of China (21222401, 21074102), the program for New Century Excellent Talents in University (NCET-11-0708), and the Fundamental Research Funds for the Central Universities (SWJTU11ZT05, SWJTU12CX001).


  1. 1.
    Lehn J-M (1985) Science 227:849CrossRefGoogle Scholar
  2. 2.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071CrossRefGoogle Scholar
  3. 3.
    Lehn J-M (2013) Angew Chem Int Ed 52:2836CrossRefGoogle Scholar
  4. 4.
    Lehn J-M (2007) Chem Soc Rev 36:151CrossRefGoogle Scholar
  5. 5.
    Lehn JM (2002) Proc Natl Acad Sci U S A 99:4763Google Scholar
  6. 6.
    Lehn JM (2002) Polym Int 51:825CrossRefGoogle Scholar
  7. 7.
    Gulik-Krzywicki T, Fouquey C, Lehn J (1993) Proc Natl Acad Sci U S A 90:163Google Scholar
  8. 8.
    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727CrossRefGoogle Scholar
  9. 9.
    Rief M, Oesterhelt F, Heymann B, Gaub HE (1997) Science (Washington D.C.) 275:1295Google Scholar
  10. 10.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Science 276:1109CrossRefGoogle Scholar
  11. 11.
    Hugel T, Seitz M (2001) Macromol. Rapid Commun 22:989CrossRefGoogle Scholar
  12. 12.
    Janshoff A, Neitzert M, Oberdorfer Y, Fuchs H (2000) Angew Chem Int Ed 39:3212CrossRefGoogle Scholar
  13. 13.
    Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE (2000) Biophys J 78:1997CrossRefGoogle Scholar
  14. 14.
    Rief M, Clausen-Schaumann H, Gaub HE (1999) Nat Struct Mol Biol 6:346CrossRefGoogle Scholar
  15. 15.
    Marszalek PE, Lu H, Li HB, Carrion-Vazquez M, Oberhauser AF, Schulten K, Fernandez JM (1999) Nature 402:100CrossRefGoogle Scholar
  16. 16.
    Li YR, Qin M, Li Y, Cao Y, Wang W (2014) Langmuir 30:4358CrossRefGoogle Scholar
  17. 17.
    Fuhrmann A, Getfert S, Fu Q, Reimann P, Lindsay S, Ros R (2012) Biophys J 102:2381CrossRefGoogle Scholar
  18. 18.
    Friddle RW, Noy A, De Yoreo JJ (2012) Proc Natl Acad Sci U S A 109:13573Google Scholar
  19. 19.
    Jiang ZH, Zhang YH, Yu Y, Wang ZQ, Zhang X, Duan XR, Wang S (2010) Langmuir 26:13773CrossRefGoogle Scholar
  20. 20.
    Song B, Schönherr H (2012) Supramolecular chemistry. Wiley, LtdGoogle Scholar
  21. 21.
    Schroeder T, Walhorn V, Mattay J, Anselmetti D (2012) Analytical Methods in Supramolecular Chemistry. Volume 1&2, Second Edition: 559 Wiley Online LibraryGoogle Scholar
  22. 22.
    Neuman KC, Nagy A (2008) Nat Methods 5:491CrossRefGoogle Scholar
  23. 23.
    Liu K, Song Y, Feng W, Liu N, Zhang W, Zhang X (2011) J Am Chem Soc 133:3226CrossRefGoogle Scholar
  24. 24.
    Liu N, Peng B, Lin Y, Su Z, Niu Z, Wang Q, Zhang W, Li H, Shen J (2010) J Am Chem Soc 132:11036CrossRefGoogle Scholar
  25. 25.
    Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930CrossRefGoogle Scholar
  26. 26.
    Oesterhelt F, Rief M, Gaub HE (1999) New J Phys 1:6.1CrossRefGoogle Scholar
  27. 27.
    Zhang W, Zhang X (2003) Prog Polym Sci 28:1271CrossRefGoogle Scholar
  28. 28.
    Marszalek PE, Oberhauser AF, Pang Y, Fernandez JM (1998) Nature 396:661CrossRefGoogle Scholar
  29. 29.
    Zhang WK, Zou S, Wang C, Zhang X (2000) J Phys Chem B 104:10258CrossRefGoogle Scholar
  30. 30.
    Liu C, Cui S, Wang Z, Zhang X (2005) J Phys Chem B 109:14807CrossRefGoogle Scholar
  31. 31.
