Skip to main content

Biomolecular Halogen Bonds

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 358))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Å:

Ångstrom (10−10 m)

A:

Adenosine

Asn:

Asparagine

Asp:

Aspartic acid

Arg:

Arginine

BXB:

Biomolecular halogen bond

Br:

Bromine

BrTyr:

Bromotyrosine

BrU:

5-Bromouridine

C:

Cytidine

C=O:

Carbonyl group

C–X:

Carbon–halogen bond

Cl:

Chlorine

DFT:

Density functional theory

DNA:

Deoxyribonucleic acid

DSC:

Differential scanning calorimetry

e:

Exponential (2.7182…)

E :

Energy

F:

Fluorine

G:

Guanosine

G°:

Standard state Gibbs free energy

Gln:

Glutamine

Glu:

Glutamic acid

h-BXB:

Shared halogen–hydrogen bond

H°:

Standard state enthalpy

H-bond:

Hydrogen bond

His:

Histidine

I:

Iodine

iC:

5-Iodocytidine

IC50:

Concentration for half maximal inhibition

kcal:

Kilocalorie (4.18 kJ)

K D :

Dissociation constant

K i :

Inhibition constant

μM:

Micromolar (10−6 M)

MD:

Molecular dynamics

MM:

Molecular mechanics

mol:

Mole (6.02 × 1023 particles)

N:

Nitrogen

N–H:

Nitrogen–hydrogen bond

NCI:

National Cancer Institute

ND:

Not determined

nM:

Nanomolar (10−9 M)

O:

Oxygen

P :

Probability of interaction

PDB:

Protein Data Bank

Phe:

Phenylalanine

QM:

Quantum mechanics

r DA :

Distance between donor and acceptor

R vdW :

van der Waals radius

R vdW :

Sum of van der Waals radii of two interacting atoms

S:

Sulfur

S°:

Standard state entropy

SA:

Surface area

T:

Thymidine

T3:

3,5,3′-Triiodo-l-thyronine (liothyronine)

T4:

3,5,3,5′-Tetraiodo-l-thyronine

TR:

Thyroid hormone receptor

Tyr:

Tyrosine

U:

Uridine

X-bond:

Halogen bond

XU:

5-Halouridine

References

  1. Guthries F (1863) On the iodide of iodammonium. J Am Chem Soc 16:239–244

    Google Scholar 

  2. Flurry RL Jr, Politzer P (1969) Molecular orbital theory of electron donor-acceptor complexes. III. The relationship of state energies and stabilization energies to the charge-transfer transition energy. J Phys Chem 73:2787–2789

    CAS  Google Scholar 

  3. Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Science 170:497–502

    CAS  Google Scholar 

  4. Hassel O (1972) Structural aspects of interatomic charge-transfer bonding. In: Nobel lectures, chemistry. Elsevier, Amsterdam, pp 1963–1970

    Google Scholar 

  5. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    CAS  Google Scholar 

  6. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127

    CAS  Google Scholar 

  7. Lam PYS, Clark CG, Smallwood AM, Alexander RS (2009) Structure-based drug design utilizing halogen bonding: factor Xa inhibitors. In: Metrangolo P, Resnati G (eds) The 238th ACS national meeting. ACS, Washington, DC, p 58

    Google Scholar 

  8. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794

    CAS  Google Scholar 

  9. Muzet N, Guillot B, Jelsch C, Howard E, Lecomte C (2003) Electrostatic complementarity in an aldose reductase complex from ultra-high-resolution crystallography and first-principles calculations. Proc Natl Acad Sci U S A 100:8742–8747

    CAS  Google Scholar 

  10. Hays FA, Vargason JM, Ho PS (2003) Effect of sequence on the conformation of DNA Holliday junctions. Biochemistry 42:9586–9597

    CAS  Google Scholar 

  11. Vallejos M, Auffinger P, Ho P (2012) Halogen interactions in biomolecular crystal structures. In: Himmel DM (ed) Int Tables Cryst vol F, pp 23–26

