Advertisement

Responsive Polymers as Sensors, Muscles, and Self-Healing Materials

  • Qiang Matthew Zhang
  • Michael J. Serpe
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 369)

Abstract

Responsive polymer-based materials can adapt to their surrounding environment by expanding and shrinking. This swelling and shrinking (mechanotransduction) can result in a number of functions. For example, the response can be used to lift masses, move objects, and can be used for sensing certain species in a system. Furthermore, responsive polymers can also yield materials capable of self-healing any damage affecting their mechanical properties. In this chapter we detail many examples of how mechanical responses can be triggered by external electric and/or magnetic fields, hygroscopicity, pH, temperature, and many other stimuli. We highlight how the specific responses can be used for artificial muscles, self-healing materials, and sensors, with particular focus on detailing the polymer response yielding desired effects.

Keywords

Artificial muscles Mechanochemistry Responsive polymers Self-healing materials Sensors 

Notes

Acknowledgements

MJS acknowledges funding from the University of Alberta (the Department of Chemistry and the Faculty of Science), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Alberta Advanced Education & Technology Small Equipment Grants Program (AET/SEGP), Grand Challenges Canada, and IC-IMPACTS.

References

  1. 1.
    Derby CD (2007) Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol Bull 213:274CrossRefGoogle Scholar
  2. 2.
    Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962CrossRefGoogle Scholar
  3. 3.
    Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655CrossRefGoogle Scholar
  4. 4.
    Ionov L (2010) Actively-moving materials based on stimuli-responsive polymers. J Mater Chem 20:3382CrossRefGoogle Scholar
  5. 5.
    Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3CrossRefGoogle Scholar
  6. 6.
    Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101CrossRefGoogle Scholar
  7. 7.
    Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278CrossRefGoogle Scholar
  8. 8.
    Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199CrossRefGoogle Scholar
  9. 9.
    Zhang J, Zhang M, Tang K, Verpoort F, Sun T (2014) Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small 10:32CrossRefGoogle Scholar
  10. 10.
    Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519CrossRefGoogle Scholar
  11. 11.
    Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173CrossRefGoogle Scholar
  12. 12.
    Zhai L (2013) Stimuli-responsive polymer films. Chem Soc Rev 42:7148CrossRefGoogle Scholar
  13. 13.
    Ahn S-k, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151CrossRefGoogle Scholar
  14. 14.
    Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275CrossRefGoogle Scholar
  15. 15.
    Schild H (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163CrossRefGoogle Scholar
  16. 16.
    Maeda Y, Nakamura T, Ikeda I (2001) Changes in the hydration states of poly (N-alkylacrylamide) s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34:1391CrossRefGoogle Scholar
  17. 17.
    Idziak I, Avoce D, Lessard D, Gravel D, Zhu X (1999) Thermosensitivity of aqueous solutions of poly (N,N-diethylacrylamide). Macromolecules 32:1260CrossRefGoogle Scholar
  18. 18.
    Lutz JF (2008) Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 46:3459CrossRefGoogle Scholar
  19. 19.
    Hoogenboom R (2009) Poly (2‐oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978CrossRefGoogle Scholar
  20. 20.
    Dai S, Ravi P, Tam KC (2009) Thermo-and photo-responsive polymeric systems. Soft Matter 5:2513CrossRefGoogle Scholar
  21. 21.
    Zhang QM, Li X, Islam MR, Wei M, Serpe MJ (2014) Light switchable optical materials from azobenzene crosslinked poly (N-isopropylacrylamide)-based microgels. J Mater Chem C 2:6961CrossRefGoogle Scholar
  22. 22.
    Liu D, Chen W, Sun K, Deng K, Zhang W, Wang Z, Jiang X (2011) Resettable, multi‐readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew Chem Int Ed 50:4103CrossRefGoogle Scholar
  23. 23.