    Cui S, Albrecht C, Kühner F, Gaub HE (2006) J Am Chem Soc 128:6636CrossRefGoogle Scholar
  32. 32.
    Cui S, Yu J, Kuehner F, Schulten K, Gaub HE (2007) J Am Chem Soc 129:14710CrossRefGoogle Scholar
  33. 33.
    Kudera M, Eschbaumer C, Gaub HE, Schubert US (2003) Adv Func Mater 13:615CrossRefGoogle Scholar
  34. 34.
    Kuehner F, Erdmann M, Sonnenberg L, Serr A, Morfill J, Gaub HE (2006) Langmuir 22:11180CrossRefGoogle Scholar
  35. 35.
    Sonnenberg L, Luo Y, Schlaad H, Seitz M, Coelfen H, Gaub HE (2007) J Am Chem Soc 129:15364CrossRefGoogle Scholar
  36. 36.
    Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimCrossRefGoogle Scholar
  37. 37.
    Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Science 276:1112CrossRefGoogle Scholar
  38. 38.
    Bustamante C, Marko JF, Siggia ED, Smith S (1994) Science (Washington, D.C.) 265:1599Google Scholar
  39. 39.
    Smith SB, Finzi L, Bustamante C (1992) Science 258:1122CrossRefGoogle Scholar
  40. 40.
    Smith SB, Cui Y, Bustamante C (1996) Science 271:795CrossRefGoogle Scholar
  41. 41.
    Li HB, Zhang WK, Xu WQ, Zhang X (2000) Macromolecules 33:465CrossRefGoogle Scholar
  42. 42.
    Bao Y, Qian HJ, Lu ZY, Cui SX (2014) Nanoscale 6:13421CrossRefGoogle Scholar
  43. 43.
    Wang K, Pang X, Cui S (2013) Langmuir 29:4315CrossRefGoogle Scholar
  44. 44.
    Flory P, Volkenstein M (1969) Statistical mechanics of chain molecules. Wiley Online LibraryGoogle Scholar
  45. 45.
    Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Nature 387:308CrossRefGoogle Scholar
  46. 46.
    Marko JF, Siggia ED (1995) Macromolecules 28:8759CrossRefGoogle Scholar
  47. 47.
    Hugel T, Rief M, Seitz M, Gaub HE, Netz RR (2005) Phys Rev Lett 94:048301CrossRefGoogle Scholar
  48. 48.
    Cui S, Yu Y, Lin Z (2009) Polymer 50:930CrossRefGoogle Scholar
  49. 49.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358CrossRefGoogle Scholar
  50. 50.
    Wan Z, Li L, Cui S (2008) Biopolymers 89:1170Google Scholar
  51. 51.
    Azizi Samir MAS, Alloin F, Dufresne A (2005) Biomacromolecules 6:612CrossRefGoogle Scholar
  52. 52.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci Pol Chem 57:651Google Scholar
  53. 53.
    Wang H, Gurau G, Rogers RD (2012) Chem Soc Rev 41:1519CrossRefGoogle Scholar
  54. 54.
    Zhang H, Wu J, Zhang J, He J (2005) Macromolecules 38:8272CrossRefGoogle Scholar
  55. 55.
    Eichhorn S, Young R (2001) Cellulose 8:197CrossRefGoogle Scholar
  56. 56.
    French AD, Johnson GP (2009) Cellulose 16:959CrossRefGoogle Scholar
  57. 57.
    Cui S (2010) Phys Chem Chem Phys 12:10147CrossRefGoogle Scholar
  58. 58.
    Tanford C (1970) Adv Prot Chem 24:195Google Scholar
  59. 59.
    Bergstrom K, Holmberg K, Safranj A, Hoffman AS, Edgell MJ, Kozlowski A, Hovanes BA, Harris JM (1992) J Biomed Mater Res 26:779CrossRefGoogle Scholar
  60. 60.
    Mandelkern L (1990) Acc Chem Res 23:380CrossRefGoogle Scholar
  61. 61.
    Begum R, Matsuura H (1997) J Am Chem Soc 93:3839Google Scholar
  62. 62.
    Watson JD, Crick FH (1953) Nature 171:737CrossRefGoogle Scholar
  63. 63.
    Kool ET, Morales JC, Guckian KM (2000) Angew Chem Int Ed 39:990CrossRefGoogle Scholar
  64. 64.
    Tanaka K, Okahata Y (1996) J Am Chem Soc 118:10679CrossRefGoogle Scholar
  65. 65.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187CrossRefGoogle Scholar
  66. 66.
