Skip to main content

Gas-Phase IR Spectroscopy of Nucleobases

  • Chapter
  • First Online:
Book cover Gas-Phase IR Spectroscopy and Structure of Biological Molecules

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 364))

Abstract

IR spectroscopy of nucleobases in the gas phase reflects simultaneous advances in both experimental and computational techniques. Important properties, such as excited state dynamics, depend in subtle ways on structure variations, which can be followed by their infrared signatures. Isomer specific spectroscopy is a particularly powerful tool for studying the effects of nucleobase tautomeric form and base pair hydrogen-bonding patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine

C:

Cytosine

DRS:

Double resonant spectroscopy

G:

Guanine

T:

Thymine

U:

Uracil

References

  1. Kim SK, Lee W, Herschbach DH (1996) Cluster beam chemistry: hydration of nucleic acid bases; ionization potentials of hydrated adenine and thymine. J Phys Chem 100:7933–7937

    CAS  Google Scholar 

  2. Anderson JB, Fenn JB (1965) Velocity distributions in molecular beams from nozzle sources. Phys Fluids 8:780

    CAS  Google Scholar 

  3. Levy DH (1980) Laser spectroscopy of cold gas-phase molecules. Annu Rev Phys Chem 31:197–225

    CAS  Google Scholar 

  4. Brady BB, Peteanu LA, Levy DH (1988) The electronic spectra of the pyrimidine bases uracil and thymine in a supersonic molecular beam. Chem Phys Lett 147:538–543

    CAS  Google Scholar 

  5. Plützer C, Nir E, de Vries MS, Kleinermanns K (2001) IR-UV double-resonance spectroscopy of the nucleobase adenine. PCCP 3:5466–5469

    Google Scholar 

  6. Muller A, Talbot F, Leutwyler S (2000) Intermolecular vibrations of jet-cooled (2-pyridone)/sub 2/: a model for the uracil dimer. J Chem Phys 112:3717–3725

    CAS  Google Scholar 

  7. Muller A, Talbot F, Leutwyler S (2001) Intermolecular vibrations of the jet-cooled 2-pyridone center dot 2-hydroxypyridine mixed dimer, a model for tautomeric nucleic acid base pairs. J Chem Phys 115:5192–5202

    CAS  Google Scholar 

  8. Muller A, Talbot F, Leutwyler S (2002) Hydrogen bond vibrations of 2-aminopyridine center dot 2-pyridone, a Watson–Crick analogue of adenine center dot uracil. J Am Chem Soc 124:14486–14494

    Google Scholar 

  9. Frey JA, Muller A, Frey HM, Leutwyler S (2004) Infrared depletion spectra of 2-aminopyridine center dot 2-pyridone, a Watson–Crick mimic of adenine center dot uracil. J Chem Phys 121:8237–8245

    CAS  Google Scholar 

  10. Held A, Pratt DW (1992) Hydrogen bonding in the symmetry-equivalent C/sub 2h/ dimer of 2-pyridone in its S/sub 0/ and S/sub 2/ electronic states. Effect of deuterium substitution. J Chem Phys 96:4869–4876

    CAS  Google Scholar 

  11. Arrowsmith P, de Vries MS, Hunziker HE, Wendt HR (1988) Pulsed laser desorption near a jet orifice: concentration profiles of entrained perylene vapor. Appl Phys B 46:165–173

    Google Scholar 

  12. Meijer G, de Vries MS, Hunziker HE, Wendt HR (1990) Laser desorption jet-cooling of organic molecules. Cooling characteristics and detection sensitivity. Appl Phys B 51:395–403

    Google Scholar 

  13. Tembreull R, Lubman DM (1987) Resonant two-photon ionization of small peptides using pulsed laser desorption in supersonic beam mass spectrometry. Anal Chem 59:1003–1006

    CAS  Google Scholar 

  14. Weyssenhoff HV, Selzle HL, Schlag EW (1985) Laser-desorbed large molecules in a supersonic jet. Zeitschrift fur Naturforschung Teil A 40a:674–676

    Google Scholar 

  15. Mayorkas N, Malka I, Bar I (2011) Ionization-loss stimulated Raman spectroscopy for conformational probing of flexible molecules. PCCP 13:6808–6815

