Skip to main content

The Ring and Exchange-Ring Approximations Based on Kohn–Sham Reference States

  • Chapter
  • First Online:
Density Functionals

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 365))

Abstract

The ring or random-phase approximation (RPA) method combined with Kohn–Sham reference states has become established as an alternative method to common ab initio wave function methods for the description of the electronic structure of molecules and solids. The reason for this lies in the fact that the RPA possesses, in contrast to, for example, configuration interaction or coupled-cluster methods, a favourable scaling behaviour of N 4 ⋅ log (N) with the system size and describes a number of thermodynamic and electronic properties with a higher accuracy than standard density-functional theory methods. Moreover, the RPA method is able to describe not only dynamic but also strong static electron correlation effects, in contrast to conventional single-reference methods. The latter also include large systems with a small or vanishing band gap. In this work, the performance of the RPA and some extensions to the RPA, including exchange correlations, are tested for the description of thermochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powell CJ, Swan JB (1959) Phys Rev 115:869

    CAS  Google Scholar 

  2. Pines D, Bohm D (1952) Phys Rev 85:338

    CAS  Google Scholar 

  3. Mattuck RD (1992) A guide to Feynman diagrams in the many-body problem. Dover, Mineola

    Google Scholar 

  4. Bohm D, Pines D (1951) Phys Rev 82:625

    CAS  Google Scholar 

  5. Bohm D, Pines D (1953) Phys Rev 92:609

    CAS  Google Scholar 

  6. Pines D (1953) Phys Rev 92:636

    Google Scholar 

  7. Gell-Mann M, Brueckner KA (1957) Phys Rev 106:364

    CAS  Google Scholar 

  8. Sawada K, Brueckner KA, Fukuda N (1957) Phys Rev 108:507

    CAS  Google Scholar 

  9. Hubbard J (1957) Proc R Soc Lond A240:539

    Google Scholar 

  10. Hubbard J (1958) Proc Roy Soc London A243:336

    Google Scholar 

  11. Furche F (2001) Phys Rev B 64:195120

    Google Scholar 

  12. Angyan J, Liu RF, Toulouse J, Jansen G (2011) J Chem Theory Comput 7:3116

    CAS  Google Scholar 

  13. Heßelmann A, Görling A (2011) Mol Phys 109:2473

    Google Scholar 

  14. Eshuis H, Bates JE, Furche F (2012) Theor Chem Acc 131:1084

    Google Scholar 

  15. Ren X, Rinke P, Joas C, Scheffler M (2012) J Mater Sci 47:7447

    CAS  Google Scholar 

  16. Pines D, Nozieres P (1966) The theory of quantum liquids: normal Fermi liquids, vol I. W.A. Benjamin, New York/Amsterdam

