Advertisement

Molecular Mechanochemistry: Engineering and Implications of Inherently Strained Architectures

  • Yuanchao Li
  • Sergei S. Sheiko
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 369)

Abstract

Mechanical activation of chemical bonds is usually achieved by applying external forces. However, nearly all molecules exhibit inherent strain of their chemical bonds and angles as a result of constraints imposed by covalent bonding and interactions with the surrounding environment. Particularly strong deformation of bonds and angles is observed in hyperbranched macromolecules caused by steric repulsion of densely grafted polymer branches. In addition to the tension amplification, macromolecular architecture allows for accurate control of strain distribution, which enables focusing of the internal mechanical tension to specific chemical bonds and angles. As such, chemically identical bonds in self-strained macromolecules become physically distinct because the difference in bond tension leads to the corresponding difference in the electronic structure and chemical reactivity of individual bonds within the same macromolecule. In this review, we outline different approaches to the design of strained macromolecules along with physical principles of tension management, including generation, amplification, and focusing of mechanical tension at specific chemical bonds.

Keywords

Bond tension Mechanical activation Mechanochemistry Mechanophores Molecular force probes Molecular tensile machines Self-strained molecules 

Notes

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (DMR-1122483). YL is grateful to the support from the Army Research Office National Research Council Postdoctoral Research Fellowship.

References

  1. 1.
    Wiggins KM, Brantley JN, Bielawski CW (2012) Polymer mechanochemistry: force enabled transformations. ACS Marco Lett 1:623CrossRefGoogle Scholar
  2. 2.
    Bensimon D (1996) Force: a new structural control parameter? Structure 4:885CrossRefGoogle Scholar
  3. 3.
    Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci U S A 103:7222CrossRefGoogle Scholar
  4. 4.
    Li Y, Nese A, Lebedeva NV, Davis T, Matyjaszewski K, Sheiko SS (2011) Molecular tensile machines: intrinsic acceleration of disulfide reduction by dithiothreitol. J Am Chem Soc 133:17479CrossRefGoogle Scholar
  5. 5.
    Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133CrossRefGoogle Scholar
  6. 6.
    Tennyson AG, Wiggins KM, Bielawski CW (2010) Mechanical activation of catalysts for C–C bond forming and anionic polymerization reactions from a single macromolecular reagent. J Am Chem Soc 132:16631CrossRefGoogle Scholar
  7. 7.
    Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423CrossRefGoogle Scholar
  8. 8.
    Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057CrossRefGoogle Scholar
  9. 9.
    Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623CrossRefGoogle Scholar
  10. 10.
    Klibanov AM, Samokhin GP, Martinek K, Berezin IV (1976) Enzymatic mechanochemistry: a new approach to studying the mechanism of enzyme action. Biochim Biophys Acta 438:1CrossRefGoogle Scholar
  11. 11.
    Alegre-Cebollada J, Perez-Jimenez R, Kosuri P, Fernandez JM (2010) Single-molecule force spectroscopy approach to enzyme catalysis. J Biol Chem 285:18961CrossRefGoogle Scholar
  12. 12.
    Camp RJ, Liles M, Beale J, Saeidi N, Flynn BP, Moore E, Murthy SK, Ruberti JW (2011) Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J Am Chem Soc 133:4073CrossRefGoogle Scholar
  13. 13.
    Golovin YI, Gribanovskii SL, Klyachko NL, Kabanov AV (2014) Nanomechanical control of the activity of enzymes immobilized on single-domain magnetic nanoparticles. Tech Phys 59:932CrossRefGoogle Scholar
  14. 14.
    Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184CrossRefGoogle Scholar
  15. 15.
    Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88CrossRefGoogle Scholar
  16. 16.
    Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2:718CrossRefGoogle Scholar
  17. 17.
    Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Acc Chem Res 34:412CrossRefGoogle Scholar
  18. 18.
    Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435:308CrossRefGoogle Scholar
  19. 19.
    Kolomeisky AB, Fisher ME (2007) Molecular motors: a theorist’s perspective. Annu Rev Phys Chem 58:675CrossRefGoogle Scholar
  20. 20.
    Bloom K (2008) Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma 117:103CrossRefGoogle Scholar
  21. 21.
    Stephens AD, Haase J, Vicci L, Taylor RM, Bloom K (2011) Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 193:1167CrossRefGoogle Scholar
  22. 22.