    CAS  Google Scholar 

  16. Alonso JL, López JC (2014) Microwave spectroscopy of biomolecular building blocks. Topcis Curr Chem. doi:10.1007/128_2014_601

    Google Scholar 

  17. Lopez JC, Pena MI, Sanz ME, Alonso JL (2007) Probing thymine with laser ablation molecular beam Fourier transform microwave spectroscopy. J Chem Phys 2007:126

    Google Scholar 

  18. Vaquero V, Sanz ME, Lopez JC, Alonso JL (2007) The structure of uracil: a laser ablation rotational study. J Phys Chem A 111:3443–3445

    CAS  Google Scholar 

  19. Alonso JL, Pena I, Lopez JC, Vaquero V (2009) Rotational spectral signatures of four tautomers of guanine. Angew Chem Int Ed 48:6141–6143

    CAS  Google Scholar 

  20. Alonso JL, Vaquero V, Pena I, Lopez JC, Mata S, Caminati W (2013) All five forms of cytosine revealed in the gas phase. Angew Chem Int Ed 52:2331–2334

    CAS  Google Scholar 

  21. Lopez JC, Alonso JL, Pena I, Vaquero V (2010) Hydrogen bonding and structure of uracil-water and thymine-water complexes. PCCP 12:14128–14134

    CAS  Google Scholar 

  22. Merritt JM, Douberly GE, Miller RE (2004) Infrared-infrared-double resonance spectroscopy of cyanoacetylene in helium nanodroplets. J Chem Phys 121:1309–1316

    CAS  Google Scholar 

  23. Choi MY, Dong F, Miller RE (2005) Multiple tautomers of cytosine identified and characterized by infrared laser spectroscopy in helium nanodroplets: probing structure using vibrational transition moment angles. Philos Trans R Soc Lond Ser A Mathemat Phys Eng Sci 363:393–412

    CAS  Google Scholar 

  24. Smolarek S, Rijs AM, Buma WJ, Drabbels M (2010) Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets. PCCP 12:15600–15606

    CAS  Google Scholar 

  25. Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128:7320–7328

    CAS  Google Scholar 

  26. Amirav A, Even U, Jortner J (1981) Absorption-spectroscopy of ultracold large molecules in planar supersonic expansions. Chem Phys Lett 83:1–4

    CAS  Google Scholar 

  27. Liu K, Fellers RS, Viant MR, McLaughlin RP, Brown MG, Saykally RJ (1996) A long path length pulsed slit valve appropriate for high temperature operation: infrared spectroscopy of jet-cooled large water clusters and nucleotide bases. Rev Sci Instrum 67:410–416

    CAS  Google Scholar 

  28. Viant MR, Fellers RS, Mclaughlin RP, Saykally RJ (1995) Infrared-laser spectroscopy of uracil in a pulsed slit jet. J Chem Phys 103:9502–9505

    CAS  Google Scholar 

  29. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2001) Guanine tautomerism revealed by UV-UV and IR-UV hole burning spectroscopy. J Chem Phys 115:4604–4611

    CAS  Google Scholar 

  30. Nir E, Grace L, Brauer B, de Vries MS (1999) REMPI spectroscopy of jet-cooled guanine. J Am Chem Soc 121:4896–4897

    CAS  Google Scholar 

  31. Cerny J, Spirko V, Mons M, Hobza P, Nachtigallova D (2006) Theoretical study of the ground and excited states of 7-methyl guanine and 9-methyl guanine: comparison with experiment. PCCP 8:3059–3065

    CAS  Google Scholar 

  32. Chin W, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Gorb L, Leszczynski J (2004) Gas phase rotamers of the nucleobase 9-methylguanine enol and its monohydrate: optical spectroscopy and quantum mechanical calculations. J Phys Chem A 108:8237–8243

    CAS  Google Scholar 

  33. Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomerism of the DNA base guanine and its methylated derivatives as studied by gas-phase infrared and ultraviolet spectroscopy. J Phys Chem A 106:5088–5094

    CAS  Google Scholar 

  34. Chin W, Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomer contribution's to the near UV spectrum of guanine: towards a refined picture for the spectroscopy of purine molecules. Eur Phys J D 20:347–355

    CAS  Google Scholar 

  35. Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Ultraviolet spectroscopy and tautomerism of the DNA base guanine and its hydrate formed in a supersonic jet. Chem Phys 270:205–214

