Skip to main content

Excitation of Nucleobases from a Computational Perspective II: Dynamics

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 355))

Abstract

This chapter is devoted to unravel the relaxation processes taking place after photoexcitation of isolated DNA/RNA nucleobases in gas phase from a time-dependent perspective. To this aim, several methods are at hand, ranging from full quantum dynamics to various flavours of semiclassical or ab initio molecular dynamics, each with its advantages and its limitations. As this contribution shows, the most common approach employed up to date to learn about the deactivation of nucleobases in gas phase is a combination of the Tully surface hopping algorithm with on-the-fly CASSCF calculations. Different dynamics methods or, even more dramatically, different electronic structure methods can provide different dynamics. A comprehensive review of the different mechanisms suggested for each nucleobase is provided and compared to available experimental time scales. The results are discussed in a general context involving the effects of the different applied electronic structure and dynamics methods. Mechanistic similarities and differences between the two groups of nucleobases – the purine derivatives (adenine and guanine) and the pyrimidine derivatives (thymine, uracil, and cytosine) – are elucidated. Finally, a perspective on the future of dynamics simulations in the context of nucleobase relaxation is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A:

Adenine

AIMD:

Ab initio molecular dynamics

AIMS:

Ab initio multiple spawning

AM1:

(Semi-empirical) Austin model 1

C:

Cytosine

CASPT2:

Complete active space second-order perturbation theory

CASSCF:

Complete active space self-consistent field

CI:

Configuration interaction

CoIn:

Conical intersection

CPMD:

Car–Parrinello molecular dynamics

cs:

Closed shell

DFT:

Density functional theory

DFTB:

Density functional-based tight binding

DNA:

Deoxyribonucleic acid

DOF:

Degree of freedom

FC:

Franck–Condon

FMS:

Full multiple spawning

G:

Guanine

GS:

Ground state

IC:

Internal conversion

ISC:

Intersystem crossing

MCH:

Molecular Coulomb Hamiltonian

MCTDH:

Multi-configurational time-dependent Hartree

MD:

Molecular dynamics

MRCI:

Multi-reference configuration interaction

MRCIS:

Multi-reference configuration interaction with single excitations

NAC:

Non-adiabatic coupling

OM2:

(Semi-empirical) Orthogonalization model 2

PEH:

Potential energy hypersurface

PM3:

(Semi-empirical) Parametrized model 3

QD:

Quantum dynamics

RNA:

Ribonucleic acid

ROKS:

Restricted open-shell Kohn–Sham

Sharc :

Surface hopping including arbitrary couplings

SOC:

Spin-orbit coupling

T:

Thymine

TD-DFT:

Time-dependent density functional theory

TD-DFTB:

Time-dependent density functional-based tight binding

TDSE:

Time-dependent Schrödinger equation

TRPES:

Time-resolved photo-electron spectroscopy

TSH:

Tully’s surface hopping

TSH-CP:

Tully’s surface hopping coupled to Car–Parrinello dynamics

U:

Uracil

UV:

Ultraviolet

References

  1. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104(4):1977–2020

    Google Scholar 

  2. Kleinermanns K, Nachtigallová D, de Vries MS (2013) Excited state dynamics of DNA bases. Int Rev Phys Chem 32(2):308–342

    CAS  Google Scholar 

  3. Markovitsi D, Gustavsson T, Talbot F (2007) Excited states and energy transfer among DNA bases in double helices. Photochem Photobiol Sci 6:717–724

    CAS  Google Scholar 

  4. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Ann Rev Phys Chem 60:217–239

    CAS  Google Scholar 

  5. Saigusa H (2006) Excited-state dynamics of isolated nucleic acid bases and their clusters. J Photoch Photobio C 7(4):197–210

    CAS  Google Scholar 

  6. Shukla MK, Leszczynski J (2007) Electronic spectra, excited state structures and interactions of nucleic acid bases and base assemblies: a review. J Biomol Struct Dyn 25(1):93–118

    CAS  Google Scholar 

  7. Leiter U, Garbe C (2008) Epidemiology of melanoma and nonmelanoma skin cancer - the role of sunlight. In: Reichrath J (ed) Sunlight, vitamin D and skin cancer, vol 624, Advances in experimental medicine and biology. Springer, New York, pp 89–103

