Skip to main content

Halogen Bond: A Long Overlooked Interaction

  • Chapter
  • First Online:
Book cover Halogen Bonding I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 358))

Abstract

Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Hassel’s structures the halogen molecules adopt a symmetrical location along the sixfold axis of benzene and form infinite ∙∙∙C6H6∙∙∙Br–Br∙∙∙C6H6∙∙∙Br–Br∙∙∙C6H6∙∙∙ chains. More recent X-ray measurements of the Br2∙∙∙C6H6 system at lower temperature than Hassel’s [55] reveal a less symmetric arrangement where bromine atoms are positioned over the rim of the benzene ring and the calculated hapticity (η = 1.52) is midway between the “over-atom” (η = 1.0) and “over-bond” (η = 2.0) coordination. A phase transition at 203 K leads to the diffraction pattern reported by Hassel and Strømme.

  2. 2.

    Lectures were given by: Peter Politzer (Cleveland State University, USA), Anthony C. Legon (University of Bristol, UK), Lee Brammer (University of Sheffield, UK), William Jones (University of Cambridge, UK), William T. Pennington (Clemson University, USA), Nancy S. Goroff (State University of New York, Stony Brook, USA), Milko E. van der Boom (The Weizmann Institute of Science, IL), Pierangelo Metrangolo (Politecnico di Milano, IT), Kari Rissanen (University of Jyväskylä, FL), Bernd Schöllhorn (Ecole Normale Supérieure Paris, FR), Duncan W. Bruce (University of York, UK), Hiroshi Yamamoto (RIKEN, JP), Shing P. Ho (Colorado State University, USA), and Patrick Lam (Bristol-Myers Squibb Research and Development, USA). Presented topics spanned modeling, crystal engineering, drug-receptor optimization, and material sciences.

References

  1. Colin JJ (1814) Sur l’iode. Ann Chim 91:252–272

    Google Scholar 

  2. Guthrie F (1863) XXVIII. – On the iodide of iodammonium. J Chem Soc 16:239–244

    Article  Google Scholar 

  3. Pelletier P, Caventou JJ (1819) Sur l’asphyxie. Ann Chim 10:142–177

    Google Scholar 

  4. Svensson PH, Kloo L (2003) Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem Rev 103:1649–1684

    Article  CAS  Google Scholar 

  5. Jörgensen SM (1870) Ueber Einige anorganische Superjodide. J Prakt Chem 2:347–360

    Article  Google Scholar 

  6. Roussopoulos O (1883) Einwirkung von Chinolin Auf Chloroform und Iodoform. Ber 16:202–203

    Article  Google Scholar 

  7. Remsen I, Norris JF (1896) Action of the halogens on the methylamines. Am Chem J 18:90–95

    CAS  Google Scholar 

  8. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  10. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon–protein complexes: a structural survey. Chem Soc Rev 40:2267–2278

    Article  CAS  Google Scholar 

  11. Schwerdtfeger P (2006) Atomic static dipole polarizabilities. In: Maroulis G (ed) Atoms, molecules and clusters in electric fields. Imperial College Press, London, pp 1–32

    Chapter  Google Scholar 

  12. Cardillo P, Corradi E, Lunghi A, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) The N⋯I intermolecular interaction as a general protocol for the formation of perfluorocarbon–hydrocarbon supramolecular architectures. Tetrahedron 56:5535–5550

    Google Scholar 

  13. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246

    Article  CAS  Google Scholar 

  14. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm 13:6593–6596

    Article  CAS  Google Scholar 

  15. Chopra D, Guru Row TN (2011) Role of organic fluorine in crystal engineering. CrystEngComm 13:2175–2186

    Article  CAS  Google Scholar 

  16. Pavan MS, Durga Prasad K, Guru Row TN (2013) Halogen bonding in fluorine: experimental charge density study on intermolecular F∙∙∙F and F∙∙∙S donor–acceptor contacts. Chem Commun 49:7558–7560