    Pashley RM, McGuiggan PM, Ninham BW, Evans DF (1985) Science 229:1088CrossRefGoogle Scholar
  67. 67.
    Ball P (2008) Nature 452:291CrossRefGoogle Scholar
  68. 68.
    Brovchenko I, Krukau A, Oleinikova A, Mazur AK (2008) J Am Chem Soc 130:121CrossRefGoogle Scholar
  69. 69.
    Breslauer KJ, Frank R, Blöcker H, Marky LA (1986) Proc Natl Acad Sci U S A 83:3746Google Scholar
  70. 70.
    Miller SL (1953) Science 117:528CrossRefGoogle Scholar
  71. 71.
    Knight RD, Landweber LF (2000) Cell 101:569CrossRefGoogle Scholar
  72. 72.
    Giannotti MI, Rinaudo M, Vancso GJ (2007) Biomacromolecules 8:2648CrossRefGoogle Scholar
  73. 73.
    Haxaire K, Buhler E, Milas M, Perez S, Rinaudo M (2002) Hyaluronan, vol 1. Woodhead Publishing Ltd., Cambridge, p. 37Google Scholar
  74. 74.
    Pelton R, Chibante P (1986) Colloids Surf 20:247CrossRefGoogle Scholar
  75. 75.
    Meyer DE, Shin B, Kong G, Dewhirst M, Chilkoti A (2001) J Control Release 74:213Google Scholar
  76. 76.
    Schild H (1992) Prog Polym Sci 17:163CrossRefGoogle Scholar
  77. 77.
    Lessard D, Ousalem M, Zhu X, Eisenberg A, Carreau P (2003) J Polym Sci Pol Phys 41:1627CrossRefGoogle Scholar
  78. 78.
    Cui S, Pang X, Zhang S, Yu Y, Ma H, Zhang X (2012) Langmuir 28:5151CrossRefGoogle Scholar
  79. 79.
    Pang X, Wang K, Cui S (2013) Polymer 54:3737CrossRefGoogle Scholar
  80. 80.
    Pang X, Cui S (2013) Langmuir 29:12176CrossRefGoogle Scholar
  81. 81.
    Wang X, Qiu X, Wu C (1998) Macromolecules 31:2972CrossRefGoogle Scholar
  82. 82.
    Okada Y, Tanaka F (2005) Macromolecules 38:4465CrossRefGoogle Scholar
  83. 83.
    Cheng H, Shen L, Wu C (2006) Macromolecules 39:2325CrossRefGoogle Scholar
  84. 84.
    Tanaka F, Koga T, Winnik FM (2008) Phys Rev Lett 101:028302CrossRefGoogle Scholar
  85. 85.
    Ono Y, Shikata T (2006) J Am Chem Soc 128:10030CrossRefGoogle Scholar
  86. 86.
    Cho EC, Lee J, Cho K (2003) Macromolecules 36:9929CrossRefGoogle Scholar
  87. 87.
    Sun B, Lin Y, Wu P, Siesler HW (2008) Macromolecules 41:1512CrossRefGoogle Scholar
  88. 88.
    Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46:72CrossRefGoogle Scholar
  89. 89.
    Zhang G, Wu C (2001) Phys Rev Lett 86:822CrossRefGoogle Scholar
  90. 90.
    Winnik FM, Ringsdorf H, Venzmer J (1990) Macromolecules 23:2415CrossRefGoogle Scholar
  91. 91.
    Tanaka F, Koga T, Kojima H, Winnik FM (2009) Macromolecules 42:1321CrossRefGoogle Scholar
  92. 92.
    Katsumoto Y, Tanaka T, Ihara K, Koyama M, Ozaki Y (2007) J Phys Chem B 111:12730CrossRefGoogle Scholar
  93. 93.
    Chee CK, Hunt BJ, Rimmer S, Soutar I, Swanson L (2011) Soft Matter 7:1176CrossRefGoogle Scholar
  94. 94.
    Idziak I, Avoce D, Lessard D, Gravel D, Zhu X (1999) Macromolecules 32:1260CrossRefGoogle Scholar
  95. 95.
    Maeda Y, Nakamura T, Ikeda I (2001) Macromolecules 34:1391CrossRefGoogle Scholar
  96. 96.
    Iler RK (1966) J Colloid Interface Sci 21:569CrossRefGoogle Scholar
  97. 97.
    Decher G, Hong JD (1991) Makromol Chem Macromol Symp 46:321CrossRefGoogle Scholar
  98. 98.