    Cross RA, McAinsh A (2014) Prime movers: the mechanochemistry of mitotic kinesins. Nat Rev Mol Cell Bio 15:257CrossRefGoogle Scholar
  23. 23.
    Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853Google Scholar
  24. 24.
    Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Single-molecule optomechanical cycle. Science 296:1103CrossRefGoogle Scholar
  25. 25.
    Lin J, Beratan DN (2004) Tunneling while pulling: the dependence of tunneling current on end-to-end distance in a flexible molecule. J Phys Chem A 108:5655CrossRefGoogle Scholar
  26. 26.
    Chang S, He J, Kibel A, Lee M, Sankey O, Zhang P, Lindsay S (2009) Tunnelling readout of hydrogen-bonding-based recognition. Nat Nanotechnol 4:297CrossRefGoogle Scholar
  27. 27.
    Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L (2009) Conductance of a single conjugated polymer as a continuous function of its length. Science 323:1193CrossRefGoogle Scholar
  28. 28.
    Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol 4:230Google Scholar
  29. 29.
    Parks JJ, Champagne AR, Costi TA, Shum WW, Pasupathy AN, Neuscamman E, Flores-Torres S, Cornaglia PS, Aligia AA, Balseiro CA, Chan GK-L, Abruña HD, Ralph DC (2010) Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328:1370CrossRefGoogle Scholar
  30. 30.
    Chen Y, Spiering AJH, KarthikeyanS PGWM, Meijer EW, Sijbesma RP (2012) Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem 4:559CrossRefGoogle Scholar
  31. 31.
    Ariga K, Mori T, Hill JP (2012) Mechanical control of nanomaterials and nanosystems. Adv Mater 24:158CrossRefGoogle Scholar
  32. 32.
    Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755CrossRefGoogle Scholar
  33. 33.
    Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655CrossRefGoogle Scholar
  34. 34.
    Brantley JN, Bailey CB, Wiggins KM, Keatinge-Clay AT, Bielawski CW (2013) Mechanobiochemistry: harnessing biomacromolecules for force-responsive materials. Polym Chem 4:3916CrossRefGoogle Scholar
  35. 35.
    Groote R, Jakobs RTM, Sijbesma RP (2013) Mechanocatalysis: forcing latent catalysts into action. Polym Chem 4:4846CrossRefGoogle Scholar
  36. 36.
    Ashkin A, Schutze K, Dziedzic JM, Euteneuer U, Schliwa M (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346CrossRefGoogle Scholar
  37. 37.
    Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method. Part I. Experimental. Exp Cell Res 1:37CrossRefGoogle Scholar
  38. 38.
    Smith S, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122CrossRefGoogle Scholar
  39. 39.
    Florin E, Moy V, Gaub H (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415CrossRefGoogle Scholar
  40. 40.
    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727CrossRefGoogle Scholar
  41. 41.
    Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci U S A 98:468CrossRefGoogle Scholar
  42. 42.
    Kishino A, Yanagida T (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334:74CrossRefGoogle Scholar
  43. 43.
    Evans E, Ritchie K, Merkel R (1995) Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J 68:2580CrossRefGoogle Scholar
  44. 44.
    Yang Q-Z, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R (2009) A molecular force probe. Nat Nanotechnol 4:302CrossRefGoogle Scholar
  45. 45.
    Park I, Sheiko SS, Nese A, Matyjaszewski K (2009) Molecular tensile testing machines: breaking a specific covalent bond by adsorption-induced tension in brushlike macromolecules. Macromolecules 42:1805CrossRefGoogle Scholar
  46. 46.
    Lenhardt JM, Black AL, Craig SL (2009) gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J Am Chem Soc 131:10818Google Scholar
  47. 47.
    Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113CrossRefGoogle Scholar
  48. 48.
    Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284CrossRefGoogle Scholar
  49. 49.
    Zhurkov SN (1965) Int J Fract Mech 1:311Google Scholar
  50. 50.
    Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618CrossRefGoogle Scholar
  51. 51.
    Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541CrossRefGoogle Scholar
  52. 52.
    Saitta AM, Soper PD, Wasserman E, Klein ML (1999) Influence of a knot on the strength of a polymer strand. Nature 399:46CrossRefGoogle Scholar
  53. 53.
    Beyer MK (2000) The mechanical strength of a covalent bond calculated by density functional theory. J Chem Phys 112:7307CrossRefGoogle Scholar
  54. 54.