    Article  CAS  Google Scholar 

  17. Legon AC (1999) Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B-XY of the hydrogen bond B – HX. Angew Chem Int Ed 38:2686–2714

    Google Scholar 

  18. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  19. Legon AC (1999) Angew Chem Int Ed 38:2686–2714

    Google Scholar 

  20. Ault BS, Andrews L (1976) Matrix reactions of alkali metal fluoride molecules with fluorine. Infrared and Raman spectra of the trifluoride ion in the M+F3 species. J Am Chem Soc 98:1591–1593

    Article  CAS  Google Scholar 

  21. Ault BS, Andrews L (1977) Infrared and Raman spectra of the M+F3 ion pairs and their mixed chlorine-fluorine counterparts in solid argon. Inorg Chem 16:2024–2028

    Article  CAS  Google Scholar 

  22. Riedel S, Kochner T, Wang X, Andrews L (2010) Polyfluoride anions, a matrix-isolation and quantum-chemical investigation. Inorg Chem 49:7156–7164

    Article  CAS  Google Scholar 

  23. Wentworth WE, Dojahn JG, Chen ECM (1996) Characterization of homonuclear diatomic ions by semiempirical Morse potential energy curves. 1. The halogen anions. J Phys Chem 100:9649–9657

    Article  Google Scholar 

  24. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 112:10856–10863

    Article  CAS  Google Scholar 

  25. Desiraju GR (2011) A bond by any other name. Angew Chem Int Ed 50:52–59

    Article  CAS  Google Scholar 

  26. Andrews LJ, Keefer RM (1964) Molecular complexes in organic chemistry. Holden-day Inc, San Francisco London Amsterdam

    Google Scholar 

  27. Foster R (1969) Organic charge-transfer complexes. Academic, London New York

    Google Scholar 

  28. Foster R (ed) (1973) Molecular complexes, vols 1 and 2. Elek Science, London

    Google Scholar 

  29. Laurence C, Gal J-F (2010) Lewis basicity and affinity scales. Wiley, Chichester

    Google Scholar 

  30. Metrangolo P, Pilati T, Resnati G, Stevenazzi A (2003) Halogen bonding driven self-assembly of fluorocarbons and hydrocarbons. Curr Opinion Colloid Interface Sci 8:215–222

    Article  CAS  Google Scholar 

  31. Fox DB, Liantonio R, Metrangolo P, Pilati T, Resnati G (2004) Perfluorocarbon-hydrocarbons self-assembly: halogen bonding mediated intermolecular recognition. J Fluorine Chem 125:271–281

    Article  CAS  Google Scholar 

  32. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  33. Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) Engineering functional materials by halogen bonding. J Polym Sci A Polym Chem 45:1–15

    Article  CAS  Google Scholar 

  34. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen bonding -a novel interaction for rational drug design? J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  35. Lu Y, Wang Y, Zhu W (2010) Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12:4543–4551

    Article  CAS  Google Scholar 

  36. Rissanen K (2008) Halogen bonded supramolecular complexes and networks. CrystEngComm 10:1107–1113

    Article  CAS  Google Scholar 

  37. Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen bonding in crystal engineering. In: Metrangolo P, Resnati G (eds) Halogen bonding: fundamentals and applications; structure and bonding series, vol 126, Springer-Verlag. Berlin, Heidelberg, pp 105–136

    Chapter  Google Scholar 

  38. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: sigma-hole bonding. Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  39. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  40. Bertani R, Sgarbossa P, Venzo A, Lelj F, Amati M, Resnati G, Pilati T, Metrangolo P, Terraneo G (2010) Halogen bonding in metal–organic–supramolecular networks. Coord Chem Rev 254:677–695

    Article  CAS  Google Scholar 

  41. Wilcken R, Zimmermann M, Lange A, Joerger A, Boeckler F (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388

    Article  CAS  Google Scholar 

  42. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46:2686–2695

    Article  CAS  Google Scholar 

  43. Troff RW, Mäkelä T, Topić FP, Valkonen A, Raatikainen K, Rissanen K (2013) Alternative motifs for halogen bonding. Eur J Org Chem 1617–1637