    Decher G (1997) Science 277:1232CrossRefGoogle Scholar
  99. 99.
    Zhang X, Chen H, Zhang H (2007) Chem Commun 1395Google Scholar
  100. 100.
    Zhang W, Cui S, Fu Y, Zhang X (2002) J Phys Chem B 106:12705CrossRefGoogle Scholar
  101. 101.
    Cui S, Liu C, Zhang X (2003) Nano Lett 3:245CrossRefGoogle Scholar
  102. 102.
    Cui SX, Liu CJ, Zhang WK, Zhang X, Wu C (2003) Macromolecules 36:3779CrossRefGoogle Scholar
  103. 103.
    Cui S, Liu C, Wang Z, Zhang X, Strandman S, Tenhu H (2004) Macromolecules 37:946CrossRefGoogle Scholar
  104. 104.
    Netz R, Joanny J (1999) Macromolecules 32:9013CrossRefGoogle Scholar
  105. 105.
    Conti M, Bustanji Y, Falini G, Ferruti P, Stefoni S, Samori B (2001) ChemPhysChem 10:610CrossRefGoogle Scholar
  106. 106.
    Wang LY, Wang ZQ, Zhang X, Shen JC (1997) Macromol. Rapid Commun 18:509CrossRefGoogle Scholar
  107. 107.
    Wang L, Cui S, Zhang X, Jiang M, Chi L, Fuchs H (2000) Langmuir 16:10490CrossRefGoogle Scholar
  108. 108.
    Fu Y, Bai SL, Cui SX, Qiu DL, Wang ZQ, Zhang X (2002) Macromolecules 35:9451CrossRefGoogle Scholar
  109. 109.
    Han T, Williams JM, Beebe TP (1995) Anal Chim Acta 307:365CrossRefGoogle Scholar
  110. 110.
    Ray A (1971) Nature 231:313CrossRefGoogle Scholar
  111. 111.
    Lum K, Chandler D, Weeks JD (1999) J Phys Chem B 103:4570CrossRefGoogle Scholar
  112. 112.
    Zhang G, Wu C (2003) Phys Rev Lett 90:035506CrossRefGoogle Scholar
  113. 113.
    Zhao X, Zhao W, Zheng X, Rafailovich M, Sokolov J, Schwarz S, Pudensi M, Russell T, Kumar S, Fetters L (1992) Phys Rev Lett 69:776CrossRefGoogle Scholar
  114. 114.
    Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Chem Rev 109:5974CrossRefGoogle Scholar
  115. 115.
    Botana E, Da Silva E, Benet-Buchholz J, Ballester P, de Mendoza J (2007) Angew Chem Int Ed 46:198CrossRefGoogle Scholar
  116. 116.
    Bhasikuttan AC, Pal H, Mohanty J (2011) Chem Commun (Camb) 47:9959Google Scholar
  117. 117.
    Xue M, Yang Y, Chi X, Zhang Z, Huang F (2012) Acc Chem Res 45:1294CrossRefGoogle Scholar
  118. 118.
    Dong S, Zheng B, Wang F, Huang F (2014) Acc Chem Res 47:1982CrossRefGoogle Scholar
  119. 119.
    Huang Z, Yang L, Liu Y, Wang Z, Scherman OA, Zhang X (2014) Angew Chem Int Ed 53:5351CrossRefGoogle Scholar
  120. 120.
    Yan X, Wang F, Zheng B, Huang F (2012) Chem Soc Rev 41:6042CrossRefGoogle Scholar
  121. 121.
    Liu YL, Liu K, Wang ZQ, Zhang X (2011) Chem Eur J 17:9930CrossRefGoogle Scholar
  122. 122.
    Wenz G (1994) Angew Chem Int Ed 33:803Google Scholar
  123. 123.
    Rekharsky MV, Inoue Y (1998) Chem Rev 98:1875CrossRefGoogle Scholar
  124. 124.
    Schoenherr H, Beulen MWJ, Buegler J, Huskens J, van Veggel FC, Reinhoudt DN, Vancso GJ (2000) J Am Chem Soc 122:4963Google Scholar
  125. 125.
    Zapotoczny S, Auletta T, Jong MRD, Schoenherr H, Huskens J, van Veggel FC, Reinhoudt DN, Vancso GJ (2002) Langmuir 18:6988Google Scholar
  126. 126.
    Auletta T, de Jong MR, Mulder A, van Veggel FC, Huskens J, Reinhoudt DN, Zou S, Zapotoczny S, Schoenherr H, Vancso GJ, Kuipers L (2004) J Am Chem Soc 126:1577Google Scholar
  127. 127.