    Hummer G, Szabo A (2003) Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J 85:5CrossRefGoogle Scholar
  55. 55.
    Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101CrossRefGoogle Scholar
  56. 56.
    Ribas-Arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609CrossRefGoogle Scholar
  57. 57.
    Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412Google Scholar
  58. 58.
    Huang Z, Boulatov R (2011) Chemomechanics: chemical kinetics for multiscale phenomena. Chem Soc Rev 40:2359CrossRefGoogle Scholar
  59. 59.
    Jiang D-L, Aida T (1997) Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 388:454CrossRefGoogle Scholar
  60. 60.
    Larsen MB, Boydston AJ (2013) “Flex-activated” mechanophores: using polymer mechanochemistry to direct bond bending activation. J Am Chem Soc 135:8189CrossRefGoogle Scholar
  61. 61.
    Larsen MB, Boydston AJ (2014) Successive mechanochemical activation and small molecule release in an elastomeric material. J Am Chem Soc 136:1276CrossRefGoogle Scholar
  62. 62.
    Gao J, Weiner JH (1990) Bond forces and pressure in diatomic liquids. Mol Phys 70:299CrossRefGoogle Scholar
  63. 63.
    Weiner JH, Berman DH (1985) Bond forces in long-chain molecules. J Chem Phys 82:548CrossRefGoogle Scholar
  64. 64.
    Gao J, Weiner JH (1989) Excluded-volume effects in rubber elasticity. 4. Nonhydrostatic contribution to stress. Macromolecules 22:979CrossRefGoogle Scholar
  65. 65.
    Beiermann BA, Kramer SLB, Moore JS, White SR, Sottos NR (2011) Role of mechanophore orientation in mechanochemical reactions. ACS Marco Lett 1:163CrossRefGoogle Scholar
  66. 66.
    von Baeyer A (1885) Ber Dtsch Chem Ges 18:2278CrossRefGoogle Scholar
  67. 67.
    Wiberg KB (1986) The concept of strain in organic chemistry. Angew Chem Int Ed 25:312CrossRefGoogle Scholar
  68. 68.
    Liebman JF, Greenberg A (1976) A survey of strained organic molecules. Chem Rev 76:311CrossRefGoogle Scholar
  69. 69.
    Murray RW (1989) Chemistry of dioxiranes. 12. Dioxiranes. Chem Rev 89:1187CrossRefGoogle Scholar
  70. 70.
    Tochtermann W, Olsson G (1989) 3-Heteroquadricyclanes in organic synthesis. Chem Rev 89:1203CrossRefGoogle Scholar
  71. 71.
    Alder RW (1989) Strain effects on amine basicities. Chem Rev 89:1215CrossRefGoogle Scholar
  72. 72.
    Michl J, Gladysz J (1989) Strained organic compounds: introduction. Chem Rev 89:973CrossRefGoogle Scholar
  73. 73.
    Moszner N, Zeuner F, Völkel T, Rheinberger V (1999) Synthesis and polymerization of vinylcyclopropanes. Macromol Chem Phys 200:2173CrossRefGoogle Scholar
  74. 74.
    Boileau S, Illy N (2011) Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog Polym Sci 36:1132CrossRefGoogle Scholar
  75. 75.
    Wong HNC, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T (1989) Use of cyclopropanes and their derivatives in organic synthesis. Chem Rev 89:165CrossRefGoogle Scholar
  76. 76.
    Ferguson LN (1973) Highlights of alicyclic chemistry. Franklin Publishing Co., PalisadesGoogle Scholar
  77. 77.
    Benson SW (1968) Themraochemical kinetics. Wiley, New YorkGoogle Scholar
  78. 78.
    Bastiansen O, Fritsch FN, Hedberg K (1964) Least-squares refinement of molecular structures from gaseous electron-diffraction sector-microphotometer data. III. Refinement of cyclopropane. Acta Crystallogr 17:538CrossRefGoogle Scholar
  79. 79.
    Jones WJ, Stoicheff BP (1964) High-resolution Raman spectroscopy of gases: XVIII. Pure rotational spectra of cyclopropane and cyclopropane-d6. Can J Phys 42:2259CrossRefGoogle Scholar
  80. 80.
    Lide JDR (1960) Microwave spectrum, structure, and dipole moment of propane. J Chem Phys 33:1514CrossRefGoogle Scholar
  81. 81.