    Google Scholar 

  44. Benesi HA, Hildebrand JH (1948) Ultraviolet absorption bands of iodine in aromatic hydrocarbons. J Am Chem Soc 70:2832–2833

    Article  CAS  Google Scholar 

  45. Benesi HA, Hildebrand JH (1949) Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  46. Mulliken RS (1950) Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J Am Chem Soc 72:600–608

    Article  CAS  Google Scholar 

  47. Mulliken RS (1952) Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J Phys Chem 56:801–822

    Article  CAS  Google Scholar 

  48. Rosokha SV,·Kochi JK (2008) X-Ray structures and electronic spectra of the π-halogen complexes between halogen donors and acceptors with π-receptors. In: Metrangolo P, Resnati G (eds) Halogen bonding: fundamentals and applications. Structure and bonding series, vol. 126. Springer-Verlag, Berlin, Heidelberg, pp 137–169

    Google Scholar 

  49. Burdeniuc J, Sanford M, Crabtree RH (1998) Amine charge transfer complexes of perfluoroalkanes and an application to poly(tetrafluoroethylene) surface functionalization. J Fluorine Chem 91:49–54

    Article  CAS  Google Scholar 

  50. Hassel O, Hvoslef J (1954) The structure of bromine 1,4-dioxanate. Acta Chem Scand 8:873

    Article  CAS  Google Scholar 

  51. Hassel O, Rømming C (1962) Direct structural evidence for weak charge-transfer bonds in solid containing chemically saturated molecules. Q Rev Chem Soc 16:1–18

    Article  CAS  Google Scholar 

  52. Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Science 170:497–502

    Article  CAS  Google Scholar 

  53. Hassel O, Strømme KO (1958) Structure of the crystalline compound benzene-bromine (1:1). Acta Chem Scand 12:1146

    Article  CAS  Google Scholar 

  54. Hassel O, Strømme KO (1959) Crystal structure of the addition compound benzene-chlorine (1:1). Acta Chem Scand 13:1781–1786

    Article  CAS  Google Scholar 

  55. Vasilyev AV, Lindeman SV, Kochi JK (2001) Noncovalent binding of the halogens to aromatic donors. Discrete structures of labile Br2 complexes with benzene and toluene. Chem Commun 909–910

    Google Scholar 

  56. Brown RS (1997) Investigation of the early steps in electrophilic bromination through the study of the reaction with sterically encumbered olefins. Acc Chem Res 30:131–137

    Article  CAS  Google Scholar 

  57. Lenoir D, Chiappe C (2003) What is the nature of the first-formed intermediates in the electrophilic halogenation of alkenes, alkynes, and allenes? Chem Eur J 9:1037–1044

    Google Scholar 

  58. Bent HA (1968) Structural chemistry of donor–acceptor interactions. Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  59. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around the carbon-halogen bond. J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  60. Desiraju GR, Parthasarathy R (1989) The nature of halogen-halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J Am Chem Soc 111:8725–8726

    Article  CAS  Google Scholar 

  61. Dumas JM, Gomel L, Guerin M (1983) Molecular interactions involving organic halides. In: Patai S, Rappoport Z (eds) The chemistry of functional groups, supplement D. Wiley, New York, pp 985–1020

    Google Scholar 

  62. Legon AC (1998) π-Electron “donor –acceptor” complexes B∙∙∙ClF and the existence of the “chlorine bond.” Chem Eur J 4:1890–1897

    Google Scholar 

  63. Abate A, Biella S, Cavallo G, Meyer F, Neukirch H, Metrangolo P, Pilati T, Resnati G, Terraneo G (2009) Halide anions driven self-assembly of haloperfluoroarenes: formation of one-dimensional non-covalent copolymers. J Fluorine Chem 130:1171–1177