    Kado S, Kimura K (2003) J Am Chem Soc 125:4560CrossRefGoogle Scholar
  128. 128.
    Liu Y, Wang Z, Zhang X (2012) Chem Soc Rev 41:5922CrossRefGoogle Scholar
  129. 129.
    Kienberger F, Kada G, Gruber HJ, Pastushenko VP, Riener C, Trieb M, Knaus H-G, Schindler H, Hinterdorfer P (2000) Single Mol 1:59CrossRefGoogle Scholar
  130. 130.
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Nature 397:50CrossRefGoogle Scholar
  131. 131.
    Evans EA, Calderwood DA (2007) Science 316:1148CrossRefGoogle Scholar
  132. 132.
    Kersey FR, Yount WC, Craig SL (2006) J Am Chem Soc 128:3886CrossRefGoogle Scholar
  133. 133.
    Lehn JM (1993) Makromol. Chem. Macromol Symp 69:1CrossRefGoogle Scholar
  134. 134.
    Zou S, Schoenherr H, Vancso GJ (2005) Angew Chem Int Ed 44:956CrossRefGoogle Scholar
  135. 135.
    Zou S, Schoenherr H, Vancso GJ (2005) J Am Chem Soc 127:11230CrossRefGoogle Scholar
  136. 136.
    Evans E, Ritchie K, Merkel R (1995) Biophys J 68:2580CrossRefGoogle Scholar
  137. 137.
    Evans E, Ritchie K (1997) Biophys J 72:1541CrossRefGoogle Scholar
  138. 138.
    Evans E (2001) Annu Rev Biophys Biomol Struct 30:105CrossRefGoogle Scholar
  139. 139.
    Vancso GJ (2007) Angew Chem Int Ed 46:3794CrossRefGoogle Scholar
  140. 140.
    Embrechts A, Schonherr H, Vancso GJ (2008) J Phys Chem B 112:7359CrossRefGoogle Scholar
  141. 141.
    Embrechts A, Schonherr H, Vancso GJ (2012) J Phys Chem B 116:565CrossRefGoogle Scholar
  142. 142.
    Embrechts A, Velders AH, Schonherr H, Vancso GJ (2011) Langmuir 27:14272CrossRefGoogle Scholar
  143. 143.
    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning AP (2005) Chem Rev 105:1491CrossRefGoogle Scholar
  144. 144.
    Zhang Y, Liu C, Shi W, Wang Z, Dai L, Zhang X (2007) Langmuir 23:7911CrossRefGoogle Scholar
  145. 145.
    Ko YH, Kim E, Hwang I, Kim K (2007) Chem Commun 1305Google Scholar
  146. 146.
    Ko YH, Kim K, Kang JK, Chun H, Lee JW, Sakamoto S, Yamaguchi K, Fettinger JC, Kim K (2004) J Am Chem Soc 126:1932CrossRefGoogle Scholar
  147. 147.
    Holland NB, Hugel T, Neuert G, Cattani-Scholz A, Renner C, Oesterhelt D, Moroder L, Seitz M, Gaub HE (2003) Macromolecules 36:2015CrossRefGoogle Scholar
  148. 148.
    Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Science 296:1103CrossRefGoogle Scholar
  149. 149.
    Shi WQ, Giannotti MI, Zhang X, Hempenius MA, Sconherr H, Vancso GJ (2007) Angew Chem Int Ed 46:8400CrossRefGoogle Scholar
  150. 150.
    Van Quaethem A, Lussis P, Leigh DA, Duwez AS, Fustin CA (2014) Chem Sci 5:1449CrossRefGoogle Scholar
  151. 151.
    Lussis P, Svaldo-Lanero T, Bertocco A, Fustin CA, Leigh DA, Duwez AS (2011) Nat Nanotechnol 6:553CrossRefGoogle Scholar
  152. 152.
    Roland JT, Guan Z (2004) J Am Chem Soc 126:14328CrossRefGoogle Scholar
  153. 153.
    Chung J, Kushner AM, Weisman AC, Guan ZB (2014) Nat Mater 13:1055CrossRefGoogle Scholar
  154. 154.
    Kushner AM, Gabuchian V, Johnson EG, Guan ZB (2007) J Am Chem Soc 129:14110CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Key Lab of Advanced Technologies of Materials, Ministry of Education of ChinaSouthwest Jiaotong UniversityChengduChina

Personalised recommendations