    CAS  Google Scholar 

  36. Marian CM (2007) The guanine tautomer puzzle: quantum chemical investigation of ground and excited states. J Phys Chem A 111:1545–1553

    CAS  Google Scholar 

  37. Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J Phys Chem A 110:10921–10924

    CAS  Google Scholar 

  38. Seefeld K, Brause R, Häber T, Kleinermanns K (2007) Imino tautomers of gas-phase guanine from mid-infrared laser spectroscopy. J Phys Chem A 111:6217–6221

    CAS  Google Scholar 

  39. Asami H, Urashima S, Tsukamoto M, Motoda A, Hayakawa Y, Saigusa H (2012) Controlling glycosyl bond conformation of guanine nucleosides: stabilization of the anti conformer in 5′-O-ethylguanosine. J Phys Chem Lett 3:571–575

    CAS  Google Scholar 

  40. Asami H, Tsukamoto M, Hayakawa Y, Saigusa H (2010) Gas-phase isolation of diethyl guanosine 5′-monophosphate and its conformational assignment. PCCP 12:13918–13921

    CAS  Google Scholar 

  41. Abo-Riziq A, Crews BO, Compagnon I, Oomens J, Meijer G, Von Helden G, Kabelac M, Hobza P, de Vries MS (2007) The mid-IR spectra of 9-ethyl guanine, guanosine, and 2-deoxyguanosine. J Phys Chem A 111:7529–7536

    CAS  Google Scholar 

  42. Plützer C, Kleinermanns K (2002) Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. PCCP 4:4877–4882

    Google Scholar 

  43. Brown RD, Godfrey PD, McNaughton D, Pierlot A (1989) A study of the major gas-phase tatomer of adenine by microwave spectroscopy. Chem Phys Lett 156:61–63

    CAS  Google Scholar 

  44. Lee Y, Schmitt M, Kleinermanns K, Kim B (2006) Observation of ultraviolet rotational band contours of the DNA base adenine: determination of the transition moment. J Phys Chem A 110:11819–11823

    CAS  Google Scholar 

  45. Kim NJ, Jeong G, Kim YS, Sung J, Kim SK, Park YD (2000) Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine. J Chem Phys 113:10051–10055

    CAS  Google Scholar 

  46. Tomic K, Tatchen J, Marian CM (2005) Quantum chemical investigation of the electronic spectra of the keto, enol, and keto-imine tautomers of cytosine. J Phys Chem A 109:8410–8418

    CAS  Google Scholar 

  47. Trygubenko SA, Bogdan TV, Rueda M, Orozco M, Luque FJ, Sponer J, Slavicek P, Hobza P (2002) Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution – Part 1. Cytosine PCCP 4:4192–4203

    CAS  Google Scholar 

  48. Kobayashi R (1998) A CCSD(T) study of the relative stabilities of cytosine tautomers. J Phys Chem A 102:10813–10817

    CAS  Google Scholar 

  49. Szczesniak M, Szczepaniak K, Kwiatkowski JS, Kubulat K, Person WB (1988) Matrix-isolation infrared studies of nucleic-acid constituents. 5. Experimental matrix-isolation and theoretical ab initio SCF molecular-orbital studies of the infrared-spectra of cytosine monomers. J Am Chem Soc 110:8319–8330

    CAS  Google Scholar 

  50. Brown RD, Godfrey PD, McNaughton D, Pierlot A (1989) Tautomers of cytosine by microwave spectroscopy. J Am Chem Soc 111:2308–2310

    CAS  Google Scholar 

  51. Trygubenko SA, Bogdan TV, Rueda M, Orozco M, Luque FJ, Sponer J, Slavíek P, Hobza P (2002) Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Part 1. Cytosine. PCCP 4:4192–4204

    Google Scholar 

  52. Nir E, Muller M, Grace LI, de Vries MS (2002) REMPI spectroscopy of cytosine. Chem Phys Lett 355:59–64

    CAS  Google Scholar 

  53. Nir E, Hünig I, Kleinermanns K, de Vries MS (2003) The nucleobase cytosine and the cytosine dimer investigated by double resonance laser spectroscopy and ab initio calculations. PCCP 5:4780–4785