    Seubold JFH (1953) Carbon-carbon bond dissociation energies in the cycloalkanes. J Chem Phys 21:1616CrossRefGoogle Scholar
  82. 82.
    Cottrell TL (1958) The strengths of chemical bonds. Butterworths, LondonGoogle Scholar
  83. 83.
    Coulson CA, Moffitt WE (1947) Strain in non-tetrahedral carbon atoms. J Chem Phys 15:151CrossRefGoogle Scholar
  84. 84.
    Coulson CA, Moffitt WE (1949) The properties of certain strained hydrocarbons. Philoso Mag Ser 7 40:1Google Scholar
  85. 85.
    Coulson CA, Goodwin TH (1962) Bent bonds in cycloalkanes. J Chem Soc (Resumed) 557:2851Google Scholar
  86. 86.
    Lipscomb WN, Stevens RM, Switkes E, Laws EA (1971) Self-consistent-field studies of the electronic structures of cyclopropane and benzene. J Am Chem Soc 93:2603CrossRefGoogle Scholar
  87. 87.
    Wu D, Lenhardt JM, Black AL, Akhremitchev BB, Craig SL (2010) Molecular stress relief through a force-induced irreversible extension in polymer contour length. J Am Chem Soc 132:15936CrossRefGoogle Scholar
  88. 88.
    Klukovich HM, Kouznetsova TB, Kean ZS, Lenhardt JM, Craig SL (2012) A backbone lever-arm effect enhances polymer mechanochemistry. Nat Chem 5:110CrossRefGoogle Scholar
  89. 89.
    Wang J, Kouznetsova TB, Kean ZS, Fan L, Mar BD, Martínez TJ, Craig SL (2014) A remote stereochemical lever arm effect in polymer mechanochemistry. J Am Chem Soc 136:15162CrossRefGoogle Scholar
  90. 90.
    Kean ZS, Ramirez ALB, Craig SL (2012) High mechanophore content polyester-acrylate ABA block copolymers: synthesis and sonochemical activation. J Polym Sci Part A Polym Chem 50:3481CrossRefGoogle Scholar
  91. 91.
    Glynn PAR, Van Der Hoff BME, Reilly PM (1972) A general model for prediction of molecular weight distributions of degraded polymers. development and comparison with ultrasonic degradation experiments. J Macromol Sci Part A Chem 6:1653CrossRefGoogle Scholar
  92. 92.
    Glynn PAR, van der Hoff BME (1973) Degradation of polystyrene in solution by ultrasonation – a molecular weight distribution study. J Macromol Sci Part A Chem 7:1695CrossRefGoogle Scholar
  93. 93.
    Koda S, Mori H, Matsumoto K, Nomura H (1994) Ultrasonic degradation of water-soluble polymers. Polymer 35:30CrossRefGoogle Scholar
  94. 94.
    Diesendruck CE, Steinberg BD, Sugai N, Silberstein MN, Sottos NR, White SR, Braun PV, Moore JS (2012) Proton-coupled mechanochemical transduction: a mechanogenerated acid. J Am Chem Soc 134:12446CrossRefGoogle Scholar
  95. 95.
    Lenhardt JM, Ogle JW, Ong MT, Choe R, Martinez TJ, Craig SL (2011) Reactive cross-talk between adjacent tension-trapped transition states. J Am Chem Soc 133:3222CrossRefGoogle Scholar
  96. 96.
    Ramirez ALB, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL (2013) Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat Chem 5:757CrossRefGoogle Scholar
  97. 97.
    Kean ZS, Craig SL (2012) Mechanochemical remodeling of synthetic polymers. Polymer 53:1035CrossRefGoogle Scholar
  98. 98.
    Klukovich HM, Kean ZS, Iacono ST, Craig SL (2011) Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J Am Chem Soc 133:17882CrossRefGoogle Scholar
  99. 99.
    Kryger MJ, Munaretto AM, Moore JS (2011) Structure–mechanochemical activity relationships for cyclobutane mechanophores. J Am Chem Soc 133:18992CrossRefGoogle Scholar
  100. 100.
    Kean ZS, Black Ramirez AL, Yan Y, Craig SL (2012) Bicyclo[3.2.0]heptane mechanophores for the non-scissile and photochemically reversible generation of reactive bis-enones. J Am Chem Soc 134:12939CrossRefGoogle Scholar
  101. 101.
    Kean ZS, Niu Z, Hewage GB, Rheingold AL, Craig SL (2013) Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights. J Am Chem Soc 135:13598CrossRefGoogle Scholar
  102. 102.