    Zhang QM, Xu W, Serpe MJ (2014) Optical devices constructed from multiresponsive microgels. Angew Chem Int Ed 53:4827CrossRefGoogle Scholar
  24. 24.
    Schumers JM, Fustin CA, Gohy JF (2010) Light‐responsive block copolymers macromol. Rapid Commun 31:1588CrossRefGoogle Scholar
  25. 25.
    Kumar S, Dory YL, Lepage M, Zhao Y (2011) Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo-and pH-sensitive release of dye. Macromolecules 44:7385CrossRefGoogle Scholar
  26. 26.
    Yan B, Boyer J-C, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714CrossRefGoogle Scholar
  27. 27.
    May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497CrossRefGoogle Scholar
  28. 28.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991CrossRefGoogle Scholar
  29. 29.
    Madden JD, Vandesteeg NA, Anquetil PA, Madden PG, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Oceanic Eng 29:706CrossRefGoogle Scholar
  30. 30.
    Madden JD, Schmid B, Hechinger M, Lafontaine SR, Madden PG, Hover FS, Kimball R, Hunter IW (2004) Application of polypyrrole actuators: feasibility of variable camber foils. IEEE J Oceanic Eng 29:738CrossRefGoogle Scholar
  31. 31.
    Colgate JE, Lynch KM (2004) Mechanics and control of swimming: a review. IEEE J Oceanic Eng 29:660Google Scholar
  32. 32.
    Mirfakhrai T, Madden JD, Baughman RH (2007) Polymer artificial muscles. Mater Today 10:30CrossRefGoogle Scholar
  33. 33.
    Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10CrossRefGoogle Scholar
  34. 34.
    Brochu P, Stoyanov H, Niu X, Pei Q (2013) All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Mater Struct 22:055022CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Liu L, Fan J, Yu K, Liu Y, Shi L, Leng J (2008) In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring. International Society for Optics and Photonics p 692610Google Scholar
  36. 36.
    Lotz P, Matysek M, Lechner P, Hamann M, Schlaak HF (2008) In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring. International Society for Optics and Photonics p 692723Google Scholar
  37. 37.
    Pei Q, Rosenthal MA, Pelrine R, Stanford S, Kornbluth RD (2003) Smart structures and materials. International Society for Optics and Photonics p 281Google Scholar
  38. 38.
    Tangboriboon N, Datsanae S, Onthong A, Kunanuruksapong R, Sirivat A (2013) Electromechanical responses of dielectric elastomer composite actuators based on natural rubber and alumina. J Elastom Plast 45:143CrossRefGoogle Scholar
  39. 39.
    Islam MR, Li X, Smyth K, Serpe MJ (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52:10330Google Scholar
  40. 40.
    Islam MR, Serpe MJ (2014) Poly (N-isopropylacrylamide) microgel-based thin film actuators for humidity sensing. RSC Adv 4:31937CrossRefGoogle Scholar
  41. 41.
    Li X, Serpe MJ (2014) Understanding and controlling the self-folding behavior of polymer-based muscles. Adv Funct Mater 24:4119Google Scholar
  42. 42.
    Jeon JH, Cheedarala RK, Kee CD, Oh IK (2013) Dry‐type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv Funct Mater 23:6007CrossRefGoogle Scholar
  43. 43.
    Jo C, Pugal D, Oh I-K, Kim KJ, Asaka K (2013) Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci 38:1037CrossRefGoogle Scholar
  44. 44.
    Palmre V, Pugal D, Kim KJ, Leang KK, Asaka K, Aabloo A (2014) Nanothorn electrodes for ionic polymer-metal composite artificial muscles. Sci Rep 4:6176CrossRefGoogle Scholar
  45. 45.
    Kumar D, Sharma R (1998) Advances in conductive polymers. Eur Polym J 34:1053CrossRefGoogle Scholar
  46. 46.
    Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C, Teyssié D (2011) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101CrossRefGoogle Scholar
  47. 47.
    Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sensor Actuat A Phys 157:96CrossRefGoogle Scholar
  48. 48.
    Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339:186CrossRefGoogle Scholar
  49. 49.
    Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:5868CrossRefGoogle Scholar
  50. 50.
    Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, Lösche M, Kremer F (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410:447CrossRefGoogle Scholar