    Google Scholar 

  8. Barbatti M (2011) Nonadiabatic dynamics with trajectory surface hopping method. WIREs Comput Mol Sci 1:620–633

    CAS  Google Scholar 

  9. Curchod BFE, Rothlisberger U, Tavernelli I (2013) Trajectory-based nonadiabatic dynamics with time-dependent density functional theory. ChemPhysChem 14(7):1314–1340

    CAS  Google Scholar 

  10. Martínez TJ (2006) Insights for light-driven molecular devices from ab initio multiple spawning excited-state dynamics of organic and biological chromophores. Acc Chem Res 39(2):119–126

    Google Scholar 

  11. Meyer HD, Worth GA (2003) Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree method. Theor Chem Acc 109(5):251–267

    CAS  Google Scholar 

  12. Plasser F, Barbatti M, Aquino AJA, Lischka H (2012) Electronically excited states and photodynamics: a continuing challenge. Theor Chem Acc 131(1):1–14

    CAS  Google Scholar 

  13. Tannor D (2006) Introduction to quantum mechanics: a time-dependent perspective. University Science, Sausalito

    Google Scholar 

  14. Watson J, Crick F (1953) A structure for deoxyribose nucleic acid. Nature 171:737738

    Google Scholar 

  15. Doltsinis N (2006) Computational nanoscience: do it yourself! John von Neumann Institute for Computing. NIC Series, vol 31, Jülich

    Google Scholar 

  16. Meyer HD, Gatti F, Worth GA (2009) Multidimensional quantum dynamics. Wiley-VCH, Weinheim

    Google Scholar 

  17. Burghardt I, Meyer HD, Cederbaum LS (1999) Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J Chem Phys 111(7):2927–2939

    CAS  Google Scholar 

  18. Wang H, Thoss M (2003) Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J Chem Phys 119(3):1289–1299

    CAS  Google Scholar 

  19. Lasorne B, Bearpark MJ, Robb MA, Worth GA (2006) Direct quantum dynamics using variational multi-configuration Gaussian wavepackets. Chem Phys Lett 432(4–6):604–609

    CAS  Google Scholar 

  20. Meng Q, Meyer HD (2013) A multilayer MCTDH study on the full dimensional vibronic dynamics of naphthalene and anthracene cations. J Chem Phys 138(1):014313

    Google Scholar 

  21. Tully JC, Preston RK (1971) Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2. J Chem Phys 55(2):562–572

    CAS  Google Scholar 

  22. Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93(2):1061–1071

    CAS  Google Scholar 

  23. Zhu C, Nangia S, Jasper AW, Truhlar DG (2004) Coherent switching with decay of mixing: an improved treatment of electronic coherence for non-Born–Oppenheimer trajectories. J Chem Phys 121(16):7658–7670

    CAS  Google Scholar 

  24. Jasper AW, Stechmann SN, Truhlar DG (2002) Fewest-switches with time uncertainty: a modified trajectory surface-hopping algorithm with better accuracy for classically forbidden electronic transitions. J Chem Phys 116(13):5424–5431

    CAS  Google Scholar 

  25. Doltsinis NL, Marx D (2002) Nonadiabatic Car-Parrinello molecular dynamics. Phys Rev Lett 88:166402

    Google Scholar 

  26. Prezhdo OV, Rossky PJ (1997) Mean-field molecular dynamics with surface hopping. J Chem Phys 107(3):825–834

    CAS  Google Scholar 

  27. Richter M, Marquetand P, González-Vázquez J, Sola I, González L (2011) SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J Chem Theory Comput 7(5):1253–1258

    CAS  Google Scholar 

  28. Granucci G, Persico M, Spighi G (2012) Surface hopping trajectory simulations with spin-orbit and dynamical couplings. J Chem Phys 137(22):22A501

    Google Scholar 

  29. Heß BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method applicable to correlated wavefunctions. Chem Phys Lett 251((5–6)):365–371

    Google Scholar 

  30. Hammes-Schiffer S, Tully JC (1994) Proton transfer in solution: molecular dynamics with quantum transitions. J Chem Phys 101(6):4657–4667

    CAS  Google Scholar 

  31. Granucci G, Persico M (2007) Critical appraisal of the fewest switching algorithm for surface hopping. J Chem Phys 126(13):134114

    Google Scholar 

  32. Schwartz BJ, Bittner ER, Prezhdo OV, Rossky PJ (1996) Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J Chem Phys 104(15):5942–5955

    CAS  Google Scholar 

  33. Ben-Nun M, Martínez TJ (2002) Ab initio quantum molecular dynamics. In: Advances in chemical physics, vol 121. John Wiley & Sons, New York, pp 439–512

    Google Scholar 

  34. Martínez TJ, Ben-Nun M, Levine RD (1996) Multi-electronic-state molecular dynamics: a wave function approach with applications. J Phys Chem 100(19):7884–7895

    Google Scholar 

  35. Martínez TJ, Ben-Nun M, Levine RD (1997) Molecular collision dynamics on several electronic states. J Phys Chem A 101(36):6389–6402

    Google Scholar 

  36. Coe JD, Levine BG, Martínez TJ (2007) Ab initio molecular dynamics of excited-state intramolecular proton transfer using multireference perturbation theory. J Phys Chem A 111(44):11302–11310

    CAS  Google Scholar 

  37. Hack MD, Wensmann AM, Truhlar DG, Ben-Nun M, Martínez TJ (2001) Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. J Chem Phys 115(3):1172–1186

    CAS  Google Scholar 

  38. Fischer I (2003) Time-resolved photoionisation of radicals, clusters and biomolecules: relevant model systems. Chem Soc Rev 32:59–69

    CAS  Google Scholar 

  39. Staniforth M, Stavros VG (2013) Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides, amino acids and beyond. Proc R Soc A 469(2159):20130458

    Google Scholar 

  40. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  41. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. John Wiley & Sons, New York

    Google Scholar 

  42. Jensen F (2007) Introduction to computational chemistry, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  43. Levine IN (2001) Quantum chemistry. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  44. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, Mineola

    Google Scholar 

  45. Mai S, Marquetand P, Richter M, González-Vázquez J, González L (2013) Singlet and triplet excited-state dynamics study of the keto and enol tautomers of cytosine. ChemPhysChem 14:2920–2931

    CAS  Google Scholar 

  46. Hudock HR, Levine BG, Thompson AL, Satzger H, Townsend D, Gador N, Ullrich S, Stolow A, Martínez TJ (2007) Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. J Phys Chem A 111(34): 8500–8508

    CAS  Google Scholar 

  47. Kotur M, Zhou C, Matsika S, Patchkovskii S, Spanner M, Weinacht TC (2012) Neutral-ionic state correlations in strong-field molecular ionization. Phys Rev Lett 109:203007

    Google Scholar 

  48. Spanner M, Patchkovskii S (2009) One-electron ionization of multielectron systems in strong nonresonant laser fields. Phys Rev A 80(6):063411

    Google Scholar 

  49. Spanner M, Patchkovskii S (2013) Molecular strong field ionization and high harmonic generation: a selection of computational illustrations. Chem Phys 414:10–19

    CAS  Google Scholar 

  50. Spanner M, Patchkovskii S, Zhou C, Matsika S, Kotur M, Weinacht TC (2012) Dyson norms in XUV and strong-field ionization of polyatomics: cytosine and uracil. Phys Rev A 86:053406

    Google Scholar 

  51. Chenon MT, Pugmire RJ, Grant DM, Panzica RP, Townsend LB (1975) Carbon-13 magnetic resonance. XXVI. Quantitative determination of the tautomeric opulations of certain purines. J Am Chem Soc 97(4636)

    Google Scholar 

  52. Cohen B, Hare PM, Kohler B (2003) Ultrafast excited-state dynamics of adenine and monomethylated adenines in solution: Implications for the nonradiative decay mechanism. J Am Chem Soc 125(13):594–13601

    Google Scholar 

  53. Dreyfus M, Dodin G, Bensaude O, Dubois JE (1975) Tautomerism of purines. I. N(7)HN(9)H equilibrium in adenine. J Am Chem Soc 97:2369

    Google Scholar 

  54. Gonella NC, Nakanishi H, Holtwick JB, Horowitz DS, Kanamori K, Leonard NJ, Roberts JD (1983) Studies of tautomers and protonation of adenine and its derivatives by nitrogen-15 nuclear magnetic resonance spectroscopy. J Am Chem Soc 105:2050

    Google Scholar 

  55. Holmén A (1997) Vibrational transition moments of aminopurines: stretched film IR linear dichroism measurements and DFT calculations. J Phys Chem A 101:4361

    Google Scholar 

  56. Bravaya KB, Kostko O, Dolgikh S, Landau A, Ahmend M, Krylov AI (2010) Electronic structure and spectroscopy of nucleic acid bases: ionization energies, ionization-induced structural changes, and photoelectron spectra. J Phys Chem A 114(12):305–12317

    Google Scholar 

  57. Plützer C, Kleinermanns K (2002) Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys Chem Chem Phys 4:4877–4882

    Google Scholar 

  58. Kang H, Jung B, Kim SK (2003) Mechanism for ultrafast internal conversion of adenine. J Chem Phys 118:6717–6719

    CAS  Google Scholar 

  59. Kang H, Lee KT, Jung B, Ko YJ, Kim SK (2002) Intrinsic lifetimes of the excited state of DNA and RNA bases. J Am Chem Soc 124(44):12958–12959

    CAS  Google Scholar 

  60. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) Direct observation of electronic relaxation dynamics in adenine via time-resolved photoelectron spectroscopy. J Am Chem Soc 126:2262–2263

    CAS  Google Scholar 

  61. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Phys Chem Chem Phys 6:2796–2801

    CAS  Google Scholar 

  62. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. J Chem Phys 122(7):074316

    Google Scholar 

  63. Satzger H, Townsend D, Stolow A (2006) Reassignment of the low lying cationic states in gas phase adenine and 9-methyl adenine. Chem Phys Lett 430:144–148

    CAS  Google Scholar 

  64. Satzger H, Townsend D, Zgierski MZ, Patchkovskii S, Ullrich S, Stolow A (2006) Primary processes underlying the photostability of isolated DNA bases: adenine. Proc Natl Acad Sci 103(27):10196–10201

    CAS  Google Scholar 

  65. Kotur M, Weinacht TC, Zhou C, Matsika S (2012) Following ultrafast radiationless relaxation dynamics with strong field dissociative ionization: a comparison between adenine, uracil, and cytosine. IEEE J Sel Top Quant Electron 18(1):187–194

    CAS  Google Scholar 

  66. Fabiano E, Thiel W (2008) Nonradiative deexcitation dynamics of 9H-adenine: an OM2 surface hopping study. J Phys Chem A 112(30):6859–6863

    CAS  Google Scholar 

  67. Barbatti M, Lischka H (2008) Nonadiabatic deactivation of 9H-adenine: a comprehensive picture based on mixed quantum-classical dynamics. J Am Chem Soc 130(21):6831–6839

    CAS  Google Scholar 

  68. Lei Y, Yuan S, Dou Y, Wang Y, Wen Z (2008) Detailed dynamics of the nonradiative deactivation of adenine: a semiclassical dynamics study. J Phys Chem A 112(37):8497–8504

    CAS  Google Scholar 

  69. Mitrić R, Werner U, Wohlgemuth M, Seifert G, Bonačić-Koutecký V (2009) Nonadiabatic dynamics within time-dependent density functional tight binding method. J Phys Chem A 113(45):12700–12705

    Google Scholar 

  70. Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallová D, Hobza P, Lischka H (2010) Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proc Natl Acad Sci U S A 107(50):21453–21458

    CAS  Google Scholar 

  71. Barbatti M, Lan Z, Crespo-Otero R, Szymczak JJ, Lischka H, Thiel W (2012) Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine. J Chem Phys 117(22):22A503

    Google Scholar 

  72. Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomer. J Phys Chem A 110(10):921–10924

    Google Scholar 

  73. Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Ultraviolet spectroscopy and tautomerism in the DNA base guanine and its hydrate formed in a supersonic jet. Chem Phys 270:205–214

    CAS  Google Scholar 

  74. Yamazaki S, Domcke W (2008) Ab initio studies on the photophysics of guanine tautomers: out-of-plane deformation and NH dissociation pathways to conical intersections. J Phys Chem A 112:7090–7097

    CAS  Google Scholar 

  75. Yamazaki S, Domcke W, Sobolewski AL (2008) Nonradiative decay mechanisms of the biologically relevant tautomer of guanine. J Phys Chem A 112(11):965–11968

    Google Scholar 

  76. Clark LB, Peschel GG, Tinoco I (1965) Vapor spectra and heats of vaporization of some purine and pyrimidine bases. J Phys Chem 69:3615–3618

    CAS  Google Scholar 

  77. Kang H, Lee KT, Kim SK (2002) Femtosecond real time dynamics of hydrogen bond dissociation in photoexcited adenine-water clusters. Chem Phys Lett 359:213–219

    CAS  Google Scholar 

  78. Langer H, Doltsinis NL, Marx D (2005) Excited-state dynamics and coupled proton-electron transfer of guanine. ChemPhysChem 6:1734–1737

    CAS  Google Scholar 

  79. Doltsinis NL, Markwick PRL, Nieber H, Langer H (2008) Ultrafast radiationless decay in nucleic acids: insights from nonadiabatic ab initio molecular dynamics. In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids, vol 5, Challenges and advances in computational chemistry and physics. Springer, The Netherlands, pp 265–299

    Google Scholar 

  80. Lan Z, Fabiano E, Thiel W (2009) Photoinduced nonadiabatic dynamics of 9H-guanine. ChemPhysChem 10(8):1225–1229

    CAS  Google Scholar 

  81. Barbatti M, Szymczak JJ, Aquino AJA, Nachtigallová D, Lischka H (2011) The decay mechanism of photoexcited guanine – a nonadiabatic dynamics study. J Chem Phys 134(1):014304

    Google Scholar 

  82. Langer H (2006) Nichtadiabatische ab initio molekulardynamiksimulationen photoangeregter nukleobasen. Ph.D. thesis, Ruhr-Universität Bochum

    Google Scholar 

  83. Brown RD, Godfrey PD, McNaughton D, Pierlot AP (1989) Tautomers of cytosine by microwave spectroscopy. J Am Chem Soc 111(6):2308–2310

    CAS  Google Scholar 

  84. Szczesniak M, Szczepaniak K, Kwiatkowski JS, KuBulat K, Person WB (1988) Matrix isolation infrared studies of nucleic acid constituents. 5. Experimental matrix-isolation and theoretical ab initio SCF molecular orbital studies of the infrared spectra of cytosine monomers. J Am Chem Soc 110(25):8319–8330

    CAS  Google Scholar 

  85. Bazsó G, Tarczay G, Fogarasi G, Szalay PG (2011) Tautomers of cytosine and their excited electronic states: a matrix isolation spectroscopic and quantum chemical study. Phys Chem Chem Phys 13(15):6799–6807

    Google Scholar 

  86. Kosma K, Schröter C, Samoylova E, Hertel IV, Schultz T (2009) Excited-state dynamics of cytosine tautomers. J Am Chem Soc 131(46):16939–16943

    CAS  Google Scholar 

  87. Ho JW, Yen HC, Chou WK, Weng CN, Cheng LH, Shi HQ, Lai SH, Cheng PY (2011) Disentangling intrinsic ultrafast excited-state dynamics of cytosine tautomers. J Phys Chem A 115(30):8406–8418

    CAS  Google Scholar 

  88. Hudock HR, Martínez TJ (2008) Excited-state dynamics of cytosine reveal multiple intrinsic subpicosecond pathways. ChemPhysChem 9(17):2486–2490

    CAS  Google Scholar 

  89. Lan Z, Fabiano E, Thiel W (2009) Photoinduced nonadiabatic dynamics of pyrimidine nucleobases: on-the-fly surface-hopping study with semiempirical methods. J Phys Chem B 113(11):3548–3555

    CAS  Google Scholar 

  90. Alexandrova AN, Tully JC, Granucci G (2010) Photochemistry of DNA fragments via semiclassical nonadiabatic dynamics. J Phys Chem B 114(37):12116–12128

    CAS  Google Scholar 

  91. González-Vázquez J, González L (2010) A time-dependent picture of the ultrafast deactivation of keto-cytosine including three-state conical intersections. ChemPhysChem 11(17):3617–3624

    Google Scholar 

  92. Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallová D, Lischka H (2011) Photodynamical simulations of cytosine: characterization of the ultrafast bi-exponential UV deactivation. Phys Chem Chem Phys 13(13):6145–6155

    CAS  Google Scholar 

  93. Richter M, Marquetand P, González-Vázquez J, Sola I, González L (2012) Femtosecond intersystem crossing in the DNA nucleobase cytosine. J Phys Chem Lett 3:3090–3095

    CAS  Google Scholar 

  94. Nakayama A, Harabuchi Y, Yamazaki S, Taketsugu T (2013) Photophysics of cytosine tautomers: new insights into the nonradiative decay mechanisms from MS-CASPT2 potential energy calculations and excited-state molecular dynamics simulations. Phys Chem Chem Phys 15(12):322–12339

    Google Scholar 

  95. Kistler KA, Matsika S (2008) Three-state conical intersections in cytosine and pyrimidinone bases. J Chem Phys 128(21):215102

    Google Scholar 

  96. Blancafort L, Robb MA (2004) Key role of a threefold state crossing in the ultrafast decay of electronically excited cytosine. J Phys Chem A 108(47):10609–10614

    CAS  Google Scholar 

  97. Blancafort L (2007) Energetics of cytosine singlet excited-state decay paths—a difficult case for CASSCF and CASPT2. Photochem Photobiol 83(3):603–610

    CAS  Google Scholar 

  98. Merchán M, González-Luque R, Climent T, Serrano-Andrés L, Rodríguez E, Reguero M, Peláez D (2006) Unified model for the ultrafast decay of pyrimidine nucleobases. J Phys Chem B 110(51):26471–26476

    Google Scholar 

  99. Nir E, Müller M, Grace L, de Vries M (2002) REMPI spectroscopy of cytosine. Chem Phys Lett 355(1–2):59–64

    CAS  Google Scholar 

  100. González-Luque R, Climent T, González-Ramírez I, Merchán M, Serrano-Andrés L (2010) Singlet and Triplet states interaction regions in DNA/RNA nucleobase hypersurfaces. J Chem Theory Comput 6(7):2103–2114

    Google Scholar 

  101. Merchán M, Serrano-Andrés L, Robb MA, Blancafort L (2005) Triplet-state formation along the ultrafast decay of excited singlet cytosine. J Am Chem Soc 127(6):1820–1825

    Google Scholar 

  102. Hare PM, Crespo-Hernández CE, Kohler B (2006) Solvent-dependent photophysics of 1-cyclohexyluracil: ultrafast branching in the initial bright state leads nonradiatively to the electronic ground state and a long-lived 1 * state. J Phys Chem B 110(37):18641–18650

    CAS  Google Scholar 

  103. He Y, Wu C, Kong W (2003) Decay pathways of thymine and methyl-substituted uracil and thymine in the gas phase. J Phys Chem A 107(26):5145–5148

    CAS  Google Scholar 

  104. He Y, Wu C, Kong W (2004) Photophysics of methyl-substituted uracils and thymines and their water complexes in the gas phase. J Phys Chem A 108(6):943–949

    CAS  Google Scholar 

  105. Samoylova E, Schultz T, Hertel I, Radloff W (2008) Analysis of ultrafast relaxation in photoexcited DNA base pairs of adenine and thymine. Chem Phys 347(1–3):376–382

    CAS  Google Scholar 

  106. Szymczak JJ, Barbatti M, Soo Hoo JT, Adkins JA, Windus TL, Nachtigallová D, Lischka H (2009) Photodynamics simulations of thymine: relaxation into the first excited singlet state. J Phys Chem A 113(45):12686–12693

    CAS  Google Scholar 

  107. Asturiol D, Lasorne B, Robb MA, Blancafort L (2009) Photophysics of the π, π * and n, π * states of thymine: MS-CASPT2 minimum-energy paths and CASSCF on-the-fly dynamics. J Phys Chem A 113(38):10211–10218

    CAS  Google Scholar 

  108. Asturiol D, Lasorne B, Worth GA, Robb MA, Blancafort L (2010) Exploring the sloped-to-peaked S2/S1 seam of intersection of thymine with electronic structure and direct quantum dynamics calculations. Phys Chem Chem Phys 12:4949–4958

    CAS  Google Scholar 

  109. Picconi D, Barone V, Lami A, Santoro F, Improta R (2011) The interplay between ππ */ * excited states in gas-phase thymine: a quantum dynamical study. ChemPhysChem 12: 1957–1968

    CAS  Google Scholar 

  110. Nakayama A, Arai G, Yamazaki S, Taketsugu T (2013) Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: excited-state QM/MM molecular dynamics simulations. J Chem Phys 139(21):214304

    Google Scholar 

  111. Köppel H, Domcke W, Cederbaum LS (1984) Multimode molecular dynamics beyond the Born–Oppenheimer approximation. In: Adv Chem Phys, vol 57. Wiley, Chichester, pp 59–246

    Google Scholar 

  112. Rejnek J, Hanus M, Kabelac M, Ryjacek F, Hobza P (2005) Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Part 4. Uracil and thymine. Phys Chem Chem Phys 7:2006–2017

    CAS  Google Scholar 

  113. Matsika S, Spanner M, Kotur M, Weinacht TC (2013) Ultrafast relaxation dynamics of uracil probed via strong field dissociative ionization. J Phys Chem A 117(12):796–12801

    Google Scholar 

  114. Nieber H, Doltsinis NL (2008) Elucidating ultrafast nonradiative decay of photoexcited uracil in aqueous solution by ab initio molecular dynamics. Chem Phys 347:405–412

    CAS  Google Scholar 

  115. Nachtigallová D, Aquino AJA, Szymczak JJ, Barbatti M, Hobza P, Lischka H (2011) Nonadiabatic dynamics of uracil: population split among different decay mechanisms. J Phys Chem A 115(21):5247–5255

    Google Scholar 

  116. Fingerhut B, Dorfman KE, Mukamel S (2013) Monitoring nonadiabatic dynamics of the RNA base uracil by UV pump-IR probe spectroscopy. J Phys ChemLett 4:1933–1942

    CAS  Google Scholar 

  117. Buschhaus L, Rolf J, Kleinermanns K (2013) DNA photoreacts by nucleobase ring cleavage to form labile isocyanates. Phys Chem Chem Phys 15(18):371–18377

    Google Scholar 

  118. Guissani A, Segarra-Martí J, Roca-Sanjuán D, Merchán M (2013) Excitation of nucleobases from a computation perspective I: reaction paths. In: Barbatti M, Borin A, Ullrich S (eds) Topics in current chemistry. Springer, Berlin Heidelberg. doi:10.1007/128_2013_501

    Google Scholar 

  119. Improta R, Barone V (2014) Excited states behavior of nucleobases in solution: insights from computational studies. In: Barbatti M, Borin A, Ullrich S (eds) Topics in current chemistry. Springer, Berlin Heidelberg. doi:10.1007/128_2013_524

    Google Scholar 

Download references

Acknowledgements

Financial support from the Austrian Science Fond (FWF), Project No. P25827 is gratefully acknowledged. Furthermore, we would like to thank Jesus González-Vázquez and Tom Weinacht for their always insightful discussions. Special thanks go to Tom for sharing his unpublished results on enol cytosine with us. The Vienna Scientific Cluster (VSC) is also thanked for generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mai, S., Richter, M., Marquetand, P., González, L. (2014). Excitation of Nucleobases from a Computational Perspective II: Dynamics. In: Barbatti, M., Borin, A., Ullrich, S. (eds) Photoinduced Phenomena in Nucleic Acids I. Topics in Current Chemistry, vol 355. Springer, Cham. https://doi.org/10.1007/128_2014_549

Download citation

Publish with us

Policies and ethics