    Waldeck DH (1991) Photoisomerization dynamics of stilbenes. Chem Rev 91:415CrossRefGoogle Scholar
  103. 103.
    Akbulatov S, Tian Y, Boulatov R (2012) Force–reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134:7620CrossRefGoogle Scholar
  104. 104.
    Lai C, Guo W, Tang X, Zhang G, Pan Q, Pei M (2011) Cross-linking conducting polythiophene with yellow-green light-emitting properties and good thermal stability via free radical polymerization and electropolymerization. Synth Met 161:1886CrossRefGoogle Scholar
  105. 105.
    Li W, Edwards SA, Lu L, Kubar T, Patil SP, Grubmüller H, Groenhof G, Gräter F (2013) Force distribution analysis of mechanochemically reactive dimethylcyclobutene. ChemPhysChem 14:2687CrossRefGoogle Scholar
  106. 106.
    Huang Z, Yang Q-Z, Khvostichenko D, Kucharski TJ, Chen J, Boulatov R (2009) Method to derive restoring forces of strained molecules from kinetic measurements. J Am Chem Soc 131:1407CrossRefGoogle Scholar
  107. 107.
    Kucharski TJ, Huang Z, Yang Q-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chem Int Ed 48:7040CrossRefGoogle Scholar
  108. 108.
    Tian Y, Kucharski TJ, Yang Q-Z, Boulatov R (2013) Model studies of force-dependent kinetics of multi-barrier reactions. Nat Commun 2013:4Google Scholar
  109. 109.
    Kucharski TJ, Yang Q-Z, Tian Y, Boulatov R (2010) Strain-dependent acceleration of a paradigmatic SN2 reaction accurately predicted by the force formalism. J Phys Chem Lett 1:2820CrossRefGoogle Scholar
  110. 110.
    Akbulatov S, Tian Y, Kapustin E, Boulatov R (2013) Model studies of the kinetics of ester hydrolysis under stretching force. Angew Chem Int Ed 52:6992CrossRefGoogle Scholar
  111. 111.
    Kean ZS, Akbulatov S, Tian Y, Widenhoefer RA, Boulatov R, Craig SL (2014) Photomechanical actuation of ligand geometry in enantioselective catalysis. Angew Chem 126:14736CrossRefGoogle Scholar
  112. 112.
    Xia F, Bronowska AK, Cheng S, Gräter F (2011) Base-catalyzed peptide hydrolysis is insensitive to mechanical stress. J Phys Chem B 115:10126CrossRefGoogle Scholar
  113. 113.
    Ayme J-F, Beves JE, Campbell CJ, Leigh DA (2013) Template synthesis of molecular knots. Chem Soc Rev 42:1700CrossRefGoogle Scholar
  114. 114.
    Bayer RK (1994) Structure transfer from a polymeric melt to the solid state. Part III: influence of knots on structure and mechanical properties of semicrystalline polymers. Colloid Polym Sci 272:910CrossRefGoogle Scholar
  115. 115.
    Ashley CW (1993) The ashley book of knots. Doubleday, New YorkGoogle Scholar
  116. 116.
    Arai Y, Yasuda R, K-i A, Harada Y, Miyata H, Kinosita K, Itoh H (1999) Tying a molecular knot with optical tweezers. Nature 399:446CrossRefGoogle Scholar
  117. 117.
    Tsuda Y, Yasutake H, Ishijima A, Yanagida T (1996) Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci USA 93:12937CrossRefGoogle Scholar
  118. 118.
    Saitta AM, Klein ML (2000) First-principles study of bond rupture of entangled polymer chains. J Phys Chem B 104:2197CrossRefGoogle Scholar
  119. 119.
    Griller D, Barclay LRC, Ingold KU (1975) Kinetic applications of electron paramagnetic resonance spectroscopy. XX. 2,4,6-Tri(tert-butyl)benzyl, -anilino, -phenoxy, and -phenylthiyl radicals. J Am Chem Soc 97:6151CrossRefGoogle Scholar
  120. 120.
    Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JEP, Carlson RMK, Fokin AA (2011) Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces. Nature 477:308CrossRefGoogle Scholar
  121. 121.
    Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759CrossRefGoogle Scholar
  122. 122.
    Panyukov S, Zhulina EB, Sheiko SS, Randall GC, Brock J, Rubinstein M (2009) Tension amplification in molecular brushes in solutions and on substrates. J Phys Chem B 113:3750CrossRefGoogle Scholar
  123. 123.
    Milchev A, Paturej J, Rostiashvili VG, Vilgis TA (2011) Thermal degradation of adsorbed bottle-brush macromolecules: a molecular dynamics simulation. Macromolecules 44:3981CrossRefGoogle Scholar
  124. 124.
    Paturej J, Kuban L, Milchev A, Vilgis TA (2012) Tension enhancement in branched macromolecules upon adhesion on a solid substrate. EPL (Europhys Lett) 97:58003CrossRefGoogle Scholar
  125. 125.
    Panyukov SV, Sheiko SS, Rubinstein M (2009) Amplification of tension in branched macromolecules. Phys Rev Lett 102:148301CrossRefGoogle Scholar
  126. 126.
    Sheiko SS, Sun FC, Randall A, Shirvanyants D, Rubinstein M, H-i L, Matyjaszewski K (2006) Adsorption-induced scission of carbon-carbon bonds. Nature 440:191CrossRefGoogle Scholar
  127. 127.
    Lebedeva NV, Sun FC, H-i L, Matyjaszewski K, Sheiko SS (2008) “Fatal adsorption” of brushlike macromolecules: high sensitivity of C–C bond cleavage rates to substrate surface energy. J Am Chem Soc 130:4228CrossRefGoogle Scholar
  128. 128.
    Lebedeva NV, Nese A, Sun FC, Matyjaszewski K, Sheiko SS (2012) Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate. Proc Natl Acad Sci U S A 109:9276CrossRefGoogle Scholar
  129. 129.
    Li Y, Nese A, Matyjaszewski K, Sheiko SS (2013) Molecular tensile machines: anti-Arrhenius cleavage of disulfide bonds. Macromolecules 46:7196CrossRefGoogle Scholar
  130. 130.
    Li Y, Nese A, Hu X, Lebedeva NV, LaJoie TW, Burdyńska J, Stefan MC, You W, Yang W, Matyjaszewski K, Sheiko SS (2014) Shifting electronic structure by inherent tension in molecular bottlebrushes with polythiophene backbones. ACS Marco Lett 3:738CrossRefGoogle Scholar
  131. 131.
    Balamurugan SS, Bantchev GB, Yang Y, McCarley RL (2005) Highly water-soluble thermally responsive poly(thiophene)-based brushes. Angew Chem Int Ed 44:4872CrossRefGoogle Scholar
  132. 132.
    Choi J, Ruiz CR, Nesterov EE (2010) Temperature-induced control of conformation and conjugation length in water-soluble fluorescent polythiophenes. Macromolecules 43:1964CrossRefGoogle Scholar
  133. 133.
    Wang M, Zou S, Guerin G, Shen L, Deng K, Jones M, Walker GC, Scholes GD, Winnik MA (2008) A water-soluble pH-responsive molecular brush of poly(N,N-dimethylaminoethyl methacrylate) grafted polythiophene. Macromolecules 41:6993CrossRefGoogle Scholar
  134. 134.
    Burdyńska J, Li Y, Aggarwal AV, Höger S, Sheiko SS, Matyjaszewski K (2014) Synthesis and arm dissociation in molecular stars with a spoked wheel core and bottlebrush arms. J Am Chem Soc 136:12762CrossRefGoogle Scholar
  135. 135.
    Park I, Nese A, Pietrasik J, Matyjaszewski K, Sheiko SS (2011) Focusing bond tension in bottle-brush macromolecules during spreading. J Mater Chem 21:8448CrossRefGoogle Scholar
  136. 136.
    Xu H, Sun FC, Shirvanyants DG, Rubinstein M, Shabratov D, Beers KL, Matyjaszewski K, Sheiko SS (2007) Molecular pressure sensors. Adv Mater 19:2930CrossRefGoogle Scholar
  137. 137.
    Park I, Shirvanyants D, Nese A, Matyjaszewski K, Rubinstein M, Sheiko SS (2010) Spontaneous and specific activation of chemical bonds in macromolecular fluids. J Am Chem Soc 132:12487CrossRefGoogle Scholar
  138. 138.
    Zheng Z, Müllner M, Ling J, Müller AHE (2013) Surface interactions surpass carbon–carbon bond: understanding and control of the scission behavior of core–shell polymer brushes on surfaces. ACS Nano 7:2284CrossRefGoogle Scholar
  139. 139.