    CAS  Google Scholar 

  54. Nowak MJ, Szczepaniak K, Barski A, Shugar D (1978) Spectroscopic studies on vapor-phase tautomerism of natural bases found in nucleic-acids. Z Naturforsch C 33:876–883

    Google Scholar 

  55. Brown RD, Godfrey PD, McNaughton D, Pierlot A (1988) The microwave spectrum of uracil. J Am Chem Soc 110:2329–2330

    CAS  Google Scholar 

  56. Brown RD, Godfrey PD, Mcnaughton D, Pierlot AP (1989) Microwave-spectrum of the major gas-phase tautomer of thymine. J Chem Soc Chem Comm 1989:37–38

    Google Scholar 

  57. Kunitski M, Nosenko Y, Brutschy B (2011) On the nature of the long-lived “dark” state of isolated 1-methylthymine. ChemPhysChem 12:2024–2030

    CAS  Google Scholar 

  58. Oepts D, van der Meer AFG, van Amersfoort PW (1995) The free-electron-laser user facility FELIX. Infrared Phys Technol 36:297–308

    CAS  Google Scholar 

  59. van Zundert GCP, Jaeqx S, Berden G, Bakker JM, Kleinermanns K, Oomens J, Rijs AM (2011) IR spectroscopy of isolated neutral and protonated adenine and 9-methyladenine. ChemPhysChem 12:1921–1927

    Google Scholar 

  60. Salpin JY, Guillaumont S, Tortajada J, MacAleese L, Lemaire J, Maitre P (2007) Infrared spectra of protonated uracil, thymine and cytosine. ChemPhysChem 8:2235–2244

    CAS  Google Scholar 

  61. Oomens J, Moehlig AR, Morton TH (2010) Infrared multiple photon dissociation (IRMPD) spectroscopy of the proton-bound dimer of 1-methylcytosine in the gas phase. J Phys Chem Lett 1:2891–2897

    CAS  Google Scholar 

  62. Yang B, Wu RR, Berden G, Oomens J, Rodgers MT (2013) Infrared multiple photon dissociation action spectroscopy of proton-bound dimers of cytosine and modified cytosines: effects of modifications on gas-phase conformations. J Phys Chem B 117:14191–14201

    CAS  Google Scholar 

  63. Ung HU, Moehlig AR, Kudla RA, Mueller LJ, Oomens J, Berden G, Morton TH (2013) Proton-bound dimers of 1-methylcytosine and its derivatives: vibrational and NMR spectroscopy. PCCP 15:19001–19012

    CAS  Google Scholar 

  64. Yang B, Wu RR, Polfer NC, Berden G, Oomens J, Rodgers MT (2013) IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation. J Am Soc Mass Spectrom 24:1523–1533

    CAS  Google Scholar 

  65. Nei YW, Akinyemi TE, Kaczan CM, Steill JD, Berden G, Oomens J, Rodgers MT (2011) Infrared multiple photon dissociation action spectroscopy of sodiated uracil and thiouracils: effects of thioketo-substitution on gas-phase conformation. Int J Mass spectrom 308:191–202

    CAS  Google Scholar 

  66. Nei YW, Akinyemi TE, Steill JD, Oomens J, Rodgers MT (2010) Infrared multiple photon dissociation action spectroscopy of protonated uracil and thiouracils: effects of thioketo-substitution on gas-phase conformation. Int J Mass spectrom 297:139–151

    CAS  Google Scholar 

  67. Crampton KT, Rathur AI, Nei YW, Berden G, Oomens J, Rodgers MT (2012) Protonation preferentially stabilizes minor tautomers of the halouracils: IRMPD action spectroscopy and theoretical studies. J Am Soc Mass Spectrom 23:1469–1478

    CAS  Google Scholar 

  68. Nei YW, Crampton KT, Berden G, Oomens J, Rodgers MT (2013) Infrared multiple photon dissociation action spectroscopy of deprotonated RNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 117:10634–10649

    CAS  Google Scholar 

  69. Nei YW, Hallowita N, Steill JD, Oomens J, Rodgers MT (2013) Infrared multiple photon dissociation action spectroscopy of deprotonated DNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 117:1319–1335

    CAS  Google Scholar 

  70. Ligare M, Rijs AM, Berden G, Kabelac M, Nachtigallova D, Oomens J, de Vries MS (2014) Resonant IRMPD of nucleotide monophosphate anionic clusters. Submitted

    Google Scholar 

  71. Sobolewski AL, Domcke W, Hättig C (2005) Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc Natl Acad Sci U S A 102:17903–17906

    CAS  Google Scholar 

  72. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2002) Pairing of the nucleobases guanine and cytosine in the gas phase studied by IR-UV double-resonance spectroscopy and ab initio calculations. PCCP 4:732–739

    CAS  Google Scholar 

  73. Mayorkas N, Izbitski S, Bernat A, Bar I (2012) Simultaneous ionization-detected stimulated raman and visible-visible-ultraviolet hole-burning spectra of two tryptamine conformers. J Phys Chem Lett 3:603–607

    CAS  Google Scholar 

  74. Brauer B, Gerber RB, Kabelac M, Hobza P, Bakker JM, Riziq AGA, de Vries MS (2005) Vibrational spectroscopy of the G center dot center dot center dot C base pair: experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings. J Phys Chem A 109:6974–6984

    CAS  Google Scholar 

  75. Plützer C, Hünig I, Kleinermanns K, Nir E, de Vries MS (2003) Pairing of isolated nucleobases: double resonance laser spectroscopy of adenine-thymine. ChemPhysChem 4:838–842

    Google Scholar 

  76. Crews B, Abo-Riziq A, Grace L, Callahan M, Kabelac M, Hobza P, de Vries MS (2005) IR-UV double resonance spectroscopy of guanine-H2O clusters. PCCP 7:3015–3020

    CAS  Google Scholar 

  77. Asami H, Yagi K, Ohba M, Urashima S, Saigusa H (2013) Stacked base-pair structures of adenine nucleosides stabilized by the formation of hydrogen-bonding network involving the two sugar groups. Chem Phys 419:84–89

    CAS  Google Scholar 

  78. Saigusa H, Urashima S, Asami H (2009) IR-UV double resonance spectroscopy of the hydrated clusters of guanosine and 9-methylguanine: evidence for hydration structures involving the sugar group. J Phys Chem A 113:3455–3462

    CAS  Google Scholar 

  79. Saigusa H, Urashima S, Asami H, Ohba M (2010) Microhydration of the guanine–guanine and guanine–cytosine base pairs. J Phys Chem A 114:11231–11237

    Google Scholar 

  80. Zeleny T, Hobza P, Kabelac M (2009) Microhydration of guanine center dot center dot center dot cytosine base pairs, a theoretical study on the role of water in stability, structure and tautomeric equilibrium. PCCP 11:3430–3435

    CAS  Google Scholar 

  81. Kabelac M, Ryjacek F, Hobza P (2000) Already two water molecules change planar H-bonded structures of the adenine … thymine base pair to the stacked ones: a molecular dynamics simulations study. PCCP 2:4906–4909

    CAS  Google Scholar 

  82. Callahan MP, Gengeliczki Z, Svadlenak N, Valdes H, Hobza P, de Vries MS (2008) Non-standard base pairing and stacked structures in methyl xanthine clusters. PCCP 10:2819–2826

    CAS  Google Scholar 

  83. Callahan MP, Crews B, Abo-Riziq A, Grace L, de Vries MS, Gengeliczki Z, Holmes TM, Hill GA (2007) IR-UV double resonance spectroscopy of xanthine. PCCP 9:4587–4591

    CAS  Google Scholar 

  84. Plützer C, Hünig I, Kleinermanns K (2003) Pairing of the nucleobase adenine studied by IR-UV double-resonance spectroscopy and ab initio calculations. PCCP 5:1158–1163

    Google Scholar 

  85. Smith VR, Samoylova E, Ritze HH, Radloff W, Schultz T (2010) Excimer states in microhydrated adenine clusters. PCCP 12:9632–9636

    CAS  Google Scholar 

  86. Malone RJ, Miller AM, Kohler B (2003) Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption. Photochem Photobiol 77:158–164

    CAS  Google Scholar 

  87. Nachtigallova D, Lischka H, Szymczak JJ, Barbatti M, Hobza P, Gengeliczki Z, Pino G, Callahan MP, de Vries MS (2010) The effect of C5 substitution on the photochemistry of uracil. PCCP 12:4924–4933

    CAS  Google Scholar 

  88. Mburu E, Matsika S (2008) An ab initio study of substituent effects on the excited states of purine derivatives. J Phys Chem A 112:12485–12491

    CAS  Google Scholar 

  89. Kistler KA, Matsika S (2007) Cytosine in context: a theoretical study of substituent effects on the excitation energies of 2-pyrimidinone derivatives. J Phys Chem A 111:8708–8716

    CAS  Google Scholar 

  90. Broo A (1998) A theoretical investigation of the physical reason for the very different luminescence properties of the two isomers adenine and 2-aminopurine. J Phys Chem A 102:526–531

    CAS  Google Scholar 

  91. Andreasson J, Holmén A, Albinsson B (1999) The photophysical properties of the adenine chromophore. J Phys Chem B 103:9782–9789

    CAS  Google Scholar 

  92. Mishra SK, Shukla MK, Mishra PC (2000) Electronic spectra of adenine and 2-aminopurine: an ab initio study of energy level diagrams of different tautomers in gas phase and aqueous solution. Spectrochim Acta Part A 56:1355–1384

    Google Scholar 

  93. Lührs DC, Viallon J, Fischer I (2001) Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Phys Chem Chem Phys 3:1827–1831

    Google Scholar 

  94. Kang H, Jung B, Kim SK (2003) Mechanism for ultrafast internal conversion of adenine. J Chem Phys 118:6717–6719

    CAS  Google Scholar 

  95. Sobolewski AL, Domcke W (2002) On the mechanism of nonradiative decay of DNA bases: ab initio and TDDFT results for the excited states of 9H-adenine. Eur Phys J D 20:369–374

    CAS  Google Scholar 

  96. Barbatti M, Lischka H (2007) Can the nonadiabatic photodynamics of aminopyrimidine be a model for the ultrafast deactivation of adenine? J Phys Chem A 111:2852–2858

    CAS  Google Scholar 

  97. Marian CM (2005) A new pathway for the rapid decay of electronically excited adenine. J Chem Phys 122:104314

    Google Scholar 

  98. Hünig I, Plützer C, Seefeld KA, Löwenich D, Nispel M, Kleinermanns K (2004) Photostability of isolated and paired nucleobases: N–H dissociation of adenine and hydrogen transfer in its base pairs examined by laser spectroscopy. ChemPhysChem 5:1427–1431

    Google Scholar 

  99. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2019

    Google Scholar 

  100. Zierhut M, Roth W, Fischer I (2004) Dynamics of H-atom loss in adenine. PCCP 6:5178–5183

    CAS  Google Scholar 

  101. Zechmann G, Barbatti M (2008) Ab initio study of the photochemistry of aminopyrimidine. Int J Quantum Chem 108:1266–1276

    CAS  Google Scholar 

  102. Kistler KA, Matsika S (2008) Three-state conical intersections in cytosine and pyrimidinone bases. J Chem Phys 128

    Google Scholar 

  103. Kistler KA, Matsika S (2007) Radiationless decay mechanism of cytosine: an ab initio study with comparisons to the fluorescent analogue 5-methyl-2-pyrimidinone. J Phys Chem A 111:2650–2661

    CAS  Google Scholar 

  104. Yarasi S, Brost P, Loppnow GR (2007) Initial excited-state structural dynamics of thymine are coincident with the expected photochemical dynamics. J Phys Chem A 111:5130–5135

    CAS  Google Scholar 

  105. Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408:949–951

    CAS  Google Scholar 

  106. Abo-Riziq A, Grace L, Nir E, Kabelac M, Hobza P, de Vries MS (2005) Photochemical selectivity in guanine-cytosine base-pair structures. Proc Natl Acad Sci U S A 102:20–23

    CAS  Google Scholar 

  107. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239

    CAS  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the National Science Foundation under CHE-1301305 and by NASA under Grant No. NNX12AG77G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattanjah S. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Vries, M.S. (2014). Gas-Phase IR Spectroscopy of Nucleobases. In: Rijs, A., Oomens, J. (eds) Gas-Phase IR Spectroscopy and Structure of Biological Molecules. Topics in Current Chemistry, vol 364. Springer, Cham. https://doi.org/10.1007/128_2014_577

Download citation

Publish with us

Policies and ethics