    Google Scholar 

  12. Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahtouf A, Perdu E, Zalko D, Bourguet W, Balaguer P (2011) Peroxisome proliferator-activated receptor gamma is a target for halogenated analogs of bisphenol A. Environ Health Perspect 119:1227–1232

    CAS  Google Scholar 

  13. Lu Y, Liu Y, Xu Z, Li H, Liu H, Zhu W (2012) Halogen bonding for rational drug design and new drug discovery. Expert Opin Drug Discov 7:375–383

    CAS  Google Scholar 

  14. Wilcken R, Liu X, Zimmermann MO, Rutherford TJ, Fersht AR, Joerger AC, Boeckler FM (2012) Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J Am Chem Soc 134:6810–6818

    CAS  Google Scholar 

  15. Zou JW, Lu YX, Yu QS, Zhang HX, Jiang YJ (2006) Halogen bonding: an AIM analysis of the weak interactions. Chin J Chem 24:1709–1715

    CAS  Google Scholar 

  16. Tiwari A, Panigrahi SK (2007) HBAT: a complete package for analysing strong and weak hydrogen bonds in macromolecular crystal structures. In Silico Biol 7:0057

    Google Scholar 

  17. Schreyer A, Blundell T (2009) Credo: a protein-ligand interaction database for drug discovery. Chem Biol Drug Des 73:157–167

    CAS  Google Scholar 

  18. Ouvrard C, Le Questel JY, Berthelot M, Laurence C (2003) Halogen-bond geometry: a crystallographic data-base investigation of dihalogen complexes. Acta Cryst B59:512–526

    CAS  Google Scholar 

  19. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    CAS  Google Scholar 

  20. Scholfield MR, Vander Zanden CM, Carter M, Ho PS (2013) Halogen bonding (X-bonding): a biological perspective. Protein Sci 22:139–152

    CAS  Google Scholar 

  21. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl Chem 85:1711–1713

    CAS  Google Scholar 

  22. NCI/NIH (2014) Developmental therapeutics program. http://dtp.nci.nih.gov/index.html

  23. Kolar M, Hobza P, Bronowska AK (2013) Plugging the explicit sigma-holes in molecular docking. Chem Commun (Camb) 49:981–983

    CAS  Google Scholar 

  24. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005. J Mol Model 13:291–296

    CAS  Google Scholar 

  25. Murray JS, Lane P, Clark T, Politzer P (2007) Sigma-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    CAS  Google Scholar 

  26. Politzer P, Murray JS, Lane P (2007) Sigma-hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107:3046–3052

    CAS  Google Scholar 

  27. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: sigma-hole bonding. Aust J Chem 63:1598–1607

    CAS  Google Scholar 

  28. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) Sigma-holes, pi-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    CAS  Google Scholar 

  29. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other sigma-hole interactions: lex parsimoniae (Occam’s razor). Comput Theor Chem 998:2–8

    CAS  Google Scholar 

  30. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246

    CAS  Google Scholar 

  31. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm 13:6593–6596

    CAS  Google Scholar 

  32. Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309–3318

    CAS  Google Scholar 

  33. Carter M, Rappe AK, Ho PS (2012) Scalable anisotroplic shape and electrostatic models for biological bromine halogen bonds. J Chem Theor Comput 8:2461–2473

    CAS  Google Scholar 

  34. Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103

    CAS  Google Scholar 

  35. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  Google Scholar 

  36. Howard EI, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Van Zandt M, Sibley E, Bon C, Moras D, Schneider TR, Joachimiak A, Podjarny A (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A. Proteins 55:792–804

    CAS  Google Scholar 

  37. Hays FA, Teegarden A, Jones ZJR, Harms M, Raup D, Watson J, Cavaliere E, Ho PS (2005) How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc Natl Acad Sci U S A 102:7157–7162