    Matthews OA, Shipway AN, Stoddart JF (1998) Dendrimers–branching out from curiosities into new technologies. Prog Polym Sci 23:1CrossRefGoogle Scholar
  140. 140.
    de Gennes PG, Hervet H (1983) J Phys Lett 44:351Google Scholar
  141. 141.
    Yu H, Schlüter AD, Zhang B (2012) Main-chain scission of a charged fifth-generation dendronized polymer. Helvetica Chim Acta 95:2399CrossRefGoogle Scholar
  142. 142.
    Deng Y, Zhu XY (2007) A nanotumbleweed: breaking away a covalently tethered polymer molecule by noncovalent interactions. J Am Chem Soc 129:7557CrossRefGoogle Scholar
  143. 143.
    Milner ST (1991) Polymer brushes. Science 251:905CrossRefGoogle Scholar
  144. 144.
    Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677CrossRefGoogle Scholar
  145. 145.
    Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437Google Scholar
  146. 146.
    Branch DW, Wheeler BC, Brewer GJ, Leckband DE (2001) Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 22:1035CrossRefGoogle Scholar
  147. 147.
    Sharma S, Johnson RW, Desai TA (2003) Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir 20:348CrossRefGoogle Scholar
  148. 148.
    Sheiko SS, Panyukov S, Rubinstein M (2011) Bond tension in tethered macromolecules. Macromolecules 44:4520CrossRefGoogle Scholar
  149. 149.
    Tugulu S, Klok H-A (2008) Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules 9:906CrossRefGoogle Scholar
  150. 150.
    Harris MJ (1992) In: Harris MJ (ed) Poly(ethylene glycol), chemistry, biotechnological and biomedical applications. New York, PlenumCrossRefGoogle Scholar
  151. 151.
    Paripovic D, Klok H-A (2011) Improving the stability in aqueous media of polymer brushes grafted from silicon oxide substrates by surface-initiated atom transfer radical polymerization. Macromol Chem Phys 212:950CrossRefGoogle Scholar
  152. 152.
    Lerum MFZ, Chen W (2009) Acute degradation of surface-bound unsaturated polyolefins in common solvents under ambient conditions. Langmuir 25:11250CrossRefGoogle Scholar
  153. 153.
    Berron BJ, Payne PA, Jennings GK (2008) Sulfonation of surface-initiated polynorbornene films. Ind Eng Chem Res 47:7707CrossRefGoogle Scholar
  154. 154.
    Zhang Y, Ja H, Zhu Y, Chen H, Ma H (2011) Directly observed Au-S bond breakage due to swelling of the anchored polyelectrolyte. Chem Commun 47:1190CrossRefGoogle Scholar
  155. 155.
    Ward MD, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000CrossRefGoogle Scholar
  156. 156.
    Zhulina EB, Birshtein TM, Borisov OV (1995) Theory of ionizable polymer brushes. Macromolecules 28:1491CrossRefGoogle Scholar
  157. 157.
    Biesalski M, Johannsmann D, Ruhe J (2002) Synthesis and swelling behavior of a weak polyacid brush. J Chem Phys 117:4988CrossRefGoogle Scholar
  158. 158.
    Zhang Y, Lv Be LZ, Ja H, Zhang S, Chen H, Ma H (2011) Predicting Au-S bond breakage from the swelling behavior of surface tethered polyelectrolytes. Soft Matter 7:11496CrossRefGoogle Scholar
  159. 159.
    Be L, Zhou Y, Cha W, Wu Y, Hu J, Li L, Chi L, Ma H (2014) Molecular composition, grafting density and film area affect the swelling-induced Au–S bond breakage. ACS Appl Mater Inter 6:8313CrossRefGoogle Scholar
  160. 160.
    Enomoto K, Takahashi S, Iwase T, Yamashita T, Maekawa Y (2011) Degradation manner of polymer grafts chemically attached on thermally stable polymer films: swelling-induced detachment of hydrophilic grafts from hydrophobic polymer substrates in aqueous media. J Mater Chem 21:9343CrossRefGoogle Scholar
  161. 161.
    Bain ED, Dawes K, Özçam AE, Hu X, Gorman CB, Šrogl J, Genzer J (2012) Surface-initiated polymerization by means of novel, stable, non-ester-based radical initiator. Macromolecules 45:3802CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations