Skip to main content

Non-analytic Spin-Density Functionals

  • Chapter
  • First Online:
Density Functionals

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 365))

  • 1939 Accesses

Abstract

We examine the integer discontinuity (or derivative discontinuity) of the exact energy functionals of Kohn–Sham density-functional theory for the spin-polarized case. The integer discontinuity and its cause, the piecewise linearity of the energy in the grand canonical ensemble, are required to improve the predictive power of density-functional approximations to the exchange-correlation energy. We show how any spin-polarized DFA can be adapted to display the proper integer discontinuity. The formalism we present here can be used to improve functionals further within spin density-functional theory and fragment-based formulations of DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work by “subdensity-matrix” we mean a density matrix corresponding to a state with strictly an integer number of electrons.

  2. 2.

    The described ensemble is not a truly zero-temperature system because the spin-interactions are neglected.

  3. 3.

    Here we use Hund’s rules as a guide. Exceptions to these rules are known [39].

References

  1. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Article  Google Scholar 

  2. Perdew J, Kurth S (2003) Density functionals for non-relativistic Coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density functional theory, volume 620 of lecture notes in physics, chapter 1. Springer, Berlin, pp 1–55. ISBN 978-3-540-03083-6

    Chapter  Google Scholar 

  3. Elliott P, Lee D, Cangi A, Burke K (2008) Semiclassical origins of density functionals. Phys Rev Lett 100:256406

    Article  Google Scholar 

  4. Lee D, Furche F, Burke K (2010) Accuracy of electron affinities of atoms in approximate density functional theory. J Phys Chem Lett 1(14):2124–2129

    Article  CAS  Google Scholar 

  5. Csonka GI, Perdew JP, Ruzsinszky A (2010) Global hybrid functionals: a look at the engine under the hood. J Chem Theory Comput 6(12):3688–3703

    Article  CAS  Google Scholar 

  6. Ruzsinszky A, Perdew JP (2011) Twelve outstanding problems in ground-state density functional theory: a bouquet of puzzles. Comput Theor Chem 963(1):2–6

    Article  CAS  Google Scholar 

  7. Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13(10):4274

    Article  CAS  Google Scholar 

  8. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691

    Article  CAS  Google Scholar 

  9. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320

    Article  CAS  Google Scholar 

  10. Perdew J (1985) What do the Kohn-Sham orbital energies mean? How do atoms dissociate? In: Dreizler RM, da Providência J (eds) Density functional methods in physics. Plenum, New York

    Google Scholar 

  11. Tempel DG, Martinez TJ, Maitra NT (2009) Revisiting molecular dissociation in density functional theory: a simple model. J Chem Theory Comput 5(4):770–780

    Article  CAS  Google Scholar 

  12. Miller JS, Epstein AJ, Reiff WM (1988) Ferromagnetic molecular charge-transfer complexes. Chem Rev 88(1):201–220

    Article  CAS  Google Scholar 

  13. Kollmar C, Kahn O (1993) Ferromagnetic spin alignment in molecular systems: an orbital approach. Acc Chem Res 26(5):259–265

    Article  CAS  Google Scholar 

  14. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186

    Article  CAS  Google Scholar 

  15. Mosquera MA, Wasserman A (2014) Integer discontinuity of density functional theory. Phys Rev A 89(5):052506

    Article  Google Scholar 

  16. Mosquera MA, Wasserman A (2013) Partition density functional theory and its extension to the spin-polarized case. Mol Phys 111(4):505–515

    Article  CAS  Google Scholar 

  17. Perdew JP (1985) Density functional theory and the band gap problem. Int J Quantum Chem 28(S19):497–523

    Article  Google Scholar 

  18. Harriman JE (1981) Orthonormal orbitals for the representation of an arbitrary density. Phys Rev A 24(2):680

    Article  CAS  Google Scholar 

  19. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76(12):6062–6065

    Article  CAS  Google Scholar 

  20. Lieb EH (1983) Density functionals for coulomb systems. Int J of Quantum Chem 24:243–277

    Article  CAS  Google Scholar 

  21. Valone SM (1980) Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344–1349

    Article  Google Scholar 

  22. Hille E, Phillips RS (1957) Functional analysis and semi-groups, vol 31. American Mathematical Society, Providence

    Google Scholar 

  23. Hormander L (1994) Notions of convexity, vol 12. Springer, Birkhäuser, Boston

    Google Scholar 

  24. Lammert PE (2007) Differentiability of Lieb functional in electronic density functional theory. Int J Quantum Chem 107(10):1943–1953