    CAS  Google Scholar 

  38. Eichman BF, Vargason JM, Mooers BHM, Ho PS (2000) The Holliday junction in an inverted repeat sequence: sequence effects on the structure of four-way junctions. Proc Natl Acad Sci U S A 97:3971–3976

    CAS  Google Scholar 

  39. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) The nature and geometry of intramolecular interactions between halogens and oxygen or nitrogen. J Am Chem Soc 118:3108–3116

    CAS  Google Scholar 

  40. Panigrahi SK, Desiraju GR (2007) Strong and weak hydrogen bonds in the protein-ligand interface. Proteins 67:128–141

    CAS  Google Scholar 

  41. Zhou P, Tian F, Zou J, Shang Z (2010) Rediscovery of halogen bonds in protein-ligand complexes. Mini Rev Med Chem 10:309–314

    CAS  Google Scholar 

  42. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40:2267–2278

    CAS  Google Scholar 

  43. Xie J, Wang L, Wu N, Brock A, Spraggon G, Schultz PG (2004) The site-specific incorporation of p-iodo-l-phenylalanine into proteins for structure determination. Nat Biotechnol 22:1297–1301

    CAS  Google Scholar 

  44. Beck T, Gruene T, Sheldrick GM (2010) The magic triangle goes mad: experimental phasing with a bromine derivative. Acta Crystallogr D Biol Crystallogr 66:374–380

    CAS  Google Scholar 

  45. Sunami T, Kondo J, Hirao I, Watanabe K, Miura K, Takenaka A (2004) Structures of d(GCGAAGC) and d(GCGAAGC) (tetragonal form): a switching of partners of the sheared G.A pairs to form a functional G.AxA.G crossing. Acta Crystallogr D Biol Crystallogr 60:422–431

    Google Scholar 

  46. Sunami T, Kondo J, Hirao I, Watanabe K, Miura KI, Takenaka A (2004) Structure of d(GCGAAAGC) (hexagonal form): a base-intercalated duplex as a stable structure. Acta Crystallogr D Biol Crystallogr 60:90–96

    Google Scholar 

  47. Domigan NM, Charlton TS, Duncan MW, Winterbourn CC, Kettle AJ (1995) Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem 270:16542–16548

    CAS  Google Scholar 

  48. Wu WJ, Chen YH, d’Avignon A, Hazen SL (1999) 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo. Biochemistry 38:3538–3548

    CAS  Google Scholar 

  49. Wu W, Samoszuk MK, Comhair SAA, Thomassen MJ, Farver CF, Dweik RA, Kavuru MS, Erzurum SC, Hazen SL (2000) Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest 105:1455–1463

    CAS  Google Scholar 

  50. Kambayashi Y, Ogino K, Takemoto K, Imagama T, Takigawa T, Kimura S, Hibino Y, Hitomi Y, Nakamura H (2009) Preparation and characterization of a polyclonal antibody against brominated protein. J Clin Biochem Nutr 44:95–103

    CAS  Google Scholar 

  51. Sandler B, Webb P, Apriletti JW, Huber BR, Togashi M, Cunha Lima ST, Juric S, Nilsson S, Wagner R, Fletterick RJ, Baxter JD (2004) Thyroxine-thyroid hormone receptor interactions. J Biol Chem 279:55801–55808

    CAS  Google Scholar 

  52. Valadares NF, Salum LB, Polikarpov I, Andricopulo AD, Garratt RC (2009) Role of halogen bonds in thyroid hormone receptor selectivity: pharmacophore-based 3D-QSSR studies. J Chem Inf Model 49:2606–2616

    CAS  Google Scholar 

  53. Eneqvist T, Lundberg E, Karlsson A, Huang S, Santos CR, Power DM, Sauer-Eriksson AE (2004) High resolution crystal structures of piscine transthyretin reveal different binding modes for triiodothyronine and thyroxine. J Biol Chem 279:26411–26416

    CAS  Google Scholar 

  54. Manna D, Mugesh G (2012) Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. J Am Chem Soc 134:4269–4279

    CAS  Google Scholar 

  55. Voth AR, Khuu P, Oishi K, Ho PS (2009) Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem 1:74–79

    CAS  Google Scholar 

  56. Hernandes MZ, Cavalcanti SM, Moreira DR, de Azevedo Junior WF, Leite AC (2010) Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets 11:303–314

    CAS  Google Scholar 

  57. De Moliner E, Moro S, Sarno S, Zagotto G, Zanotti G, Pinna LA, Battistutta R (2003) Inhibition of protein kinase CK2 by anthraquinone-related compounds - a structural insight. J Biol Chem 278:1831–1836

    Google Scholar 

  58. Liu R, Loll PJ, Eckenhoff RG (2005) Structural basis for high-affinity volatile anesthetic binding in a natural 4-helix bundle protein. FASEB J 19:567–576

    Google Scholar 

  59. Heath RJ, Su N, Murphy CK, Rock CO (2000) The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J Biol Chem 275:40128–40133

    CAS  Google Scholar 

  60. Voth AR, Ho PS (2007) The role of halogen bonding in inhibitor recognition and binding by protein kinases. Curr Top Med Chem 7:1336–1348

    CAS  Google Scholar 

  61. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen bonding–a novel interaction for rational drug design? J Med Chem 52:2854–2862

    CAS  Google Scholar 

  62. Wasik R, Lebska M, Felczak K, Poznanski J, Shugar D (2010) Relative role of halogen bonds and hydrophobic interactions in inhibition of human protein kinase CK2 alpha by tetrabromobenzotriazole and some C(5)-substituted analogues. J Phys Chem B 114:10601–10611

    CAS  Google Scholar 

  63. Fedorov O, Huber K, Eisenreich A, Filippakopoulos P, King O, Bullock AN, Szklarczyk D, Jensen LJ, Fabbro D, Trappe J, Rauch U, Bracher F, Knapp S (2011) Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol 18:67–76

    CAS  Google Scholar 

  64. Bollini M, Domaoal RA, Thakur VV, Gallardo-Macias R, Spasov KA, Anderson KS, Jorgensen WL (2011) Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. J Med Chem 54:8582–8591

    CAS  Google Scholar 

  65. Carpenter RD, Natarajan A, Lau EY, Andrei M, Solano DM, Lightstone FC, DeNardo SJ, Lam KS, Kurth MJ (2010) Halogenated benzimidazole carboxamides target integrin alpha(4)beta(1) on t-cell and b-cell lymphomas. Cancer Res 70:5448–5456

    CAS  Google Scholar 

  66. Joseph LJ, Chang LC, Stamenkovich D, Sukhatme VP (1988) Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L. An abundant transcript induced by transformation of fibroblasts. J Clin Invest 81:1621–1629

    CAS  Google Scholar 

  67. Maciewicz RA, Wardale RJ, Etherington DJ, Paraskeva C (1989) Immunodetection of cathepsins B and L present in and secreted from human pre-malignant and malignant colorectal tumour cell lines. Int J Cancer 43:478–486

    CAS  Google Scholar 

  68. Watanabe M, Higashi T, Hashimoto M, Tomoda I, Tominaga S, Hashimoto N, Morimoto S, Yamauchi Y, Nakatsukasa H, Kobayashi M et al (1987) Elevation of tissue cathepsin B and L activities in gastric cancer. Hepatogastroenterology 34:120–122

    CAS  Google Scholar 

  69. Rozhin J, Wade RL, Honn KV, Sloane BF (1989) Membrane-associated cathepsin L: a role in metastasis of melanomas. Biochem Biophys Res Commun 164:556–561

    CAS  Google Scholar 

  70. Yamaguchi N, Yamamura Y, Koyama K, Ohtsuji E, Imanishi J, Ashihara T (1990) Characterization of new human pancreatic cancer cell lines which propagate in a protein-free chemically defined medium. Cancer Res 50:7008–7014

    CAS  Google Scholar 

  71. Wilcken R, Zimmermann MO, Lange A, Zahn S, Boeckler FM (2012) Using halogen bonds to address the protein backbone: a systematic evaluation. J Comput Aid Mol Des 26:935–945

    CAS  Google Scholar 

  72. Kortagere S, Ekins S, Welsh WJ (2008) Halogenated ligands and their interactions with amino acids: implications for structure-activity and structure-toxicity relationships. J Mol Graph Model 27:170–177

    CAS  Google Scholar 

  73. Prasanna MD, Guru Row TN (2000) C-halogen···π interactions and their influence on molecular conformation and crystal packing: a database study. Cryst Eng 3:135–154

    CAS  Google Scholar 

  74. Saraogi I, Vijay V, Das S, Sekar K, Guru Row T (2003) C-halogen···pi interactions in proteins: a database study. Cryst Eng 6:69–77

    CAS  Google Scholar 

  75. Matter H, Nazare M, Gussregen S, Will DW, Schreuder H, Bauer A, Urmann M, Ritter K, Wagner M, Wehner V (2009) Evidence for C-Cl/C-Br…pi interactions as an important contribution to protein-ligand binding affinity. Angew Chem Int Ed 48:2911–2916

    CAS  Google Scholar 

  76. Paulini R, Muller K, Diederich F (2005) Orthogonal multipolar interactions in structural chemistry and biology. Angew Chem Int Ed 44:1788–1805

    CAS  Google Scholar 

  77. Zhou P, Lv J, Zou J, Tian F, Shang Z (2010) Halogen-water-hydrogen bridges in biomolecules. J Struct Biol 169:172–182

    CAS  Google Scholar 

  78. Aakeröy C, Despera J, Helfricha BA, Metrangolo P, Pilatic T, Resnati G, Stevenazzi A (2007) Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains. Chem Commun 4236–4238

    Google Scholar 

  79. Aakeroy CB, Fasulo M, Schultheiss N, Desper J, Moore C (2007) Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc 129:13772

    Google Scholar 

  80. Voth AR, Hays FA, Ho PS (2007) Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci U S A 104:6188–6193

    CAS  Google Scholar 

  81. van Holde K, Johnson WJ, Ho PS (2006) Principles of physical biochemistry, 2nd edn. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  82. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786

    CAS  Google Scholar 

  83. Carter M, Ho PS (2011) Assaying the energies of biological halogen bonds. Cryst Growth Des 11:5087–5095

    CAS  Google Scholar 

  84. Vander Zanden CM, Carter C, Ho PS (2013) Determining thermodynamic properties of molecular interactions from single crystal studies. Methods 64:12–18

    CAS  Google Scholar 

  85. Carter M, Voth AR, Schofield MR, Rummel B, Sowers LC, Ho PS (2013) Enthalpy - entropy compensation in biomolecular halogen bonds measured in DNA junctions. Biochemistry 52:4891–4903

    CAS  Google Scholar 

  86. Erdelyi M (2012) Halogen bonding in solution. Chem Soc Rev 41:3547–3557

    CAS  Google Scholar 

  87. Tatko CD, Waters ML (2004) Effect of halogenation on edge-face aromatic interactions in a beta-hairpin peptide: enhanced affinity with iodo-substituents. Org Lett 6:3969–3972

    CAS  Google Scholar 

  88. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem Int Ed 50:314–318

    CAS  Google Scholar 

  89. Wyatt PG, Woodhead AJ, Berdini V, Boulstridge JA, Carr MG, Cross DM, Davis DJ, Devine LA, Early TR, Feltell RE, Lewis EJ, McMenamin RL, Navarro EF, O’Brien MA, O’Reilly M, Reule M, Saxty G, Seavers LC, Smith DM, Squires MS, Trewartha G, Walker MT, Woolford AJ (2008) Identification of n-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1 H-pyrazole-3-carbox-amide (at7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem 51:4986–4999

    CAS  Google Scholar 

  90. Sarno S, Papinutto E, Franchin C, Bain J, Elliott M, Meggio F, Kazimierczuk Z, Orzeszko A, Zanotti G, Battistutta R, Pinna LA (2011) ATP site-directed inhibitors of protein kinase CK2: an update. Curr Top Med Chem 11:1340–1351

    CAS  Google Scholar 

  91. Dobes P, Rezac J, Fanfrlik J, Otyepka M, Hobza P (2011) Semiempirical quantum mechanical method PM6-DH2X describes the geometry and energetics of CK2-inhibitor complexes involving halogen bonds well, while the empirical potential fails. J Phys Chem B 115:8581–8589

    CAS  Google Scholar 

  92. Battistutta R, De Moliner E, Sarno S, Zanotti G, Pinna LA (2001) Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci 10:2200–2206

    CAS  Google Scholar 

  93. Battistutta R, Mazzorana M, Sarno S, Kazimierczuk Z, Zanotti G, Pinna LA (2005) Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chem Biol 12:1211–1219

    CAS  Google Scholar 

  94. Battistutta R, Mazzorana M, Cendron L, Bortolato A, Sarno S, Kazimierczuk Z, Zanotti G, Moro S, Pinna LA (2007) The ATP-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules. Chembiochem 8:1804–1809

    CAS  Google Scholar 

  95. Monard G, Prat-Resina X, Gonzalez-Lafont A, Lluch JM (2003) Determination of enzymatic reaction pathways using QM/MM methods. Int J Quantum Chem 93:229–244

    CAS  Google Scholar 

  96. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    CAS  Google Scholar 

  97. Jorgensen WL, Schyman P (2012) Treatment of halogen bonding in the OPLS-AA force field: application to potent anti-HIV agents. J Chem Theor Comput 8:3895–3901

    CAS  Google Scholar 

  98. Ibrahim MA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32:2564–2574

    CAS  Google Scholar 

  99. Rendine S, Pieraccini S, Forni A, Sironi M (2011) Halogen bonding in ligand-receptor systems in the framework of classical force fields. Phys Chem Chem Phys 13:19508–19516

    CAS  Google Scholar 

  100. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges - the RESP model. J Phys Chem 97:10269–10280

    CAS  Google Scholar 

  101. Kolar M, Hobza P (2012) On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theor Comput 8:1325–1333

    CAS  Google Scholar 

  102. Ibrahim MA (2012) Amber empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X. J Phys Chem B 116:3659–3669

    CAS  Google Scholar 

  103. Liu Y, Xu Z, Yang Z, Chen K, Zhu W (2013) A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions. J Mol Model 19:5015–5030

    CAS  Google Scholar 

  104. Gavezzotti A (2013) The “sceptical chymist”: intermolecular doubts and paradoxes. CrystEngComm 15:4027–4035

    CAS  Google Scholar 

  105. Schanda P, Brutscher B, Konrat R, Tollinger M (2008) Folding of the KIX domain: characterization of the equilibrium analog of a folding intermediate using (15)N/(13)C relaxation dispersion and fast (1)H/(2)H amide exchange NMR spectroscopy. J Mol Biol 380:726–741

    CAS  Google Scholar 

  106. Xu Z, Yang Z, Liu Y, Lu Y, Chen K, Zhu W (2014) Halogen bond: its role beyond drug–target binding affinity for drug discovery and development. J Chem Inf Model 54:69–78

    CAS  Google Scholar 

  107. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    CAS  Google Scholar 

  108. Xu Z, Liu Z, Chen T, Wang Z, Tian G, Shi J, Wang X, Lu Y, Yan X, Wang G, Jiang H, Chen K, Wang S, Xu Y, Shen J, Zhu W (2011) Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. J Med Chem 54:5607–5611

    CAS  Google Scholar 

  109. Ho PS (2014) From Holliday junctions to biomolecular halogen bonds: how biology informs us about complex chemistry. F&M Scientist 2:28–54

    Google Scholar 

  110. Fourmigué M (2009) Halogen bonding: recent advances. Curr Opin Solid State Mater Sci 13:36–45

    Google Scholar 

  111. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46:2686–2695

    CAS  Google Scholar 

  112. Seeman NC (2005) From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30:119–125

    CAS  Google Scholar 

  113. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    CAS  Google Scholar 

  114. Mao C, Sun W, Seeman NC (1999) Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J Am Chem Soc 121:5437–5443

    CAS  Google Scholar 

  115. Paukstelis PJ, Nowakowski J, Birktoft JJ, Seeman NC (2004) Crystal structure of a continuous three-dimensional DNA lattice. Chem Biol 11:1119–1126

    CAS  Google Scholar 

  116. Jackson JC, Duffy SP, Hess KR, Mehl RA (2006) Improving nature’s active site with genetically encoded unnatural amino acids. J Am Chem Soc 128:11124–11127

    CAS  Google Scholar 

  117. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500

    CAS  Google Scholar 

  118. Young TS, Schultz PG (2010) Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem 285:11039–11044

    CAS  Google Scholar 

  119. Sarwar MG, Dragisic B, Salsberg LJ, Gouliaras C, Taylor MS (2010) Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. J Am Chem Soc 132:1646–1653

    CAS  Google Scholar 

  120. Lu Y, Li H, Zhu X, Zhu W, Liu H (2011) How does halogen bonding behave in solution? A theoretical study using implicit solvation model. J Phys Chem A 115:4467–4475

    CAS  Google Scholar 

  121. Lu YX, Li HY, Zhu X, Liu HL, Zhu WL (2012) Effects of solvent on weak halogen bonds: density functional theory calculations. Int J Quantum Chem 112:1421–1430

    CAS  Google Scholar 

  122. Chudzinski MG, Taylor MS (2012) Correlations between computation and experimental thermodynamics of halogen bonding. J Org Chem 77:3483–3491

    CAS  Google Scholar 

  123. Rose GD, Wolfenden R (1993) Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Struct 22:381–415

    CAS  Google Scholar 

  124. Karplus PA (1997) Hydrophobicity regained. Protein Sci 6:1302–1307

    CAS  Google Scholar 

  125. Lum K, Chandler D, Weeks JD (1999) Hydrophobicity at small and large length scales. J Phys Chem B 103:4570–4577

    CAS  Google Scholar 

  126. Duffy EM, Jorgensen WL (2000) Prediction of properties from simulations: free energies of solvation in hexadecane, octanol, and water. J Am Chem Soc 122:2878–2888

    CAS  Google Scholar 

  127. Lu YP, Wang RX, Yang CY, Wang SM (2007) Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J Chem Inf Model 47:668–675

    CAS  Google Scholar 

  128. Michel J, Tirado-Rives J, Jorgensen WL (2009) Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 131:15403–15411

    CAS  Google Scholar 

  129. Ross GA, Morris GM, Biggin PC (2012) Rapid and accurate prediction and scoring of water molecules in protein binding sites. PloS One 7:e32036

    CAS  Google Scholar 

Download references

Acknowledgements

The studies on halogen bonds from the Ho laboratory have been supported by grants from the Fulbright Association and the National Science Foundation (CH 1152494), and funds from Colorado State University. I am indebted to the current and former undergraduates and graduates students who have contributed to the studies through their creative and intellectual capabilities, particularly my current students (M. Scholfield, C. Vander Zanden, and M. Ford) for proof reading the current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shing Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, P.S. (2014). Biomolecular Halogen Bonds. In: Metrangolo, P., Resnati, G. (eds) Halogen Bonding I. Topics in Current Chemistry, vol 358. Springer, Cham. https://doi.org/10.1007/128_2014_551

Download citation

Publish with us

Policies and ethics