  51. 51.
    Kondo M, Sugimoto M, Yamada M, Naka Y, J-i M, Kinoshita M, Shishido A, Yu Y, Ikeda T (2010) Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers. J Mater Chem 20:117CrossRefGoogle Scholar
  52. 52.
    Yamada M, Kondo M, Mamiya Ji YY, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light‐driven plastic motors. Angew Chem Int Ed 47:4986CrossRefGoogle Scholar
  53. 53.
    Syrett JA, Becer CR, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem 1:978CrossRefGoogle Scholar
  54. 54.
    Russell T (2002) Surface-responsive materials. Science 297:964CrossRefGoogle Scholar
  55. 55.
    Descalzo AB, Martínez‐Máñez R, Sancenon F, Hoffmann K, Rurack K (2006) The supramolecular chemistry of organic–inorganic hybrid materials. Angew Chem Int Ed 45:5924CrossRefGoogle Scholar
  56. 56.
    Becer CR, Hahn S, Fijten MW, Thijs HM, Hoogenboom R, Schubert US (2008) Libraries of methacrylic acid and oligo (ethylene glycol) methacrylate copolymers with LCST behavior. J Polym Sci A Polym Chem 46:7138CrossRefGoogle Scholar
  57. 57.
    Ladmiral V, Legge TM, Zhao Y, Perrier S (2008) “Click” chemistry and radical polymerization: potential loss of orthogonality. Macromolecules 41:6728Google Scholar
  58. 58.
    Nurmi L, Lindqvist J, Randev R, Syrett J, Haddleton DM (2009) Glycopolymers via catalytic chain transfer polymerisation (CCTP), Huisgens cycloaddition and thiol–ene double click reactions. Chem Commun 2727Google Scholar
  59. 59.
    Liu YL, Chen YW (2007) Thermally reversible cross‐linked polyamides with high toughness and self‐repairing ability from maleimide‐and furan‐functionalized aromatic polyamides. Macromol Chem Phys 208:224CrossRefGoogle Scholar
  60. 60.
    Oehlenschlaeger KK, Mueller JO, Brandt J, Hilf S, Lederer A, Wilhelm M, Graf R, Coote ML, Schmidt FG, Barner‐Kowollik C (2014) Adaptable hetero Diels–Alder networks for fast self‐healing under mild conditions. Adv Mater 26:3561CrossRefGoogle Scholar
  61. 61.
    Klukovich HM, Kean ZS, Iacono ST, Craig SL (2011) Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J Am Chem Soc 133:17882CrossRefGoogle Scholar
  62. 62.
    Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446CrossRefGoogle Scholar
  63. 63.
    Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent cross-linked polymer gels with reversible sol–gel transition and self-healing properties. Macromolecules 43:1191CrossRefGoogle Scholar
  64. 64.
    Nicolaÿ R, Kamada J, Van Wassen A, Matyjaszewski K (2010) Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43:4355CrossRefGoogle Scholar
  65. 65.
    Arisawa M, Yamaguchi M (2003) Rhodium-catalyzed disulfide exchange reaction. J Am Chem Soc 125:6624CrossRefGoogle Scholar
  66. 66.
    Yoon JA, Kamada J, Koynov K, Mohin J, Nicolaÿ R, Zhang Y, Balazs AC, Kowalewski T, Matyjaszewski K (2011) Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142CrossRefGoogle Scholar
  67. 67.
    Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012) Self‐healing of covalently cross‐linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv Mater 24:3975CrossRefGoogle Scholar
  68. 68.
    Kantor SW, Grubb WT, Osthoff RC (1954) The mechanism of the acid-catalyzed and base-catalyzed equilibration of siloxanes. J Am Chem Soc 76:5190CrossRefGoogle Scholar
  69. 69.
    Zheng P, McCarthy TJ (2012) A Surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J Am Chem Soc 134:2024CrossRefGoogle Scholar
  70. 70.
    Maes F, Montarnal D, Cantournet S, Tournilhac F, Corté L, Leibler L (2012) Activation and deactivation of self-healing in supramolecular rubbers. Soft Matter 8:1681CrossRefGoogle Scholar
  71. 71.
    Montarnal D, Tournilhac F, Hidalgo M, Couturier J-L, Leibler L (2009) Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J Am Chem Soc 131:7966CrossRefGoogle Scholar
  72. 72.
    Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng H (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24:2322CrossRefGoogle Scholar
  73. 73.
    Wilson GO, Caruso MM, Schelkopf SR, Sottos NR, White SR, Moore JS (2011) Adhesion promotion via noncovalent interactions in self-healing polymers. ACS Appl Mater Interfaces 3:3072CrossRefGoogle Scholar
  74. 74.
    Schubert US, Eschbaumer C, Hien O, Andres PR (2001) 4′-Functionalized 2,2′, 6′,2″-terpyridines as building blocks for supramolecular chemistry and nanoscience. Tetrahedron Lett 42:4705CrossRefGoogle Scholar
  75. 75.
    Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472:334CrossRefGoogle Scholar
  76. 76.
    Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-Induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. PNAS 108:2651CrossRefGoogle Scholar
  77. 77.
    Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14:297CrossRefGoogle Scholar
  78. 78.
    Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051CrossRefGoogle Scholar
  79. 79.
    Greenland BW, Burattini S, Hayes W, Colquhoun HM (2008) Design, synthesis and computational modelling of aromatic tweezer-molecules as models for chain-folding polymer blends. Tetrahedron 64:8346CrossRefGoogle Scholar
  80. 80.
    Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362CrossRefGoogle Scholar
  81. 81.
    Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678CrossRefGoogle Scholar
  82. 82.
    Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161CrossRefGoogle Scholar
  83. 83.
    Robinson DN, Peppas NA (2002) Preparation and characterization of pH-responsive poly (methacrylic acid-g-ethylene glycol) nanospheres. Macromolecules 35:3668CrossRefGoogle Scholar
  84. 84.
    Ruan C, Zeng K, Grimes CA (2003) Anal Chim Acta 497:123CrossRefGoogle Scholar
  85. 85.
    Bashir R, Hilt J, Elibol O, Gupta A, Peppas N (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81:3091CrossRefGoogle Scholar
  86. 86.
    Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693CrossRefGoogle Scholar
  87. 87.
    Weissman JM, Sunkara HB, Tse AS, Asher SA (1996) Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274:959CrossRefGoogle Scholar
  88. 88.
    Yeh P (1988) Optical waves in layered media. Wiley, New YorkGoogle Scholar
  89. 89.
    Hu L, Serpe MJ (2013) Controlling the response of color tunable poly (N-isopropylacrylamide) microgel-based etalons with hysteresis. Chem Commun 49:2649CrossRefGoogle Scholar
  90. 90.
    Schacher FH, Rupar PA, Manners I (2012) Functional block copolymers: nanostructured materials with emerging applications. Angew Chem Int Ed 51:7898CrossRefGoogle Scholar
  91. 91.
    Ye X, Qi L (2011) Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications. Nano Today 6:608CrossRefGoogle Scholar
  92. 92.
    Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534CrossRefGoogle Scholar
  93. 93.
    Marchetti M, Prager S, Cussler EL (1990) Thermodynamic predictions of volume changes in temperature-sensitive gels. 1. Theory. Macromolecules 23:1760CrossRefGoogle Scholar
  94. 94.
    Xu X, Goponenko AV, Asher SA (2008) Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials. J Am Chem Soc 130:3113CrossRefGoogle Scholar
  95. 95.
    Mafé S, Manzanares JA, English AE, Tanaka T (1997) Multiple phases in ionic copolymer gels. Phys Rev Lett 79:3086CrossRefGoogle Scholar
  96. 96.
    Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensor Actuat B Chem 150:183CrossRefGoogle Scholar
  97. 97.
    Griffete N, Frederich H, Maître A, Chehimi MM, Ravaine S, Mangeney C (2011) Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J Mater Chem 21:13052CrossRefGoogle Scholar
  98. 98.
    Sorrell CD, Carter MCD, Serpe MJ (2011) Color tunable poly (N-isopropylacrylamide)-co-acrylic acid microgel–Au hybrid assemblies. Adv Funct Mater 21:425CrossRefGoogle Scholar
  99. 99.
    Sorrell CD, Carter MCD, Serpe MJ (2011) A “paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication. ACS Appl Mater Interfaces 3:1140CrossRefGoogle Scholar
  100. 100.
    Islam MR, Serpe MJ (2013) Polyelectrolyte mediated intra and intermolecular crosslinking in microgel-based etalons for sensing protein concentration in solution. Chem Commun 49:2646CrossRefGoogle Scholar
  101. 101.
    Islam MR, Serpe MJ (2013) Penetration of polyelectrolytes into charged poly (N-isopropylacrylamide) microgel layers confined between two surfaces. Macromolecules 46:1599CrossRefGoogle Scholar
  102. 102.