    Article  CAS  Google Scholar 

  64. Cauliez P, Polo V, Roisnel T, Llusar R, Fourmigue M (2010) The thiocyanate anion as a polydentate halogen bond acceptor. CrystEngComm 12:558–566

    Article  CAS  Google Scholar 

  65. Viger-Gravel J, Leclerc S, Korobkov I, Bryce DL (2013) Correlation between 13C chemical shifts and the halogen bonding environment in a series of solid para-diiodotetrafluorobenzene complexes. CrystEngComm 15:3168–3177

    Article  CAS  Google Scholar 

  66. Grebe J, Geiseler G, Harms K, Dehnicke K (1999) Donor-acceptor complexes of halide ions with 1,4-diiodotetrafluorobenzene. Z Naturforsch B Chem Sci 54:77–86

    CAS  Google Scholar 

  67. Liantonio R, Metrangolo P, Pilati RG (2003) Fluorous interpenetrated layers in a three-component crystal matrix. Cryst Growth Des 3:355–361

    Article  CAS  Google Scholar 

  68. Cavallo MP, Pilati RG, Sansotera M, Terraneo G (2010) Halogen bonding: a general route in anion recognition and coordination. Chem Soc Rev 39:3772–3783

    Article  CAS  Google Scholar 

  69. Metrangolo P, Pilati T, Terraneo G, Biella S, Resnati G (2009) Anion coordination and anion-templated assembly under halogen bonding control. CrystEngComm 11:1187–1196

    Article  CAS  Google Scholar 

  70. Abate A, Martí-Rujas J, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Tetrahedral oxyanions in halogen-bonded coordination networks. Cryst Growth Des 11:4220–4226

    Article  CAS  Google Scholar 

  71. Walsh RB, Padgett CW, Metrangolo P, Resnati G, Hanks TW, Pennington TW (2001) Crystal engineering through halogen bonding: complexes of nitrogen heterocycles with organic iodides. Cryst Growth Des 1:165–175

    Article  CAS  Google Scholar 

  72. Liantonio R, Luzzati S, Metrangolo P, Pilati T, Resnati G (2002) Perfluorocarbon–hydrocarbon self-assembly. Part 16: anilines as new electron donor modules for halogen bonded infinite chain formation. Tetrahedron 58:4023–4029

    Article  CAS  Google Scholar 

  73. Cincic D, Friscic T, Jones W (2008) Isostructural materials achieved by using structurally equivalent donors and acceptors in halogen-bonded cocrystals. Chem Eur J 14:747–753

    Article  CAS  Google Scholar 

  74. Liu P, Ruan C, Li T, Ji B (2012) Cyclo­hexa-2,5-diene-1,4-dione–1,2,4,5-tetra­fluoro-3,6-diiodo­benzene (1/1). Acta Crystallogr Sect E Struct Rep 68:o1431

    Article  CAS  Google Scholar 

  75. Arman HD, Gieseking RL, Hanks TW, Pennington WT (2010) Complementary halogen and hydrogen bonding: sulfuriodine interactions and thioamide ribbons. Chem Commun 46:1854–1856

    Article  CAS  Google Scholar 

  76. Arman HD, Rafferty ER, Bayse CA, Pennington WT (2012) Complementary selenium∙∙∙iodine halogen bonding and phenyl embraces: cocrystals of triphenylphosphine selenide with organoiodides. Cryst Growth Des 12:4315–4323

    Article  CAS  Google Scholar 

  77. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:17821786

    Article  Google Scholar 

  78. Sgarbossa P, Bertani R, Di Noto V, Piga M, Giffin GA, Terraneo G, Pilati T, Metrangolo P, Resnati G (2012) Interplay between structural and dielectric features of new low k hybrid organic–organometallic supramolecular ribbons. Cryst Growth Des 12:297–305

    Article  CAS  Google Scholar 

  79. Aakeroy CB, Desper J, Helfrich BA, Metrangolo P, Pilati T, Resnati G, Stevenazzi A (2007) Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains. Chem Commun 4236–4238

    Google Scholar 

  80. Meazza L, Foster JA, Fucke K, Metrangolo P, Resnati G, Steed JW (2013) Halogen-bonding-triggered supramolecular gel formation. Nat Chem 5:42–47

    Article  CAS  Google Scholar 

  81. Messina MT, Metrangolo P, Panzeri W, Pilati T, Resnati G (2001) Intermolecular recognition between hydrocarbon oxygen-donors and perfluorocarbon iodine-acceptors: the shortest O⋯I non-covalent bond. Tetrahedron 57:8543–8550

    Article  CAS  Google Scholar 

  82. Britton D, Gleason WB (2002) Dicyanodurene-p-tetrafluorodiiodobenzene (1/1). Acta Crystallogr Sect E Struct Rep 58:o1375–o1377

    Article  CAS  Google Scholar 

  83. Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7:2511–2519

    Google Scholar 

  84. Lunghi A, Cardillo P, Messina T, Metrangolo P, Panzeri W, Resnati G (1998) Perfluorocarbon—hydrocarbon self assembling. Thermal and vibrational analyses of one-dimensional networks formed by α, ω-diiodoperfluoroalkanes with K.2.2. and K.2.2.2. J Fluorine Chem 91:191–194

    Article  CAS  Google Scholar 

  85. Foucaud A (1983) Positive halogen compounds. In: Patai S, Rappoport Z (eds) The chemistry of functional groups, supplement D. Wiley, New York, pp 441–480

    Google Scholar 

  86. Du Mont WW, Ruthe F (1999) Iodophosphonium salt structures: homonuclear cation–anion interactions leading to supramolecular assemblies. Coord Chem Rev 189:101–133

    Article  Google Scholar 

  87. Grinblat J, Ben-Zion M, Hoz S (2001) Halophilic reactions: anomalies in bromine transfer reactions. J Am Chem Soc 123:10738–10739

    Article  CAS  Google Scholar 

  88. Zefirov NS, Makhon’kov D (1982) X-Philic Reactions. Chem Rev 82:615–624

    Article  CAS  Google Scholar 

  89. Koser GF (1983) Halonium ions. In: Patai S, Rappoport Z (eds) The chemistry of functional groups, supplement D. Wiley, New York, pp 1265–1352

    Google Scholar 

  90. Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon. Acta Cryst B41:274–279

    Article  CAS  Google Scholar 

  91. Murray JS, Paulsen K, Politzer P (1994) Molecular-surface electrostatic potentials in the analysis of non-hydrogen-bonding noncovalent interactions. Proc Indian Acad Sci Ser Chim 106:267–275

    CAS  Google Scholar 

  92. Brinck T, Murray JS, Politzer P (1992) Surface electrostatic of halogenated methanes as indicators of directional intermolecular interactions. In J Quantum Chem 44:57–64

    Article  Google Scholar 

  93. Brinck T, Murray JS, Politzer P (1993) Molecular-surface electrostatic potentials and local ionization energies of group V-VII hydrides and their anions – relationships for aqueous and gas-phase acidities. Int J Quantum Chem 48:73–88

    Article  CAS  Google Scholar 

  94. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  95. Ritter SK (2009) Halogen bonding begins to fly. Chem Eng News 87:39–42

    Google Scholar 

  96. Rogers RD (2011) Halogen bonding: weak interactions result in strong opinions. Cryst Growth Des 11:4721–4722

    Article  CAS  Google Scholar 

  97. Metrangolo P, Resnati G (2012) Halogen bonding: where we are and where we are going. Cryst Growth Des 12:5835–5838

    Article  CAS  Google Scholar 

  98. Zingaro R, Hedges R (1961) Phosphine oxide-halogen complexes: effect on P–O and P–S stretching frequencies. J Phys Chem 65:1132–1138

    Article  CAS  Google Scholar 

  99. Martire DE, Sheridan JP, King JW, O’Donnell SE (1976) Thermodynamics of molecular association. 9. An NMR study of hydrogen bonding of CHC13 and CHBr3 to di-n-octyl ether, di-n-octyl thioether, and di-n-octylmethylamine. J Am Chem Soc 98:3101–3106

    Article  CAS  Google Scholar 

  100. Dumas JM, Peurichard H, Gomel M (1978) CX4∙∙∙base interactions as models of weak charge-transfer interactions: comparison with strong charge-transfer and hydrogen-bond interactions. J Chem Res (S) 54–55; J Chem Res (M) 0649–0663

    Google Scholar 

  101. Blackstock SC, Lorand JP, Kochi JK (1987) Charge-transfer interactions of amines with tetrahalomethanes. X-Ray crystal structures of the donor-acceptor complexes of quinuclidine and diazabicyclo[2.2.2]octane with carbon tetrabromide. J Org Chem 52:1451–1460

    Article  CAS  Google Scholar 

  102. Glaser R, Murphy RF (2006) What’s in a name? Noncovalent Ar–Cl∙(H–Ar’)n interactions and terminology based on structure and nature of the bonding. CrystEngComm 8:948–951

    Article  CAS  Google Scholar 

  103. Metrangolo P, Pilati T, Resnati G (2006) Halogen bonding and other noncovalent interactions involving halogens: a terminology issue. CrystEngComm 8:946–947

    Article  CAS  Google Scholar 

  104. Laurence C, Graton J, Gal J-F (2011) An overview of Lewis basicity and affinity scales. J Chem Educ 88:1651–1657

    Article  CAS  Google Scholar 

  105. Lu YX, Zou JW, Yu QS, Jiang YJ, Zhao WN (2007) Ab initio investigation of halogen bonding interactions involving fluorine as an electron acceptor. Chem Phys Lett 449:6–10

    Article  CAS  Google Scholar 

  106. Raghavendra B, Arunan E (2007) Unpaired and σ bond electrons as H, Cl, and Li bond acceptors: an anomalous one-electron blue-shifting chlorine bond. J Phys Chem A 111:9699–9706

    Article  CAS  Google Scholar 

  107. Karan NK, Arunan E (2004) Chlorine bond distances in ClF and Cl2 complexes. J Mol Struct 688:203–205

    Article  CAS  Google Scholar 

  108. Rosokha SV, Neretin IS, Rosokha TY, Hecht J, Kochi JK (2006) Charge-transfer character of halogen bonding: molecular structures and electronic spectroscopy of carbon tetrabromide and bromoform complexes with organic σ- and π-donors. Heteroatom Chem 17:449–459

    Article  CAS  Google Scholar 

  109. Imakubo T, Tajima N, Tamura M, Kato R, Nishio Y, Kajita K (2003) Crystal design of organic conductors using the iodine bond. Synth Met 135–136:601–602

    Article  Google Scholar 

  110. Laurence C, Graton J, Berthelot M, El Ghomari MJ (2011) The diiodine basicity scale: toward a general halogen-bond basicity scale. Chem Eur J 17:10431–10444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all colleagues, graduate and Ph.D. students, and postdoctoral associates who worked with us on XB. Some of them are mentioned in the references. Their dedication and enthusiasm has been fundamental. The authors are also grateful to the IUPAC for supporting the project no. 2009-032-1-100 “Categorizing Halogen Bonding and Other Noncovalent Interactions Involving Halogen Atoms.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Cavallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cavallo, G., Metrangolo, P., Pilati, T., Resnati, G., Terraneo, G. (2014). Halogen Bond: A Long Overlooked Interaction. In: Metrangolo, P., Resnati, G. (eds) Halogen Bonding I. Topics in Current Chemistry, vol 358. Springer, Cham. https://doi.org/10.1007/128_2014_573

Download citation

Publish with us

Policies and ethics