    Google Scholar 

  17. March NH, Young WH, Sampanthar S (1995) The many-body problem in quantum mechanics. Dover, New York

    Google Scholar 

  18. MacLachlan AD, Ball MA (1964) Rev Mod Phys 36:844

    Google Scholar 

  19. Ball MA, McLachlan AD (1964) Mol Phys 7:501

    CAS  Google Scholar 

  20. Ehrenreich H, Cohen MH (1959) Phys Rev 115:786

    Google Scholar 

  21. Dunning TH, McKoy V (1967) J Chem Phys 47:1735

    CAS  Google Scholar 

  22. Linderberg J, Jørgensen P, Oddershede J, Ratner M (1972) J Chem Phys 56:6213

    CAS  Google Scholar 

  23. Jørgensen P, Oddershede J, Ratner M (1974) J Chem Phys 61:710

    Google Scholar 

  24. Oddershede J (1978) Adv Quantum Chem 11:275

    CAS  Google Scholar 

  25. Szabo A, Ostlund NS (1977) J Chem Phys 67:4351

    CAS  Google Scholar 

  26. Szabo A, Ostlund NS (1977) Int J Quantum Chem S11:389

    Google Scholar 

  27. McWeeny R (1996) Methods of molecular quantum mechanics. Academic, London

    Google Scholar 

  28. Heßelmann A (2011) J Chem Phys 134:204107

    Google Scholar 

  29. Callen HB, Welton TA (1951) Phys Rev 83:34

    Google Scholar 

  30. Langreth DC, Perdew JP (1975) Solid State Commun 17:1425

    Google Scholar 

  31. Langreth DC, Perdew JP (1977) Phys Rev B 15:2884

    Google Scholar 

  32. Scuseria GE, Henderson TM, Sorensen DC (2008) J Chem Phys 129:231101

    Google Scholar 

  33. Jansen G, Liu RF, Angyan JG (2010) J Chem Phys 133:154106

    Google Scholar 

  34. Eshuis H, Furche F (2011) J Phys Chem Lett 2:983

    CAS  Google Scholar 

  35. Lu D, Li Y, Rocca D, Galli G (2009) Phys Rev Lett 102:206411

    Google Scholar 

  36. Fuchs M, Niquet YM, Gonze X, Burke K (2005) J Chem Phys 122:094116

    CAS  Google Scholar 

  37. Henderson TM, Scuseria GE (2010) Mol Phys 108:2511

    CAS  Google Scholar 

  38. Heßelmann A, Görling A (2011) Phys Rev Lett 106:093001

    Google Scholar 

  39. Mori-Sanchez P, Cohen AJ, Yang W (2012) Phys Rev A 85:042507

    Google Scholar 

  40. Heßelmann A, Görling A (2013) J Chem Theory Comput 9:4382

    Google Scholar 

  41. Jiang H, Engel E (2007) J Chem Phys 127:184108

    Google Scholar 

  42. Toulouse J, Gerber IC, Jansen G, Savin A, Angyan JG (2009) Phys Rev Lett 102:096404

    Google Scholar 

  43. Grüneis A, Marsman M, Harl J, Schimka L, Kresse G (2009) J Chem Phys 131:154115

    Google Scholar 

  44. Heßelmann A, Görling A (2010) Mol Phys 108:359

    Google Scholar 

  45. Heßelmann A (2012) Phys Rev A 85:012517

    Google Scholar 

  46. Gould T (2012) J Chem Phys 137:111101

    Google Scholar 

  47. Eshuis H, Yarkony J, Furche F (2010) J Chem Phys 132:234114

    Google Scholar 

  48. Nguyen HV, de Gironcoli S (2009) Phys Rev B 79:205114

    Google Scholar 

  49. Furche F, Van Voorhis T (2005) J Chem Phys 122:164106

    Google Scholar 

  50. Fabiano E, Sala FD (2012) Theor Chem Acc 131:1278

    Google Scholar 

  51. Eshuis H, Furche F (2012) J Chem Phys 136:084105

    Google Scholar 

  52. Toulouse J, Colonna F, Savin A (2004) Phys Rev A 70:062505

    Google Scholar 

  53. Janesko BG, Henderson TM, Scuseria GE (2009) J Phys Chem 130:081105

    Google Scholar 

  54. Toulouse J, Zhu W, Angyan JG, Savin A (2010) Phys Rev A 82:032502

    Google Scholar 

  55. Janesko BG, Henderson TM, Scuseria GE (2009) J Phys Chem 131:034110; Erratum: J Phys Chem 133 (2010) 179901

    Google Scholar 

  56. Harris FE, Monkhorst HJ, Freeman DL (1992) Algebraic and diagrammatic methods in many-fermion theory. Oxford University Press, New York

    Google Scholar 

  57. Lindgren I (1986) Atomic many–body theory. Springer, Berlin

    Google Scholar 

  58. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics: MBPT and coupled–cluster theory. Cambridge University Press, Cambridge

    Google Scholar 

  59. Kucharski SA, Bartlett RJ (1986) Adv Quantum Chem 18:281

    CAS  Google Scholar 

  60. Feynman RP (1949) Phys Rev 76:769

    Google Scholar 

  61. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, Mineola

    Google Scholar 

  62. Negele JW, Orland H (1998) Quantum many-particle systems. Perseus Publishing, Cambridge

    Google Scholar 

  63. Hubac I (1980) Int J Quantum Chem 17:195

    CAS  Google Scholar 

  64. Thouless DJ (1960) Nucl Phys 21:225

    CAS  Google Scholar 

  65. Hellgreen M, von Barth U (2010) J Chem Phys 132:044101

    Google Scholar 

  66. Ipatov A, Heßelmann A, Görling A (2010) Int J Quantum Chem 110:2202

    CAS  Google Scholar 

  67. Sharp RT, Horton GK (1953) Phys Rev 90:317

    Google Scholar 

  68. Talman JD, Shadwick WF (1976) Phys Rev A 14:36

    CAS  Google Scholar 

  69. Grabo T, Kreibich T, Kurth S, Gross EKU (1998) Strong coulomb correlations in electronic structure: beyond the local density approximation. Gordon & Breach, Tokyo, p 203, chap. 4

    Google Scholar 

  70. Engel E, Dreizler RM (1999) J Comput Chem 20:31

    CAS  Google Scholar 

  71. Görling A (1999) Phys Rev Lett 83:5459

    Google Scholar 

  72. Ivanov S, Hirata S, Bartlett RJ (1999) Phys Rev Lett 83:5455

    CAS  Google Scholar 

  73. Gimon T, Ipatov A, Heßelmann A, Görling A (2009) J Chem Theory Comput 5:781

    CAS  Google Scholar 

  74. Sherrill CD, Krylov AI, Byrd EFC, Head-Gordon M (1998) J Chem Phys 109:4171

    CAS  Google Scholar 

  75. Lindgren I, Salomonson S (2002) Int J Quantum Chem 90:294

    CAS  Google Scholar 

  76. Kollmar C, Heßelmann A (2010) Theor Chem Acc 127:311

    CAS  Google Scholar 

  77. Hellgren M, Rohr DR, Gross EKU (2012) J Chem Phys 136:034106

    Google Scholar 

  78. Verma P, Bartlett RJ (2012) J Chem Phys 136:044105

    Google Scholar 

  79. Bleiziffer P, Heßelmann A, Görling A (2013) J Chem Phys 139:084113

    Google Scholar 

  80. Heßelmann A (2005) J Chem Phys 122:244108

    Google Scholar 

  81. Tajti A, Szalay PG, Csaszar AG, Kallay M, Gauss J (2004) J Chem Phys 121:11599

    CAS  Google Scholar 

  82. Harding ME, Vazquez J, Ruscic B, Wilson AK, Gauss J, Stanton JF (2008) J Chem Phys 128:114111

    Google Scholar 

  83. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    CAS  Google Scholar 

  84. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384

    CAS  Google Scholar 

  85. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:10478

    CAS  Google Scholar 

  86. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Google Scholar 

  87. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    CAS  Google Scholar 

  88. Johnson ER, Mori-Sanchez P, Cohen AJ, Yang W (2008) J Chem Phys 129:204112

    Google Scholar 

  89. Steinmann SN, Csonka G, Carminboeuf C (2009) J Chem Theory Comput 5:2950

    CAS  Google Scholar 

  90. Grimme S, Djukic JP (2010) Inorg Chem 49:2911

    CAS  Google Scholar 

  91. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Google Scholar 

  92. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715

    CAS  Google Scholar 

  93. Zhao Y, Gonzalez-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012

    CAS  Google Scholar 

  94. Peverati R, Truhlar DG (2014) The quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc A 372:20120476/1-51 (part of a theme issue on “DFT for Physics, Chemistry and Biology,” guest edited by T. van Mourik, M. Buehl, and M.-P. Gaigeot)

    Google Scholar 

  95. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670

    CAS  Google Scholar 

  96. Goerigk L, Grimme S (2011) J Chem Theor Comput 7:291

    CAS  Google Scholar 

  97. Grimme S (2011) GMTKN30: a database for general main group thermochemistry, kinetics, and non-covalent interactions. http://toc.unimuenster.de/GMTKN/GMTKN30/GMTKN30main.html

  98. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  Google Scholar 

  99. Bak KL, Jørgensen P, Olsen J, Helgaker T, Klopper W (2000) J Chem Phys 112:9229

    CAS  Google Scholar 

  100. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    CAS  Google Scholar 

  101. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schüz M et al. (2010) Molpro, version 2010.2, a package of ab initio programs. http://www.molpro.net

  102. Helgaker T, Jørgensen P, Olsen J (2012) Molecular electronic–structure theory. Wiley, Chichester

    Google Scholar 

  103. Levine IN (2009) Quantum chemistry, 6th edn. Pearson Prentice Hall, New Jersey

    Google Scholar 

  104. Cramer CJ (2008) Essentials of computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  105. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Google Scholar 

  106. Bakowies D (2013) J Phys Chem A 117:228

    CAS  Google Scholar 

  107. Gritsenko O, Baerends EJ (2004) J Chem Phys 121:655

    CAS  Google Scholar 

  108. Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107

    CAS  Google Scholar 

  109. Becke AD (1993) J Chem Phys 98:1372

    CAS  Google Scholar 

  110. Gilbert TM (2004) J Phys Chem A 108:2550

    CAS  Google Scholar 

  111. Martin JML, Oliveira GD (1999) J Chem Phys 111:1843

    CAS  Google Scholar 

  112. Zhao Y, Truhlar DG (2006) Theor Chem Acc 120:215

    Google Scholar 

  113. Grimme S (2006) J Chem Phys 124:034108

    Google Scholar 

  114. Grimme S (2003) J Chem Phys 118:9095

    CAS  Google Scholar 

  115. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A104:4811

    Google Scholar 

  116. Rocca D (2014) J Chem Phys 140:18A501

    Google Scholar 

  117. Umrigar CJ, Gonze X (1994) Phys Rev A 50:3827

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Heßelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heßelmann, A. (2014). The Ring and Exchange-Ring Approximations Based on Kohn–Sham Reference States. In: Johnson, E. (eds) Density Functionals. Topics in Current Chemistry, vol 365. Springer, Cham. https://doi.org/10.1007/128_2014_557

Download citation

Publish with us

Policies and ethics