    Article  CAS  Google Scholar 

  25. Englisch H, Englisch R (1984) Exact density functionals for ground-state energies. I. General results. Phys Status Solidi B 123(2):711–721

    Article  CAS  Google Scholar 

  26. Englisch H, Englisch R (1984) Exact density functionals for ground-state energies II. Details and remarks. Phys Status Solidi B 124(1):373–379

    Article  Google Scholar 

  27. Chayes JT, Chayes L, Ruskai MB (1985) Density functional approach to quantum lattice systems. J Stat Phys 38(3–4):497–518

    Article  Google Scholar 

  28. Ayers PW (2006) Axiomatic formulations of the Hohenberg-Kohn functional. Phys Rev A 73(1):012513

    Article  Google Scholar 

  29. Kvaal S, Ekström U, Teale AM, Helgaker T (2014) Differentiable but exact formulation of density-functional theory. J Chem Phys 140(18):18A518

    Article  Google Scholar 

  30. van Leeuwen R (1998) Phys Rev Lett 80(6):1280

    Article  Google Scholar 

  31. Vignale G (2008) Phys Rev A 77:062511

    Article  Google Scholar 

  32. Mosquera MA (2013) Action formalism of time-dependent density-functional theory. Phys Rev A 88:022515

    Article  Google Scholar 

  33. Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110(2):695–700

    Article  CAS  Google Scholar 

  34. Cancès E (2001) Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers. J Chem Phys 114(24):10616–10622

    Article  Google Scholar 

  35. Capelle K, Vignale G (2001) Nonuniqueness of the potentials of spin-density-functional theory. Phys Rev Lett 86(24):5546

    Article  CAS  Google Scholar 

  36. Gidopoulos NI (2007) Potential in spin-density-functional theory of noncollinear magnetism determined by the many-electron ground state. Phys Rev B 75:134408

    Article  Google Scholar 

  37. Kutzelnigg W, Morgan JD III (1996) Hund’s rules. Z Phys D Atom Mol Cl 36(3–4):197–214

    Article  CAS  Google Scholar 

  38. Boyd RJ (1984) A quantum mechanical explanation for Hund’s multiplicity rule. Nature 310:480–481

    Article  CAS  Google Scholar 

  39. Kollmar H, Staemmler V (1978) Violation of Hund’s rule by spin polarization in molecules. Theor Chim Acta 48(3):223–239

    Article  CAS  Google Scholar 

  40. Botch BH, Dunning TH Jr (1982) Theoretical characterization of negative ions. Calculation of the electron affinities of carbon, oxygen, and fluorine. J Chem Phys 76(12):6046–6056

    Article  CAS  Google Scholar 

  41. Feller D, Davidson ER (1985) Ab initio multireference CI determinations of the electron affinity of carbon and oxygen. J Chem Phys 82(9):4135–4141

    Article  CAS  Google Scholar 

  42. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816

    Article  CAS  Google Scholar 

  43. Balawender R (2012) Thermodynamic extension of density-functional theory. III. Zero-temperature limit of the ensemble spin-density functional theory. arXiv preprint arXiv:1212.1367

    Google Scholar 

  44. Malek AM, Balawender R (2013) Discontinuities of energy derivatives in spin-density functional theory. arXiv preprint arXiv:1310.6918

    Google Scholar 

  45. von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C Solid State Phys 5(13):1629

    Article  Google Scholar 

  46. Ullrich CA, Kohn W (2001) Kohn-Sham theory for ground-state ensembles. Phys Rev Lett 87(9):093001

    Article  CAS  Google Scholar 

  47. Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126(15):154109

    Article  Google Scholar 

  48. Almbladh C-O, Von Barth U (1985) Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B 31(6):3231

    Article  CAS  Google Scholar 

  49. Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111(11):2229–2242

    Article  CAS  Google Scholar 

  50. Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev A 82(2):024501

    Article  Google Scholar 

  51. Nafziger J, Wasserman A (2012) Delocalization and static correlation in partition density-functional theory. arXiv preprint arXiv:1305.4966

    Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge support by the National Science Foundation CAREER program under Grant No. CHE-1149968. A.W. also acknowledges support from an Alfred P. Sloan Foundation Research Fellowship and a Camille-Dreyfus Teacher Scholar award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Wasserman .

Editor information

Editors and Affiliations

Appendix. Calculation of Functional Derivatives

Appendix. Calculation of Functional Derivatives

The first term on the r.h.s. of (13) can be calculated using the chain rule:

$$ {\delta}_mE\left(\overline{N},\;\left[v\right]\right)={\left.\frac{\partial E}{\partial N}\right|}_u\kern0.24em {\left.{\delta}_mN+{\delta}_wE\left(\overline{N},\kern0.24em \left[v\right]\right)\right|}_N, $$

where | u and | N mean that these objects are fixed. The second term of the r.h.s. is interpreted as

$$ \begin{array}{l}\underset{\varepsilon \to 0}{ \lim}\frac{E\left(\overline{N},\left[u\left[{n}^{\prime}\right]\right]\right)-E\left(\overline{N},\left[u\left[n\right]\right]\right)}{\varepsilon }=\underset{\varepsilon \to 0}{ \lim}\frac{E\left(\overline{N},\left[v+\varepsilon \right]\right)-E\left(\overline{N},\left[v\right]\right)}{\varepsilon}\\ {}\kern13em ={\delta}_wE\left(\overline{N},\left[v\right]\right).\end{array} $$

The differential of N is trivial:

$$ \begin{array}{l}{\delta}_mN=\underset{\varepsilon \to 0}{ \lim}\frac{N\left[n+\varepsilon m\right]-N\left[m\right]}{\varepsilon}\\ {}\kern1.2em ={\displaystyle \int m=1}.\end{array} $$

When N is fixed, |ψ〉 is only determined by u, then

$$ \begin{array}{l}{\left.{\delta}_wE\right|}_N={\delta}_w{\left.\left\langle \psi \left|{\widehat{H}}_0\right|\psi \right\rangle \right|}_N+{\delta}_w{{\displaystyle \int \left.{\mathrm{d}}^3\mathbf{r}\kern0.24em n\left(\mathbf{r}\right)u\left(\mathbf{r}\right)\right|}}_N\\ {}\kern2.4em =\Big({\delta}_w\left\langle \psi \left|\right){\widehat{H}}_0\Big|\psi \right\rangle +\mathrm{c}.\mathrm{c}.+{\displaystyle \int {\mathrm{d}}^3\mathbf{r}}\kern0.24em n\left(\mathbf{r}\right)w\left(\mathbf{r}\right)+{\displaystyle \int {\mathrm{d}}^3\mathbf{r}}\kern0.24em u\left(\mathbf{r}\right){\delta}_wn\left(\mathbf{r}\right).\end{array} $$

Note that

$$ {\left.{\delta}_wn\left(\mathbf{r}\right)\right|}_N={\displaystyle \sum_{M\in \mathbb{N}}y\left(\overline{N}-M\right)\left[\right({\delta}_w{\left.\left\langle {\psi}_M\left|\right)\widehat{n}\left(\mathbf{r}\right)\Big|{\psi}_M\right\rangle \right|}_N+\mathrm{c}.\mathrm{c}.\Big]}. $$

This allows us to express δ w E| N as

$$ \begin{array}{l}{\delta}_wE\Big|{}_N={\displaystyle \sum_{M\in \mathbb{N}}y\left(\overline{N}-M\right)\left[\right({\delta}_w\left\langle \psi \left|{\widehat{H}}_0+{\displaystyle \int {\mathrm{d}}^3\mathbf{r}\;}\widehat{n}\left(\mathbf{r}\right)u\left(\mathbf{r}\right)\right|\psi \right\rangle +\mathrm{c}.\mathrm{c}.\Big]+{\displaystyle \int {\mathrm{d}}^3\mathbf{r}\kern0.24em n\left(\mathbf{r}\right)w\left(\mathbf{r}\right)}}\\ {}\kern2.5em ={\displaystyle \sum_{M\in \mathbb{N}}y\left(\overline{N}-M\right){E}_0\left(M,\kern0.24em \left[u\right]\right){\delta}_w\left(\left\langle {\psi}_M\Big|{\psi}_M\right\rangle \right)}+{\displaystyle \int {\mathrm{d}}^3\mathbf{r}}\kern0.24em n\left(\mathbf{r}\right)w\left(\mathbf{r}\right)\\ {}\kern2.4em ={\displaystyle \int {\mathrm{d}}^3\mathbf{r}}\kern0.24em n\left(\mathbf{r}\right)w\left(\mathbf{r}\right).\end{array} $$

Noting that δ m u[n] = w, we get (14).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mosquera, M.A., Wasserman, A. (2014). Non-analytic Spin-Density Functionals. In: Johnson, E. (eds) Density Functionals. Topics in Current Chemistry, vol 365. Springer, Cham. https://doi.org/10.1007/128_2014_619

Download citation

Publish with us

Policies and ethics