    Hu L, Serpe MJ (2012) Color modulation of spatially isolated regions on a single poly (N-isopropylacrylamide) microgel based etalon. J Mater Chem 22:8199CrossRefGoogle Scholar
  103. 103.
    Sorrell CD, Serpe MJ (2011) Reflection order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons. Adv Mater 23:4088CrossRefGoogle Scholar
  104. 104.
    Gopich IV, Szabo A (2007) Single-molecule FRET with diffusion and conformational dynamics. J Phys Chem B 111:12925CrossRefGoogle Scholar
  105. 105.
    Hong SW, Kim KH, Huh J, Ahn C-H, Jo WH (2005) Design and synthesis of a new pH sensitive polymeric sensor using fluorescence resonance energy transfer. Chem Mater 17:6213CrossRefGoogle Scholar
  106. 106.
    Hong SW, Ahn C-H, Huh J, Jo WH (2006) Synthesis of a PEGylated polymeric pH sensor and its pH sensitivity by fluorescence resonance energy transfer. Macromolecules 39:7694CrossRefGoogle Scholar
  107. 107.
    Paek K, Chung S, Cho C-H, Kim BJ (2011) Fluorescent and pH-responsive diblock copolymer-coated core–shell CdSe/ZnS particles for a color-displaying, ratiometric pH sensor. Chem Commun 47:10272CrossRefGoogle Scholar
  108. 108.
    Paek K, Yang H, Lee J, Park J, Kim BJ (2014) Efficient colorimetric pH sensor based on responsive polymer–quantum dot integrated graphene oxide. ACS Nano 8:2848CrossRefGoogle Scholar
  109. 109.
    Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y (2002) Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sensor Actuat B Chem 81:158CrossRefGoogle Scholar
  110. 110.
    Matsuguchi M, Tamai K, Sakai Y (2001) SO2 gas sensors using polymers with different amino groups. Sensor Actuat B Chem 77:363CrossRefGoogle Scholar
  111. 111.
    Nanto H, Dougami N, Mukai T, Habara M, Kusano E, Kinbara A, Ogawa T, Oyabu T (2000) A smart gas sensor using polymer-film-coated quartz resonator microbalance. Sensor Actuat B Chem 66:16CrossRefGoogle Scholar
  112. 112.
    Zhang JT, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133:9152CrossRefGoogle Scholar
  113. 113.
    Asher SA, Holtz J, Liu L, Wu Z (1994) Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J Am Chem Soc 116:4997CrossRefGoogle Scholar
  114. 114.
    Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829CrossRefGoogle Scholar
  115. 115.
    Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149CrossRefGoogle Scholar
  116. 116.
    Wu Z, Ca T, Lin C, Shen D, Li G (2008) Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chem A Eur J 14:11358CrossRefGoogle Scholar
  117. 117.
    Guo C, Zhou C, Sai N, Ning B, Liu M, Chen H, Gao Z (2012) Detection of bisphenol A using an opal photonic crystal sensor. Sensor Actuat B Chem 166:17CrossRefGoogle Scholar
  118. 118.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29CrossRefGoogle Scholar
  119. 119.
    Khimji I, Kelly EY, Helwa Y, Hoang M, Liu J (2013) Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64:292CrossRefGoogle Scholar
  120. 120.
    Yin B-C, Ye B-C, Wang H, Zhu Z, Tan W (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun 48:1248CrossRefGoogle Scholar
  121. 121.
    Dave N, Chan MY, Huang P-JJ, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132:12668CrossRefGoogle Scholar
  122. 122.
    Rahman MM, X-b L, Kim J, Lim BO, Ahammad A, Lee J-J (2014) A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly (thionine) film. Sensor Actuat B Chem 202:536CrossRefGoogle Scholar
  123. 123.
    Lee E, Kim J, Myung J, Kang Y (2013) Modification of block copolymer photonic gels for colorimetric biosensors. Macromol Res 20:1219CrossRefGoogle Scholar
  124. 124.
    Islam MR, Serpe MJ (2013) Label-free detection of low protein concentration in solution using a novel colorimetric assay biosensor. Bioelectron 49:133CrossRefGoogle Scholar
  125. 125.
    Islam MR, Serpe MJ (2014) Polymer-based devices for the label-free detection of DNA in solution: low DNA concentrations yield large signals. Anal Bioanal Chem 406:4777CrossRefGoogle Scholar
  126. 126.
    Islam MR, Serpe MJ (2014) A novel label-free colorimetric assay for DNA concentration in solution. Anal Chim Acta 843:83CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations